1250 lines
43 KiB
JavaScript
1250 lines
43 KiB
JavaScript
/**
|
|
* Cesium - https://github.com/CesiumGS/cesium
|
|
*
|
|
* Copyright 2011-2020 Cesium Contributors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* Columbus View (Pat. Pend.)
|
|
*
|
|
* Portions licensed separately.
|
|
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
|
|
*/
|
|
|
|
define(['exports', './Transforms-8b90e17c', './Matrix2-265d9610', './RuntimeError-5b082e8f', './when-4bbc8319', './AttributeCompression-442278a0', './ComponentDatatype-aad54330'], (function (exports, Transforms, Matrix2, RuntimeError, when, AttributeCompression, ComponentDatatype) { 'use strict';
|
|
|
|
/**
|
|
* Determine whether or not other objects are visible or hidden behind the visible horizon defined by
|
|
* an {@link Ellipsoid} and a camera position. The ellipsoid is assumed to be located at the
|
|
* origin of the coordinate system. This class uses the algorithm described in the
|
|
* {@link https://cesium.com/blog/2013/04/25/Horizon-culling/|Horizon Culling} blog post.
|
|
*
|
|
* @alias EllipsoidalOccluder
|
|
*
|
|
* @param {Ellipsoid} ellipsoid The ellipsoid to use as an occluder.
|
|
* @param {Cartesian3} [cameraPosition] The coordinate of the viewer/camera. If this parameter is not
|
|
* specified, {@link EllipsoidalOccluder#cameraPosition} must be called before
|
|
* testing visibility.
|
|
*
|
|
* @constructor
|
|
*
|
|
* @example
|
|
* // Construct an ellipsoidal occluder with radii 1.0, 1.1, and 0.9.
|
|
* const cameraPosition = new Cesium.Cartesian3(5.0, 6.0, 7.0);
|
|
* const occluderEllipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
|
|
* const occluder = new Cesium.EllipsoidalOccluder(occluderEllipsoid, cameraPosition);
|
|
*
|
|
* @private
|
|
*/
|
|
function EllipsoidalOccluder(ellipsoid, cameraPosition) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.typeOf.object("ellipsoid", ellipsoid);
|
|
//>>includeEnd('debug');
|
|
|
|
this._ellipsoid = ellipsoid;
|
|
this._cameraPosition = new Matrix2.Cartesian3();
|
|
this._cameraPositionInScaledSpace = new Matrix2.Cartesian3();
|
|
this._distanceToLimbInScaledSpaceSquared = 0.0;
|
|
|
|
// cameraPosition fills in the above values
|
|
if (when.defined(cameraPosition)) {
|
|
this.cameraPosition = cameraPosition;
|
|
}
|
|
}
|
|
|
|
Object.defineProperties(EllipsoidalOccluder.prototype, {
|
|
/**
|
|
* Gets the occluding ellipsoid.
|
|
* @memberof EllipsoidalOccluder.prototype
|
|
* @type {Ellipsoid}
|
|
*/
|
|
ellipsoid: {
|
|
get: function () {
|
|
return this._ellipsoid;
|
|
},
|
|
},
|
|
/**
|
|
* Gets or sets the position of the camera.
|
|
* @memberof EllipsoidalOccluder.prototype
|
|
* @type {Cartesian3}
|
|
*/
|
|
cameraPosition: {
|
|
get: function () {
|
|
return this._cameraPosition;
|
|
},
|
|
set: function (cameraPosition) {
|
|
// See https://cesium.com/blog/2013/04/25/Horizon-culling/
|
|
const ellipsoid = this._ellipsoid;
|
|
const cv = ellipsoid.transformPositionToScaledSpace(
|
|
cameraPosition,
|
|
this._cameraPositionInScaledSpace
|
|
);
|
|
const vhMagnitudeSquared = Matrix2.Cartesian3.magnitudeSquared(cv) - 1.0;
|
|
|
|
Matrix2.Cartesian3.clone(cameraPosition, this._cameraPosition);
|
|
this._cameraPositionInScaledSpace = cv;
|
|
this._distanceToLimbInScaledSpaceSquared = vhMagnitudeSquared;
|
|
},
|
|
},
|
|
});
|
|
|
|
const scratchCartesian = new Matrix2.Cartesian3();
|
|
|
|
/**
|
|
* Determines whether or not a point, the <code>occludee</code>, is hidden from view by the occluder.
|
|
*
|
|
* @param {Cartesian3} occludee The point to test for visibility.
|
|
* @returns {Boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
|
|
*
|
|
* @example
|
|
* const cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
|
|
* const ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
|
|
* const occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
|
|
* const point = new Cesium.Cartesian3(0, -3, -3);
|
|
* occluder.isPointVisible(point); //returns true
|
|
*/
|
|
EllipsoidalOccluder.prototype.isPointVisible = function (occludee) {
|
|
const ellipsoid = this._ellipsoid;
|
|
const occludeeScaledSpacePosition = ellipsoid.transformPositionToScaledSpace(
|
|
occludee,
|
|
scratchCartesian
|
|
);
|
|
return isScaledSpacePointVisible(
|
|
occludeeScaledSpacePosition,
|
|
this._cameraPositionInScaledSpace,
|
|
this._distanceToLimbInScaledSpaceSquared
|
|
);
|
|
};
|
|
|
|
/**
|
|
* Determines whether or not a point expressed in the ellipsoid scaled space, is hidden from view by the
|
|
* occluder. To transform a Cartesian X, Y, Z position in the coordinate system aligned with the ellipsoid
|
|
* into the scaled space, call {@link Ellipsoid#transformPositionToScaledSpace}.
|
|
*
|
|
* @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space.
|
|
* @returns {Boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
|
|
*
|
|
* @example
|
|
* const cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
|
|
* const ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
|
|
* const occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
|
|
* const point = new Cesium.Cartesian3(0, -3, -3);
|
|
* const scaledSpacePoint = ellipsoid.transformPositionToScaledSpace(point);
|
|
* occluder.isScaledSpacePointVisible(scaledSpacePoint); //returns true
|
|
*/
|
|
EllipsoidalOccluder.prototype.isScaledSpacePointVisible = function (
|
|
occludeeScaledSpacePosition
|
|
) {
|
|
return isScaledSpacePointVisible(
|
|
occludeeScaledSpacePosition,
|
|
this._cameraPositionInScaledSpace,
|
|
this._distanceToLimbInScaledSpaceSquared
|
|
);
|
|
};
|
|
|
|
const scratchCameraPositionInScaledSpaceShrunk = new Matrix2.Cartesian3();
|
|
|
|
/**
|
|
* Similar to {@link EllipsoidalOccluder#isScaledSpacePointVisible} except tests against an
|
|
* ellipsoid that has been shrunk by the minimum height when the minimum height is below
|
|
* the ellipsoid. This is intended to be used with points generated by
|
|
* {@link EllipsoidalOccluder#computeHorizonCullingPointPossiblyUnderEllipsoid} or
|
|
* {@link EllipsoidalOccluder#computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid}.
|
|
*
|
|
* @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space of the possibly-shrunk ellipsoid.
|
|
* @returns {Boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
|
|
*/
|
|
EllipsoidalOccluder.prototype.isScaledSpacePointVisiblePossiblyUnderEllipsoid = function (
|
|
occludeeScaledSpacePosition,
|
|
minimumHeight
|
|
) {
|
|
const ellipsoid = this._ellipsoid;
|
|
let vhMagnitudeSquared;
|
|
let cv;
|
|
|
|
if (
|
|
when.defined(minimumHeight) &&
|
|
minimumHeight < 0.0 &&
|
|
ellipsoid.minimumRadius > -minimumHeight
|
|
) {
|
|
// This code is similar to the cameraPosition setter, but unrolled for performance because it will be called a lot.
|
|
cv = scratchCameraPositionInScaledSpaceShrunk;
|
|
cv.x = this._cameraPosition.x / (ellipsoid.radii.x + minimumHeight);
|
|
cv.y = this._cameraPosition.y / (ellipsoid.radii.y + minimumHeight);
|
|
cv.z = this._cameraPosition.z / (ellipsoid.radii.z + minimumHeight);
|
|
vhMagnitudeSquared = cv.x * cv.x + cv.y * cv.y + cv.z * cv.z - 1.0;
|
|
} else {
|
|
cv = this._cameraPositionInScaledSpace;
|
|
vhMagnitudeSquared = this._distanceToLimbInScaledSpaceSquared;
|
|
}
|
|
|
|
return isScaledSpacePointVisible(
|
|
occludeeScaledSpacePosition,
|
|
cv,
|
|
vhMagnitudeSquared
|
|
);
|
|
};
|
|
|
|
/**
|
|
* Computes a point that can be used for horizon culling from a list of positions. If the point is below
|
|
* the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
|
|
* is expressed in the ellipsoid-scaled space and is suitable for use with
|
|
* {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
|
|
*
|
|
* @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
|
|
* A reasonable direction to use is the direction from the center of the ellipsoid to
|
|
* the center of the bounding sphere computed from the positions. The direction need not
|
|
* be normalized.
|
|
* @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions
|
|
* must be expressed in a reference frame centered at the ellipsoid and aligned with the
|
|
* ellipsoid's axes.
|
|
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
|
|
* @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
|
|
*/
|
|
EllipsoidalOccluder.prototype.computeHorizonCullingPoint = function (
|
|
directionToPoint,
|
|
positions,
|
|
result
|
|
) {
|
|
return computeHorizonCullingPointFromPositions(
|
|
this._ellipsoid,
|
|
directionToPoint,
|
|
positions,
|
|
result
|
|
);
|
|
};
|
|
|
|
const scratchEllipsoidShrunk = Matrix2.Ellipsoid.clone(Matrix2.Ellipsoid.UNIT_SPHERE);
|
|
|
|
/**
|
|
* Similar to {@link EllipsoidalOccluder#computeHorizonCullingPoint} except computes the culling
|
|
* point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below
|
|
* the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable
|
|
* for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}.
|
|
*
|
|
* @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
|
|
* A reasonable direction to use is the direction from the center of the ellipsoid to
|
|
* the center of the bounding sphere computed from the positions. The direction need not
|
|
* be normalized.
|
|
* @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions
|
|
* must be expressed in a reference frame centered at the ellipsoid and aligned with the
|
|
* ellipsoid's axes.
|
|
* @param {Number} [minimumHeight] The minimum height of all positions. If this value is undefined, all positions are assumed to be above the ellipsoid.
|
|
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
|
|
* @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space.
|
|
*/
|
|
EllipsoidalOccluder.prototype.computeHorizonCullingPointPossiblyUnderEllipsoid = function (
|
|
directionToPoint,
|
|
positions,
|
|
minimumHeight,
|
|
result
|
|
) {
|
|
const possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid(
|
|
this._ellipsoid,
|
|
minimumHeight,
|
|
scratchEllipsoidShrunk
|
|
);
|
|
return computeHorizonCullingPointFromPositions(
|
|
possiblyShrunkEllipsoid,
|
|
directionToPoint,
|
|
positions,
|
|
result
|
|
);
|
|
};
|
|
/**
|
|
* Computes a point that can be used for horizon culling from a list of positions. If the point is below
|
|
* the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
|
|
* is expressed in the ellipsoid-scaled space and is suitable for use with
|
|
* {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
|
|
*
|
|
* @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
|
|
* A reasonable direction to use is the direction from the center of the ellipsoid to
|
|
* the center of the bounding sphere computed from the positions. The direction need not
|
|
* be normalized.
|
|
* @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions
|
|
* must be expressed in a reference frame centered at the ellipsoid and aligned with the
|
|
* ellipsoid's axes.
|
|
* @param {Number} [stride=3]
|
|
* @param {Cartesian3} [center=Cartesian3.ZERO]
|
|
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
|
|
* @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
|
|
*/
|
|
EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVertices = function (
|
|
directionToPoint,
|
|
vertices,
|
|
stride,
|
|
center,
|
|
result
|
|
) {
|
|
return computeHorizonCullingPointFromVertices(
|
|
this._ellipsoid,
|
|
directionToPoint,
|
|
vertices,
|
|
stride,
|
|
center,
|
|
result
|
|
);
|
|
};
|
|
|
|
/**
|
|
* Similar to {@link EllipsoidalOccluder#computeHorizonCullingPointFromVertices} except computes the culling
|
|
* point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below
|
|
* the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable
|
|
* for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}.
|
|
*
|
|
* @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
|
|
* A reasonable direction to use is the direction from the center of the ellipsoid to
|
|
* the center of the bounding sphere computed from the positions. The direction need not
|
|
* be normalized.
|
|
* @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions
|
|
* must be expressed in a reference frame centered at the ellipsoid and aligned with the
|
|
* ellipsoid's axes.
|
|
* @param {Number} [stride=3]
|
|
* @param {Cartesian3} [center=Cartesian3.ZERO]
|
|
* @param {Number} [minimumHeight] The minimum height of all vertices. If this value is undefined, all vertices are assumed to be above the ellipsoid.
|
|
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
|
|
* @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space.
|
|
*/
|
|
EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid = function (
|
|
directionToPoint,
|
|
vertices,
|
|
stride,
|
|
center,
|
|
minimumHeight,
|
|
result
|
|
) {
|
|
const possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid(
|
|
this._ellipsoid,
|
|
minimumHeight,
|
|
scratchEllipsoidShrunk
|
|
);
|
|
return computeHorizonCullingPointFromVertices(
|
|
possiblyShrunkEllipsoid,
|
|
directionToPoint,
|
|
vertices,
|
|
stride,
|
|
center,
|
|
result
|
|
);
|
|
};
|
|
|
|
const subsampleScratch = [];
|
|
|
|
/**
|
|
* Computes a point that can be used for horizon culling of a rectangle. If the point is below
|
|
* the horizon, the ellipsoid-conforming rectangle is guaranteed to be below the horizon as well.
|
|
* The returned point is expressed in the ellipsoid-scaled space and is suitable for use with
|
|
* {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
|
|
*
|
|
* @param {Rectangle} rectangle The rectangle for which to compute the horizon culling point.
|
|
* @param {Ellipsoid} ellipsoid The ellipsoid on which the rectangle is defined. This may be different from
|
|
* the ellipsoid used by this instance for occlusion testing.
|
|
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
|
|
* @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
|
|
*/
|
|
EllipsoidalOccluder.prototype.computeHorizonCullingPointFromRectangle = function (
|
|
rectangle,
|
|
ellipsoid,
|
|
result
|
|
) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.typeOf.object("rectangle", rectangle);
|
|
//>>includeEnd('debug');
|
|
|
|
const positions = Matrix2.Rectangle.subsample(
|
|
rectangle,
|
|
ellipsoid,
|
|
0.0,
|
|
subsampleScratch
|
|
);
|
|
const bs = Transforms.BoundingSphere.fromPoints(positions);
|
|
|
|
// If the bounding sphere center is too close to the center of the occluder, it doesn't make
|
|
// sense to try to horizon cull it.
|
|
if (Matrix2.Cartesian3.magnitude(bs.center) < 0.1 * ellipsoid.minimumRadius) {
|
|
return undefined;
|
|
}
|
|
|
|
return this.computeHorizonCullingPoint(bs.center, positions, result);
|
|
};
|
|
|
|
const scratchEllipsoidShrunkRadii = new Matrix2.Cartesian3();
|
|
|
|
function getPossiblyShrunkEllipsoid(ellipsoid, minimumHeight, result) {
|
|
if (
|
|
when.defined(minimumHeight) &&
|
|
minimumHeight < 0.0 &&
|
|
ellipsoid.minimumRadius > -minimumHeight
|
|
) {
|
|
const ellipsoidShrunkRadii = Matrix2.Cartesian3.fromElements(
|
|
ellipsoid.radii.x + minimumHeight,
|
|
ellipsoid.radii.y + minimumHeight,
|
|
ellipsoid.radii.z + minimumHeight,
|
|
scratchEllipsoidShrunkRadii
|
|
);
|
|
ellipsoid = Matrix2.Ellipsoid.fromCartesian3(ellipsoidShrunkRadii, result);
|
|
}
|
|
return ellipsoid;
|
|
}
|
|
|
|
function computeHorizonCullingPointFromPositions(
|
|
ellipsoid,
|
|
directionToPoint,
|
|
positions,
|
|
result
|
|
) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.typeOf.object("directionToPoint", directionToPoint);
|
|
RuntimeError.Check.defined("positions", positions);
|
|
//>>includeEnd('debug');
|
|
|
|
if (!when.defined(result)) {
|
|
result = new Matrix2.Cartesian3();
|
|
}
|
|
|
|
const scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(
|
|
ellipsoid,
|
|
directionToPoint
|
|
);
|
|
let resultMagnitude = 0.0;
|
|
|
|
for (let i = 0, len = positions.length; i < len; ++i) {
|
|
const position = positions[i];
|
|
const candidateMagnitude = computeMagnitude(
|
|
ellipsoid,
|
|
position,
|
|
scaledSpaceDirectionToPoint
|
|
);
|
|
if (candidateMagnitude < 0.0) {
|
|
// all points should face the same direction, but this one doesn't, so return undefined
|
|
return undefined;
|
|
}
|
|
resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
|
|
}
|
|
|
|
return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
|
|
}
|
|
|
|
const positionScratch = new Matrix2.Cartesian3();
|
|
|
|
function computeHorizonCullingPointFromVertices(
|
|
ellipsoid,
|
|
directionToPoint,
|
|
vertices,
|
|
stride,
|
|
center,
|
|
result
|
|
) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.typeOf.object("directionToPoint", directionToPoint);
|
|
RuntimeError.Check.defined("vertices", vertices);
|
|
RuntimeError.Check.typeOf.number("stride", stride);
|
|
//>>includeEnd('debug');
|
|
|
|
if (!when.defined(result)) {
|
|
result = new Matrix2.Cartesian3();
|
|
}
|
|
|
|
stride = when.defaultValue(stride, 3);
|
|
center = when.defaultValue(center, Matrix2.Cartesian3.ZERO);
|
|
const scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(
|
|
ellipsoid,
|
|
directionToPoint
|
|
);
|
|
let resultMagnitude = 0.0;
|
|
|
|
for (let i = 0, len = vertices.length; i < len; i += stride) {
|
|
positionScratch.x = vertices[i] + center.x;
|
|
positionScratch.y = vertices[i + 1] + center.y;
|
|
positionScratch.z = vertices[i + 2] + center.z;
|
|
|
|
const candidateMagnitude = computeMagnitude(
|
|
ellipsoid,
|
|
positionScratch,
|
|
scaledSpaceDirectionToPoint
|
|
);
|
|
if (candidateMagnitude < 0.0) {
|
|
// all points should face the same direction, but this one doesn't, so return undefined
|
|
return undefined;
|
|
}
|
|
resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
|
|
}
|
|
|
|
return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
|
|
}
|
|
|
|
function isScaledSpacePointVisible(
|
|
occludeeScaledSpacePosition,
|
|
cameraPositionInScaledSpace,
|
|
distanceToLimbInScaledSpaceSquared
|
|
) {
|
|
// See https://cesium.com/blog/2013/04/25/Horizon-culling/
|
|
const cv = cameraPositionInScaledSpace;
|
|
const vhMagnitudeSquared = distanceToLimbInScaledSpaceSquared;
|
|
const vt = Matrix2.Cartesian3.subtract(
|
|
occludeeScaledSpacePosition,
|
|
cv,
|
|
scratchCartesian
|
|
);
|
|
const vtDotVc = -Matrix2.Cartesian3.dot(vt, cv);
|
|
// If vhMagnitudeSquared < 0 then we are below the surface of the ellipsoid and
|
|
// in this case, set the culling plane to be on V.
|
|
const isOccluded =
|
|
vhMagnitudeSquared < 0
|
|
? vtDotVc > 0
|
|
: vtDotVc > vhMagnitudeSquared &&
|
|
(vtDotVc * vtDotVc) / Matrix2.Cartesian3.magnitudeSquared(vt) >
|
|
vhMagnitudeSquared;
|
|
return !isOccluded;
|
|
}
|
|
|
|
const scaledSpaceScratch = new Matrix2.Cartesian3();
|
|
const directionScratch = new Matrix2.Cartesian3();
|
|
|
|
function computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint) {
|
|
const scaledSpacePosition = ellipsoid.transformPositionToScaledSpace(
|
|
position,
|
|
scaledSpaceScratch
|
|
);
|
|
let magnitudeSquared = Matrix2.Cartesian3.magnitudeSquared(scaledSpacePosition);
|
|
let magnitude = Math.sqrt(magnitudeSquared);
|
|
const direction = Matrix2.Cartesian3.divideByScalar(
|
|
scaledSpacePosition,
|
|
magnitude,
|
|
directionScratch
|
|
);
|
|
|
|
// For the purpose of this computation, points below the ellipsoid are consider to be on it instead.
|
|
magnitudeSquared = Math.max(1.0, magnitudeSquared);
|
|
magnitude = Math.max(1.0, magnitude);
|
|
|
|
const cosAlpha = Matrix2.Cartesian3.dot(direction, scaledSpaceDirectionToPoint);
|
|
const sinAlpha = Matrix2.Cartesian3.magnitude(
|
|
Matrix2.Cartesian3.cross(direction, scaledSpaceDirectionToPoint, direction)
|
|
);
|
|
const cosBeta = 1.0 / magnitude;
|
|
const sinBeta = Math.sqrt(magnitudeSquared - 1.0) * cosBeta;
|
|
|
|
return 1.0 / (cosAlpha * cosBeta - sinAlpha * sinBeta);
|
|
}
|
|
|
|
function magnitudeToPoint(
|
|
scaledSpaceDirectionToPoint,
|
|
resultMagnitude,
|
|
result
|
|
) {
|
|
// The horizon culling point is undefined if there were no positions from which to compute it,
|
|
// the directionToPoint is pointing opposite all of the positions, or if we computed NaN or infinity.
|
|
if (
|
|
resultMagnitude <= 0.0 ||
|
|
resultMagnitude === 1.0 / 0.0 ||
|
|
resultMagnitude !== resultMagnitude
|
|
) {
|
|
return undefined;
|
|
}
|
|
|
|
return Matrix2.Cartesian3.multiplyByScalar(
|
|
scaledSpaceDirectionToPoint,
|
|
resultMagnitude,
|
|
result
|
|
);
|
|
}
|
|
|
|
const directionToPointScratch = new Matrix2.Cartesian3();
|
|
|
|
function computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint) {
|
|
if (Matrix2.Cartesian3.equals(directionToPoint, Matrix2.Cartesian3.ZERO)) {
|
|
return directionToPoint;
|
|
}
|
|
|
|
ellipsoid.transformPositionToScaledSpace(
|
|
directionToPoint,
|
|
directionToPointScratch
|
|
);
|
|
return Matrix2.Cartesian3.normalize(directionToPointScratch, directionToPointScratch);
|
|
}
|
|
|
|
/**
|
|
* @private
|
|
*/
|
|
const TerrainExaggeration = {};
|
|
|
|
/**
|
|
* Scales a height relative to an offset.
|
|
*
|
|
* @param {Number} height The height.
|
|
* @param {Number} scale A scalar used to exaggerate the terrain. If the value is 1.0 there will be no effect.
|
|
* @param {Number} relativeHeight The height relative to which terrain is exaggerated. If the value is 0.0 terrain will be exaggerated relative to the ellipsoid surface.
|
|
*/
|
|
TerrainExaggeration.getHeight = function (height, scale, relativeHeight) {
|
|
return (height - relativeHeight) * scale + relativeHeight;
|
|
};
|
|
|
|
const scratchCartographic = new Matrix2.Cartesian3();
|
|
|
|
/**
|
|
* Scales a position by exaggeration.
|
|
*/
|
|
TerrainExaggeration.getPosition = function (
|
|
position,
|
|
ellipsoid,
|
|
terrainExaggeration,
|
|
terrainExaggerationRelativeHeight,
|
|
result
|
|
) {
|
|
const cartographic = ellipsoid.cartesianToCartographic(
|
|
position,
|
|
scratchCartographic
|
|
);
|
|
const newHeight = TerrainExaggeration.getHeight(
|
|
cartographic.height,
|
|
terrainExaggeration,
|
|
terrainExaggerationRelativeHeight
|
|
);
|
|
return Matrix2.Cartesian3.fromRadians(
|
|
cartographic.longitude,
|
|
cartographic.latitude,
|
|
newHeight,
|
|
ellipsoid,
|
|
result
|
|
);
|
|
};
|
|
|
|
/**
|
|
* This enumerated type is used to determine how the vertices of the terrain mesh are compressed.
|
|
*
|
|
* @enum {Number}
|
|
*
|
|
* @private
|
|
*/
|
|
const TerrainQuantization = {
|
|
/**
|
|
* The vertices are not compressed.
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
NONE: 0,
|
|
|
|
/**
|
|
* The vertices are compressed to 12 bits.
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
BITS12: 1,
|
|
};
|
|
var TerrainQuantization$1 = Object.freeze(TerrainQuantization);
|
|
|
|
const cartesian3Scratch = new Matrix2.Cartesian3();
|
|
const cartesian3DimScratch = new Matrix2.Cartesian3();
|
|
const cartesian2Scratch = new Matrix2.Cartesian2();
|
|
const matrix4Scratch = new Matrix2.Matrix4();
|
|
const matrix4Scratch2 = new Matrix2.Matrix4();
|
|
|
|
const SHIFT_LEFT_12 = Math.pow(2.0, 12.0);
|
|
|
|
/**
|
|
* Data used to quantize and pack the terrain mesh. The position can be unpacked for picking and all attributes
|
|
* are unpacked in the vertex shader.
|
|
*
|
|
* @alias TerrainEncoding
|
|
* @constructor
|
|
*
|
|
* @param {Cartesian3} center The center point of the vertices.
|
|
* @param {AxisAlignedBoundingBox} axisAlignedBoundingBox The bounds of the tile in the east-north-up coordinates at the tiles center.
|
|
* @param {Number} minimumHeight The minimum height.
|
|
* @param {Number} maximumHeight The maximum height.
|
|
* @param {Matrix4} fromENU The east-north-up to fixed frame matrix at the center of the terrain mesh.
|
|
* @param {Boolean} hasVertexNormals If the mesh has vertex normals.
|
|
* @param {Boolean} [hasWebMercatorT=false] true if the terrain data includes a Web Mercator texture coordinate; otherwise, false.
|
|
* @param {Boolean} [hasGeodeticSurfaceNormals=false] true if the terrain data includes geodetic surface normals; otherwise, false.
|
|
* @param {Number} [exaggeration=1.0] A scalar used to exaggerate terrain.
|
|
* @param {Number} [exaggerationRelativeHeight=0.0] The relative height from which terrain is exaggerated.
|
|
*
|
|
* @private
|
|
*/
|
|
function TerrainEncoding(
|
|
center,
|
|
axisAlignedBoundingBox,
|
|
minimumHeight,
|
|
maximumHeight,
|
|
fromENU,
|
|
hasVertexNormals,
|
|
hasWebMercatorT,
|
|
hasGeodeticSurfaceNormals,
|
|
exaggeration,
|
|
exaggerationRelativeHeight
|
|
) {
|
|
let quantization = TerrainQuantization$1.NONE;
|
|
let toENU;
|
|
let matrix;
|
|
|
|
if (
|
|
when.defined(axisAlignedBoundingBox) &&
|
|
when.defined(minimumHeight) &&
|
|
when.defined(maximumHeight) &&
|
|
when.defined(fromENU)
|
|
) {
|
|
const minimum = axisAlignedBoundingBox.minimum;
|
|
const maximum = axisAlignedBoundingBox.maximum;
|
|
|
|
const dimensions = Matrix2.Cartesian3.subtract(
|
|
maximum,
|
|
minimum,
|
|
cartesian3DimScratch
|
|
);
|
|
const hDim = maximumHeight - minimumHeight;
|
|
const maxDim = Math.max(Matrix2.Cartesian3.maximumComponent(dimensions), hDim);
|
|
|
|
if (maxDim < SHIFT_LEFT_12 - 1.0) {
|
|
quantization = TerrainQuantization$1.BITS12;
|
|
} else {
|
|
quantization = TerrainQuantization$1.NONE;
|
|
}
|
|
|
|
toENU = Matrix2.Matrix4.inverseTransformation(fromENU, new Matrix2.Matrix4());
|
|
|
|
const translation = Matrix2.Cartesian3.negate(minimum, cartesian3Scratch);
|
|
Matrix2.Matrix4.multiply(
|
|
Matrix2.Matrix4.fromTranslation(translation, matrix4Scratch),
|
|
toENU,
|
|
toENU
|
|
);
|
|
|
|
const scale = cartesian3Scratch;
|
|
scale.x = 1.0 / dimensions.x;
|
|
scale.y = 1.0 / dimensions.y;
|
|
scale.z = 1.0 / dimensions.z;
|
|
Matrix2.Matrix4.multiply(Matrix2.Matrix4.fromScale(scale, matrix4Scratch), toENU, toENU);
|
|
|
|
matrix = Matrix2.Matrix4.clone(fromENU);
|
|
Matrix2.Matrix4.setTranslation(matrix, Matrix2.Cartesian3.ZERO, matrix);
|
|
|
|
fromENU = Matrix2.Matrix4.clone(fromENU, new Matrix2.Matrix4());
|
|
|
|
const translationMatrix = Matrix2.Matrix4.fromTranslation(minimum, matrix4Scratch);
|
|
const scaleMatrix = Matrix2.Matrix4.fromScale(dimensions, matrix4Scratch2);
|
|
const st = Matrix2.Matrix4.multiply(translationMatrix, scaleMatrix, matrix4Scratch);
|
|
|
|
Matrix2.Matrix4.multiply(fromENU, st, fromENU);
|
|
Matrix2.Matrix4.multiply(matrix, st, matrix);
|
|
}
|
|
|
|
/**
|
|
* How the vertices of the mesh were compressed.
|
|
* @type {TerrainQuantization}
|
|
*/
|
|
this.quantization = quantization;
|
|
|
|
/**
|
|
* The minimum height of the tile including the skirts.
|
|
* @type {Number}
|
|
*/
|
|
this.minimumHeight = minimumHeight;
|
|
|
|
/**
|
|
* The maximum height of the tile.
|
|
* @type {Number}
|
|
*/
|
|
this.maximumHeight = maximumHeight;
|
|
|
|
/**
|
|
* The center of the tile.
|
|
* @type {Cartesian3}
|
|
*/
|
|
this.center = Matrix2.Cartesian3.clone(center);
|
|
|
|
/**
|
|
* A matrix that takes a vertex from the tile, transforms it to east-north-up at the center and scales
|
|
* it so each component is in the [0, 1] range.
|
|
* @type {Matrix4}
|
|
*/
|
|
this.toScaledENU = toENU;
|
|
|
|
/**
|
|
* A matrix that restores a vertex transformed with toScaledENU back to the earth fixed reference frame
|
|
* @type {Matrix4}
|
|
*/
|
|
this.fromScaledENU = fromENU;
|
|
|
|
/**
|
|
* The matrix used to decompress the terrain vertices in the shader for RTE rendering.
|
|
* @type {Matrix4}
|
|
*/
|
|
this.matrix = matrix;
|
|
|
|
/**
|
|
* The terrain mesh contains normals.
|
|
* @type {Boolean}
|
|
*/
|
|
this.hasVertexNormals = hasVertexNormals;
|
|
|
|
/**
|
|
* The terrain mesh contains a vertical texture coordinate following the Web Mercator projection.
|
|
* @type {Boolean}
|
|
*/
|
|
this.hasWebMercatorT = when.defaultValue(hasWebMercatorT, false);
|
|
|
|
/**
|
|
* The terrain mesh contains geodetic surface normals, used for terrain exaggeration.
|
|
* @type {Boolean}
|
|
*/
|
|
this.hasGeodeticSurfaceNormals = when.defaultValue(
|
|
hasGeodeticSurfaceNormals,
|
|
false
|
|
);
|
|
|
|
/**
|
|
* A scalar used to exaggerate terrain.
|
|
* @type {Number}
|
|
*/
|
|
this.exaggeration = when.defaultValue(exaggeration, 1.0);
|
|
|
|
/**
|
|
* The relative height from which terrain is exaggerated.
|
|
*/
|
|
this.exaggerationRelativeHeight = when.defaultValue(
|
|
exaggerationRelativeHeight,
|
|
0.0
|
|
);
|
|
|
|
/**
|
|
* The number of components in each vertex. This value can differ with different quantizations.
|
|
* @type {Number}
|
|
*/
|
|
this.stride = 0;
|
|
|
|
this._offsetGeodeticSurfaceNormal = 0;
|
|
this._offsetVertexNormal = 0;
|
|
|
|
// Calculate the stride and offsets declared above
|
|
this._calculateStrideAndOffsets();
|
|
}
|
|
|
|
TerrainEncoding.prototype.encode = function (
|
|
vertexBuffer,
|
|
bufferIndex,
|
|
position,
|
|
uv,
|
|
height,
|
|
normalToPack,
|
|
webMercatorT,
|
|
geodeticSurfaceNormal
|
|
) {
|
|
const u = uv.x;
|
|
const v = uv.y;
|
|
|
|
if (this.quantization === TerrainQuantization$1.BITS12) {
|
|
position = Matrix2.Matrix4.multiplyByPoint(
|
|
this.toScaledENU,
|
|
position,
|
|
cartesian3Scratch
|
|
);
|
|
|
|
position.x = ComponentDatatype.CesiumMath.clamp(position.x, 0.0, 1.0);
|
|
position.y = ComponentDatatype.CesiumMath.clamp(position.y, 0.0, 1.0);
|
|
position.z = ComponentDatatype.CesiumMath.clamp(position.z, 0.0, 1.0);
|
|
|
|
const hDim = this.maximumHeight - this.minimumHeight;
|
|
const h = ComponentDatatype.CesiumMath.clamp((height - this.minimumHeight) / hDim, 0.0, 1.0);
|
|
|
|
Matrix2.Cartesian2.fromElements(position.x, position.y, cartesian2Scratch);
|
|
const compressed0 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
|
|
cartesian2Scratch
|
|
);
|
|
|
|
Matrix2.Cartesian2.fromElements(position.z, h, cartesian2Scratch);
|
|
const compressed1 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
|
|
cartesian2Scratch
|
|
);
|
|
|
|
Matrix2.Cartesian2.fromElements(u, v, cartesian2Scratch);
|
|
const compressed2 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
|
|
cartesian2Scratch
|
|
);
|
|
|
|
vertexBuffer[bufferIndex++] = compressed0;
|
|
vertexBuffer[bufferIndex++] = compressed1;
|
|
vertexBuffer[bufferIndex++] = compressed2;
|
|
|
|
if (this.hasWebMercatorT) {
|
|
Matrix2.Cartesian2.fromElements(webMercatorT, 0.0, cartesian2Scratch);
|
|
const compressed3 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
|
|
cartesian2Scratch
|
|
);
|
|
vertexBuffer[bufferIndex++] = compressed3;
|
|
}
|
|
} else {
|
|
Matrix2.Cartesian3.subtract(position, this.center, cartesian3Scratch);
|
|
|
|
vertexBuffer[bufferIndex++] = cartesian3Scratch.x;
|
|
vertexBuffer[bufferIndex++] = cartesian3Scratch.y;
|
|
vertexBuffer[bufferIndex++] = cartesian3Scratch.z;
|
|
vertexBuffer[bufferIndex++] = height;
|
|
vertexBuffer[bufferIndex++] = u;
|
|
vertexBuffer[bufferIndex++] = v;
|
|
|
|
if (this.hasWebMercatorT) {
|
|
vertexBuffer[bufferIndex++] = webMercatorT;
|
|
}
|
|
}
|
|
|
|
if (this.hasVertexNormals) {
|
|
vertexBuffer[bufferIndex++] = AttributeCompression.AttributeCompression.octPackFloat(
|
|
normalToPack
|
|
);
|
|
}
|
|
|
|
if (this.hasGeodeticSurfaceNormals) {
|
|
vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.x;
|
|
vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.y;
|
|
vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.z;
|
|
}
|
|
|
|
return bufferIndex;
|
|
};
|
|
|
|
const scratchPosition = new Matrix2.Cartesian3();
|
|
const scratchGeodeticSurfaceNormal = new Matrix2.Cartesian3();
|
|
|
|
TerrainEncoding.prototype.addGeodeticSurfaceNormals = function (
|
|
oldBuffer,
|
|
newBuffer,
|
|
ellipsoid
|
|
) {
|
|
if (this.hasGeodeticSurfaceNormals) {
|
|
return;
|
|
}
|
|
|
|
const oldStride = this.stride;
|
|
const vertexCount = oldBuffer.length / oldStride;
|
|
this.hasGeodeticSurfaceNormals = true;
|
|
this._calculateStrideAndOffsets();
|
|
const newStride = this.stride;
|
|
|
|
for (let index = 0; index < vertexCount; index++) {
|
|
for (let offset = 0; offset < oldStride; offset++) {
|
|
const oldIndex = index * oldStride + offset;
|
|
const newIndex = index * newStride + offset;
|
|
newBuffer[newIndex] = oldBuffer[oldIndex];
|
|
}
|
|
const position = this.decodePosition(newBuffer, index, scratchPosition);
|
|
const geodeticSurfaceNormal = ellipsoid.geodeticSurfaceNormal(
|
|
position,
|
|
scratchGeodeticSurfaceNormal
|
|
);
|
|
|
|
const bufferIndex = index * newStride + this._offsetGeodeticSurfaceNormal;
|
|
newBuffer[bufferIndex] = geodeticSurfaceNormal.x;
|
|
newBuffer[bufferIndex + 1] = geodeticSurfaceNormal.y;
|
|
newBuffer[bufferIndex + 2] = geodeticSurfaceNormal.z;
|
|
}
|
|
};
|
|
|
|
TerrainEncoding.prototype.removeGeodeticSurfaceNormals = function (
|
|
oldBuffer,
|
|
newBuffer
|
|
) {
|
|
if (!this.hasGeodeticSurfaceNormals) {
|
|
return;
|
|
}
|
|
|
|
const oldStride = this.stride;
|
|
const vertexCount = oldBuffer.length / oldStride;
|
|
this.hasGeodeticSurfaceNormals = false;
|
|
this._calculateStrideAndOffsets();
|
|
const newStride = this.stride;
|
|
|
|
for (let index = 0; index < vertexCount; index++) {
|
|
for (let offset = 0; offset < newStride; offset++) {
|
|
const oldIndex = index * oldStride + offset;
|
|
const newIndex = index * newStride + offset;
|
|
newBuffer[newIndex] = oldBuffer[oldIndex];
|
|
}
|
|
}
|
|
};
|
|
|
|
TerrainEncoding.prototype.decodePosition = function (buffer, index, result) {
|
|
if (!when.defined(result)) {
|
|
result = new Matrix2.Cartesian3();
|
|
}
|
|
|
|
index *= this.stride;
|
|
|
|
if (this.quantization === TerrainQuantization$1.BITS12) {
|
|
const xy = AttributeCompression.AttributeCompression.decompressTextureCoordinates(
|
|
buffer[index],
|
|
cartesian2Scratch
|
|
);
|
|
result.x = xy.x;
|
|
result.y = xy.y;
|
|
|
|
const zh = AttributeCompression.AttributeCompression.decompressTextureCoordinates(
|
|
buffer[index + 1],
|
|
cartesian2Scratch
|
|
);
|
|
result.z = zh.x;
|
|
|
|
return Matrix2.Matrix4.multiplyByPoint(this.fromScaledENU, result, result);
|
|
}
|
|
|
|
result.x = buffer[index];
|
|
result.y = buffer[index + 1];
|
|
result.z = buffer[index + 2];
|
|
return Matrix2.Cartesian3.add(result, this.center, result);
|
|
};
|
|
|
|
TerrainEncoding.prototype.getExaggeratedPosition = function (
|
|
buffer,
|
|
index,
|
|
result
|
|
) {
|
|
result = this.decodePosition(buffer, index, result);
|
|
|
|
const exaggeration = this.exaggeration;
|
|
const exaggerationRelativeHeight = this.exaggerationRelativeHeight;
|
|
const hasExaggeration = exaggeration !== 1.0;
|
|
if (hasExaggeration && this.hasGeodeticSurfaceNormals) {
|
|
const geodeticSurfaceNormal = this.decodeGeodeticSurfaceNormal(
|
|
buffer,
|
|
index,
|
|
scratchGeodeticSurfaceNormal
|
|
);
|
|
const rawHeight = this.decodeHeight(buffer, index);
|
|
const heightDifference =
|
|
TerrainExaggeration.getHeight(
|
|
rawHeight,
|
|
exaggeration,
|
|
exaggerationRelativeHeight
|
|
) - rawHeight;
|
|
|
|
// some math is unrolled for better performance
|
|
result.x += geodeticSurfaceNormal.x * heightDifference;
|
|
result.y += geodeticSurfaceNormal.y * heightDifference;
|
|
result.z += geodeticSurfaceNormal.z * heightDifference;
|
|
}
|
|
|
|
return result;
|
|
};
|
|
|
|
TerrainEncoding.prototype.decodeTextureCoordinates = function (
|
|
buffer,
|
|
index,
|
|
result
|
|
) {
|
|
if (!when.defined(result)) {
|
|
result = new Matrix2.Cartesian2();
|
|
}
|
|
|
|
index *= this.stride;
|
|
|
|
if (this.quantization === TerrainQuantization$1.BITS12) {
|
|
return AttributeCompression.AttributeCompression.decompressTextureCoordinates(
|
|
buffer[index + 2],
|
|
result
|
|
);
|
|
}
|
|
|
|
return Matrix2.Cartesian2.fromElements(buffer[index + 4], buffer[index + 5], result);
|
|
};
|
|
|
|
TerrainEncoding.prototype.decodeHeight = function (buffer, index) {
|
|
index *= this.stride;
|
|
|
|
if (this.quantization === TerrainQuantization$1.BITS12) {
|
|
const zh = AttributeCompression.AttributeCompression.decompressTextureCoordinates(
|
|
buffer[index + 1],
|
|
cartesian2Scratch
|
|
);
|
|
return (
|
|
zh.y * (this.maximumHeight - this.minimumHeight) + this.minimumHeight
|
|
);
|
|
}
|
|
|
|
return buffer[index + 3];
|
|
};
|
|
|
|
TerrainEncoding.prototype.decodeWebMercatorT = function (buffer, index) {
|
|
index *= this.stride;
|
|
|
|
if (this.quantization === TerrainQuantization$1.BITS12) {
|
|
return AttributeCompression.AttributeCompression.decompressTextureCoordinates(
|
|
buffer[index + 3],
|
|
cartesian2Scratch
|
|
).x;
|
|
}
|
|
|
|
return buffer[index + 6];
|
|
};
|
|
|
|
TerrainEncoding.prototype.getOctEncodedNormal = function (
|
|
buffer,
|
|
index,
|
|
result
|
|
) {
|
|
index = index * this.stride + this._offsetVertexNormal;
|
|
|
|
const temp = buffer[index] / 256.0;
|
|
const x = Math.floor(temp);
|
|
const y = (temp - x) * 256.0;
|
|
|
|
return Matrix2.Cartesian2.fromElements(x, y, result);
|
|
};
|
|
|
|
TerrainEncoding.prototype.decodeGeodeticSurfaceNormal = function (
|
|
buffer,
|
|
index,
|
|
result
|
|
) {
|
|
index = index * this.stride + this._offsetGeodeticSurfaceNormal;
|
|
|
|
result.x = buffer[index];
|
|
result.y = buffer[index + 1];
|
|
result.z = buffer[index + 2];
|
|
return result;
|
|
};
|
|
|
|
TerrainEncoding.prototype._calculateStrideAndOffsets = function () {
|
|
let vertexStride = 0;
|
|
|
|
switch (this.quantization) {
|
|
case TerrainQuantization$1.BITS12:
|
|
vertexStride += 3;
|
|
break;
|
|
default:
|
|
vertexStride += 6;
|
|
}
|
|
if (this.hasWebMercatorT) {
|
|
vertexStride += 1;
|
|
}
|
|
if (this.hasVertexNormals) {
|
|
this._offsetVertexNormal = vertexStride;
|
|
vertexStride += 1;
|
|
}
|
|
if (this.hasGeodeticSurfaceNormals) {
|
|
this._offsetGeodeticSurfaceNormal = vertexStride;
|
|
vertexStride += 3;
|
|
}
|
|
|
|
this.stride = vertexStride;
|
|
};
|
|
|
|
const attributesIndicesNone = {
|
|
position3DAndHeight: 0,
|
|
textureCoordAndEncodedNormals: 1,
|
|
geodeticSurfaceNormal: 2,
|
|
};
|
|
const attributesIndicesBits12 = {
|
|
compressed0: 0,
|
|
compressed1: 1,
|
|
geodeticSurfaceNormal: 2,
|
|
};
|
|
|
|
TerrainEncoding.prototype.getAttributes = function (buffer) {
|
|
const datatype = ComponentDatatype.ComponentDatatype.FLOAT;
|
|
const sizeInBytes = ComponentDatatype.ComponentDatatype.getSizeInBytes(datatype);
|
|
const strideInBytes = this.stride * sizeInBytes;
|
|
let offsetInBytes = 0;
|
|
|
|
const attributes = [];
|
|
function addAttribute(index, componentsPerAttribute) {
|
|
attributes.push({
|
|
index: index,
|
|
vertexBuffer: buffer,
|
|
componentDatatype: datatype,
|
|
componentsPerAttribute: componentsPerAttribute,
|
|
offsetInBytes: offsetInBytes,
|
|
strideInBytes: strideInBytes,
|
|
});
|
|
offsetInBytes += componentsPerAttribute * sizeInBytes;
|
|
}
|
|
|
|
if (this.quantization === TerrainQuantization$1.NONE) {
|
|
addAttribute(attributesIndicesNone.position3DAndHeight, 4);
|
|
|
|
let componentsTexCoordAndNormals = 2;
|
|
componentsTexCoordAndNormals += this.hasWebMercatorT ? 1 : 0;
|
|
componentsTexCoordAndNormals += this.hasVertexNormals ? 1 : 0;
|
|
addAttribute(
|
|
attributesIndicesNone.textureCoordAndEncodedNormals,
|
|
componentsTexCoordAndNormals
|
|
);
|
|
|
|
if (this.hasGeodeticSurfaceNormals) {
|
|
addAttribute(attributesIndicesNone.geodeticSurfaceNormal, 3);
|
|
}
|
|
} else {
|
|
// When there is no webMercatorT or vertex normals, the attribute only needs 3 components: x/y, z/h, u/v.
|
|
// WebMercatorT and vertex normals each take up one component, so if only one of them is present the first
|
|
// attribute gets a 4th component. If both are present, we need an additional attribute that has 1 component.
|
|
const usingAttribute0Component4 =
|
|
this.hasWebMercatorT || this.hasVertexNormals;
|
|
const usingAttribute1Component1 =
|
|
this.hasWebMercatorT && this.hasVertexNormals;
|
|
addAttribute(
|
|
attributesIndicesBits12.compressed0,
|
|
usingAttribute0Component4 ? 4 : 3
|
|
);
|
|
|
|
if (usingAttribute1Component1) {
|
|
addAttribute(attributesIndicesBits12.compressed1, 1);
|
|
}
|
|
|
|
if (this.hasGeodeticSurfaceNormals) {
|
|
addAttribute(attributesIndicesBits12.geodeticSurfaceNormal, 3);
|
|
}
|
|
}
|
|
|
|
return attributes;
|
|
};
|
|
|
|
TerrainEncoding.prototype.getAttributeLocations = function () {
|
|
if (this.quantization === TerrainQuantization$1.NONE) {
|
|
return attributesIndicesNone;
|
|
}
|
|
return attributesIndicesBits12;
|
|
};
|
|
|
|
TerrainEncoding.clone = function (encoding, result) {
|
|
if (!when.defined(encoding)) {
|
|
return undefined;
|
|
}
|
|
if (!when.defined(result)) {
|
|
result = new TerrainEncoding();
|
|
}
|
|
|
|
result.quantization = encoding.quantization;
|
|
result.minimumHeight = encoding.minimumHeight;
|
|
result.maximumHeight = encoding.maximumHeight;
|
|
result.center = Matrix2.Cartesian3.clone(encoding.center);
|
|
result.toScaledENU = Matrix2.Matrix4.clone(encoding.toScaledENU);
|
|
result.fromScaledENU = Matrix2.Matrix4.clone(encoding.fromScaledENU);
|
|
result.matrix = Matrix2.Matrix4.clone(encoding.matrix);
|
|
result.hasVertexNormals = encoding.hasVertexNormals;
|
|
result.hasWebMercatorT = encoding.hasWebMercatorT;
|
|
result.hasGeodeticSurfaceNormals = encoding.hasGeodeticSurfaceNormals;
|
|
result.exaggeration = encoding.exaggeration;
|
|
result.exaggerationRelativeHeight = encoding.exaggerationRelativeHeight;
|
|
|
|
result._calculateStrideAndOffsets();
|
|
|
|
return result;
|
|
};
|
|
|
|
exports.EllipsoidalOccluder = EllipsoidalOccluder;
|
|
exports.TerrainEncoding = TerrainEncoding;
|
|
|
|
}));
|
|
//# sourceMappingURL=TerrainEncoding-82b55fe0.js.map
|