qd-changjing/public/static/Build/CesiumUnminified/Workers/OrientedBoundingBox-1e43334...

1282 lines
46 KiB
JavaScript

/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['exports', './Transforms-8b90e17c', './Matrix2-265d9610', './RuntimeError-5b082e8f', './when-4bbc8319', './EllipsoidTangentPlane-f1a69a20', './ComponentDatatype-aad54330', './Plane-616c9c0a'], (function (exports, Transforms, Matrix2, RuntimeError, when, EllipsoidTangentPlane, ComponentDatatype, Plane) { 'use strict';
/**
* Creates an instance of an OrientedBoundingBox.
* An OrientedBoundingBox of some object is a closed and convex cuboid. It can provide a tighter bounding volume than {@link BoundingSphere} or {@link AxisAlignedBoundingBox} in many cases.
* @alias OrientedBoundingBox
* @constructor
*
* @param {Cartesian3} [center=Cartesian3.ZERO] The center of the box.
* @param {Matrix3} [halfAxes=Matrix3.ZERO] The three orthogonal half-axes of the bounding box.
* Equivalently, the transformation matrix, to rotate and scale a 0x0x0
* cube centered at the origin.
*
*
* @example
* // Create an OrientedBoundingBox using a transformation matrix, a position where the box will be translated, and a scale.
* const center = new Cesium.Cartesian3(1.0, 0.0, 0.0);
* const halfAxes = Cesium.Matrix3.fromScale(new Cesium.Cartesian3(1.0, 3.0, 2.0), new Cesium.Matrix3());
*
* const obb = new Cesium.OrientedBoundingBox(center, halfAxes);
*
* @see BoundingSphere
* @see BoundingRectangle
*/
function OrientedBoundingBox(center, halfAxes) {
/**
* The center of the box.
* @type {Cartesian3}
* @default {@link Cartesian3.ZERO}
*/
this.center = Matrix2.Cartesian3.clone(when.defaultValue(center, Matrix2.Cartesian3.ZERO));
/**
* The transformation matrix, to rotate the box to the right position.
* @type {Matrix3}
* @default {@link Matrix3.ZERO}
*/
this.halfAxes = Matrix2.Matrix3.clone(when.defaultValue(halfAxes, Matrix2.Matrix3.ZERO));
}
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
OrientedBoundingBox.packedLength =
Matrix2.Cartesian3.packedLength + Matrix2.Matrix3.packedLength;
/**
* Stores the provided instance into the provided array.
*
* @param {OrientedBoundingBox} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
OrientedBoundingBox.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("value", value);
RuntimeError.Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
Matrix2.Cartesian3.pack(value.center, array, startingIndex);
Matrix2.Matrix3.pack(value.halfAxes, array, startingIndex + Matrix2.Cartesian3.packedLength);
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {OrientedBoundingBox} [result] The object into which to store the result.
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if one was not provided.
*/
OrientedBoundingBox.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
if (!when.defined(result)) {
result = new OrientedBoundingBox();
}
Matrix2.Cartesian3.unpack(array, startingIndex, result.center);
Matrix2.Matrix3.unpack(
array,
startingIndex + Matrix2.Cartesian3.packedLength,
result.halfAxes
);
return result;
};
const scratchCartesian1 = new Matrix2.Cartesian3();
const scratchCartesian2 = new Matrix2.Cartesian3();
const scratchCartesian3 = new Matrix2.Cartesian3();
const scratchCartesian4 = new Matrix2.Cartesian3();
const scratchCartesian5 = new Matrix2.Cartesian3();
const scratchCartesian6 = new Matrix2.Cartesian3();
const scratchCovarianceResult = new Matrix2.Matrix3();
const scratchEigenResult = {
unitary: new Matrix2.Matrix3(),
diagonal: new Matrix2.Matrix3(),
};
/**
* Computes an instance of an OrientedBoundingBox of the given positions.
* This is an implementation of Stefan Gottschalk's Collision Queries using Oriented Bounding Boxes solution (PHD thesis).
* Reference: http://gamma.cs.unc.edu/users/gottschalk/main.pdf
*
* @param {Cartesian3[]} [positions] List of {@link Cartesian3} points that the bounding box will enclose.
* @param {OrientedBoundingBox} [result] The object onto which to store the result.
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if one was not provided.
*
* @example
* // Compute an object oriented bounding box enclosing two points.
* const box = Cesium.OrientedBoundingBox.fromPoints([new Cesium.Cartesian3(2, 0, 0), new Cesium.Cartesian3(-2, 0, 0)]);
*/
OrientedBoundingBox.fromPoints = function (positions, result) {
if (!when.defined(result)) {
result = new OrientedBoundingBox();
}
if (!when.defined(positions) || positions.length === 0) {
result.halfAxes = Matrix2.Matrix3.ZERO;
result.center = Matrix2.Cartesian3.ZERO;
return result;
}
let i;
const length = positions.length;
const meanPoint = Matrix2.Cartesian3.clone(positions[0], scratchCartesian1);
for (i = 1; i < length; i++) {
Matrix2.Cartesian3.add(meanPoint, positions[i], meanPoint);
}
const invLength = 1.0 / length;
Matrix2.Cartesian3.multiplyByScalar(meanPoint, invLength, meanPoint);
let exx = 0.0;
let exy = 0.0;
let exz = 0.0;
let eyy = 0.0;
let eyz = 0.0;
let ezz = 0.0;
let p;
for (i = 0; i < length; i++) {
p = Matrix2.Cartesian3.subtract(positions[i], meanPoint, scratchCartesian2);
exx += p.x * p.x;
exy += p.x * p.y;
exz += p.x * p.z;
eyy += p.y * p.y;
eyz += p.y * p.z;
ezz += p.z * p.z;
}
exx *= invLength;
exy *= invLength;
exz *= invLength;
eyy *= invLength;
eyz *= invLength;
ezz *= invLength;
const covarianceMatrix = scratchCovarianceResult;
covarianceMatrix[0] = exx;
covarianceMatrix[1] = exy;
covarianceMatrix[2] = exz;
covarianceMatrix[3] = exy;
covarianceMatrix[4] = eyy;
covarianceMatrix[5] = eyz;
covarianceMatrix[6] = exz;
covarianceMatrix[7] = eyz;
covarianceMatrix[8] = ezz;
const eigenDecomposition = Matrix2.Matrix3.computeEigenDecomposition(
covarianceMatrix,
scratchEigenResult
);
const rotation = Matrix2.Matrix3.clone(eigenDecomposition.unitary, result.halfAxes);
let v1 = Matrix2.Matrix3.getColumn(rotation, 0, scratchCartesian4);
let v2 = Matrix2.Matrix3.getColumn(rotation, 1, scratchCartesian5);
let v3 = Matrix2.Matrix3.getColumn(rotation, 2, scratchCartesian6);
let u1 = -Number.MAX_VALUE;
let u2 = -Number.MAX_VALUE;
let u3 = -Number.MAX_VALUE;
let l1 = Number.MAX_VALUE;
let l2 = Number.MAX_VALUE;
let l3 = Number.MAX_VALUE;
for (i = 0; i < length; i++) {
p = positions[i];
u1 = Math.max(Matrix2.Cartesian3.dot(v1, p), u1);
u2 = Math.max(Matrix2.Cartesian3.dot(v2, p), u2);
u3 = Math.max(Matrix2.Cartesian3.dot(v3, p), u3);
l1 = Math.min(Matrix2.Cartesian3.dot(v1, p), l1);
l2 = Math.min(Matrix2.Cartesian3.dot(v2, p), l2);
l3 = Math.min(Matrix2.Cartesian3.dot(v3, p), l3);
}
v1 = Matrix2.Cartesian3.multiplyByScalar(v1, 0.5 * (l1 + u1), v1);
v2 = Matrix2.Cartesian3.multiplyByScalar(v2, 0.5 * (l2 + u2), v2);
v3 = Matrix2.Cartesian3.multiplyByScalar(v3, 0.5 * (l3 + u3), v3);
const center = Matrix2.Cartesian3.add(v1, v2, result.center);
Matrix2.Cartesian3.add(center, v3, center);
const scale = scratchCartesian3;
scale.x = u1 - l1;
scale.y = u2 - l2;
scale.z = u3 - l3;
Matrix2.Cartesian3.multiplyByScalar(scale, 0.5, scale);
Matrix2.Matrix3.multiplyByScale(result.halfAxes, scale, result.halfAxes);
return result;
};
const scratchOffset = new Matrix2.Cartesian3();
const scratchScale = new Matrix2.Cartesian3();
function fromPlaneExtents(
planeOrigin,
planeXAxis,
planeYAxis,
planeZAxis,
minimumX,
maximumX,
minimumY,
maximumY,
minimumZ,
maximumZ,
result
) {
//>>includeStart('debug', pragmas.debug);
if (
!when.defined(minimumX) ||
!when.defined(maximumX) ||
!when.defined(minimumY) ||
!when.defined(maximumY) ||
!when.defined(minimumZ) ||
!when.defined(maximumZ)
) {
throw new RuntimeError.DeveloperError(
"all extents (minimum/maximum X/Y/Z) are required."
);
}
//>>includeEnd('debug');
if (!when.defined(result)) {
result = new OrientedBoundingBox();
}
const halfAxes = result.halfAxes;
Matrix2.Matrix3.setColumn(halfAxes, 0, planeXAxis, halfAxes);
Matrix2.Matrix3.setColumn(halfAxes, 1, planeYAxis, halfAxes);
Matrix2.Matrix3.setColumn(halfAxes, 2, planeZAxis, halfAxes);
let centerOffset = scratchOffset;
centerOffset.x = (minimumX + maximumX) / 2.0;
centerOffset.y = (minimumY + maximumY) / 2.0;
centerOffset.z = (minimumZ + maximumZ) / 2.0;
const scale = scratchScale;
scale.x = (maximumX - minimumX) / 2.0;
scale.y = (maximumY - minimumY) / 2.0;
scale.z = (maximumZ - minimumZ) / 2.0;
const center = result.center;
centerOffset = Matrix2.Matrix3.multiplyByVector(halfAxes, centerOffset, centerOffset);
Matrix2.Cartesian3.add(planeOrigin, centerOffset, center);
Matrix2.Matrix3.multiplyByScale(halfAxes, scale, halfAxes);
return result;
}
const scratchRectangleCenterCartographic = new Matrix2.Cartographic();
const scratchRectangleCenter = new Matrix2.Cartesian3();
const scratchPerimeterCartographicNC = new Matrix2.Cartographic();
const scratchPerimeterCartographicNW = new Matrix2.Cartographic();
const scratchPerimeterCartographicCW = new Matrix2.Cartographic();
const scratchPerimeterCartographicSW = new Matrix2.Cartographic();
const scratchPerimeterCartographicSC = new Matrix2.Cartographic();
const scratchPerimeterCartesianNC = new Matrix2.Cartesian3();
const scratchPerimeterCartesianNW = new Matrix2.Cartesian3();
const scratchPerimeterCartesianCW = new Matrix2.Cartesian3();
const scratchPerimeterCartesianSW = new Matrix2.Cartesian3();
const scratchPerimeterCartesianSC = new Matrix2.Cartesian3();
const scratchPerimeterProjectedNC = new Matrix2.Cartesian2();
const scratchPerimeterProjectedNW = new Matrix2.Cartesian2();
const scratchPerimeterProjectedCW = new Matrix2.Cartesian2();
const scratchPerimeterProjectedSW = new Matrix2.Cartesian2();
const scratchPerimeterProjectedSC = new Matrix2.Cartesian2();
const scratchPlaneOrigin = new Matrix2.Cartesian3();
const scratchPlaneNormal = new Matrix2.Cartesian3();
const scratchPlaneXAxis = new Matrix2.Cartesian3();
const scratchHorizonCartesian = new Matrix2.Cartesian3();
const scratchHorizonProjected = new Matrix2.Cartesian2();
const scratchMaxY = new Matrix2.Cartesian3();
const scratchMinY = new Matrix2.Cartesian3();
const scratchZ = new Matrix2.Cartesian3();
const scratchPlane = new Plane.Plane(Matrix2.Cartesian3.UNIT_X, 0.0);
/**
* Computes an OrientedBoundingBox that bounds a {@link Rectangle} on the surface of an {@link Ellipsoid}.
* There are no guarantees about the orientation of the bounding box.
*
* @param {Rectangle} rectangle The cartographic rectangle on the surface of the ellipsoid.
* @param {Number} [minimumHeight=0.0] The minimum height (elevation) within the tile.
* @param {Number} [maximumHeight=0.0] The maximum height (elevation) within the tile.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the rectangle is defined.
* @param {OrientedBoundingBox} [result] The object onto which to store the result.
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if none was provided.
*
* @exception {DeveloperError} rectangle.width must be between 0 and pi.
* @exception {DeveloperError} rectangle.height must be between 0 and pi.
* @exception {DeveloperError} ellipsoid must be an ellipsoid of revolution (<code>radii.x == radii.y</code>)
*/
OrientedBoundingBox.fromRectangle = function (
rectangle,
minimumHeight,
maximumHeight,
ellipsoid,
result
) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(rectangle)) {
throw new RuntimeError.DeveloperError("rectangle is required");
}
if (rectangle.width < 0.0 || rectangle.width > ComponentDatatype.CesiumMath.TWO_PI) {
throw new RuntimeError.DeveloperError("Rectangle width must be between 0 and 2*pi");
}
if (rectangle.height < 0.0 || rectangle.height > ComponentDatatype.CesiumMath.PI) {
throw new RuntimeError.DeveloperError("Rectangle height must be between 0 and pi");
}
if (
when.defined(ellipsoid) &&
!ComponentDatatype.CesiumMath.equalsEpsilon(
ellipsoid.radii.x,
ellipsoid.radii.y,
ComponentDatatype.CesiumMath.EPSILON15
)
) {
throw new RuntimeError.DeveloperError(
"Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y)"
);
}
//>>includeEnd('debug');
minimumHeight = when.defaultValue(minimumHeight, 0.0);
maximumHeight = when.defaultValue(maximumHeight, 0.0);
ellipsoid = when.defaultValue(ellipsoid, Matrix2.Ellipsoid.WGS84);
let minX, maxX, minY, maxY, minZ, maxZ, plane;
if (rectangle.width <= ComponentDatatype.CesiumMath.PI) {
// The bounding box will be aligned with the tangent plane at the center of the rectangle.
const tangentPointCartographic = Matrix2.Rectangle.center(
rectangle,
scratchRectangleCenterCartographic
);
const tangentPoint = ellipsoid.cartographicToCartesian(
tangentPointCartographic,
scratchRectangleCenter
);
const tangentPlane = new EllipsoidTangentPlane.EllipsoidTangentPlane(tangentPoint, ellipsoid);
plane = tangentPlane.plane;
// If the rectangle spans the equator, CW is instead aligned with the equator (because it sticks out the farthest at the equator).
const lonCenter = tangentPointCartographic.longitude;
const latCenter =
rectangle.south < 0.0 && rectangle.north > 0.0
? 0.0
: tangentPointCartographic.latitude;
// Compute XY extents using the rectangle at maximum height
const perimeterCartographicNC = Matrix2.Cartographic.fromRadians(
lonCenter,
rectangle.north,
maximumHeight,
scratchPerimeterCartographicNC
);
const perimeterCartographicNW = Matrix2.Cartographic.fromRadians(
rectangle.west,
rectangle.north,
maximumHeight,
scratchPerimeterCartographicNW
);
const perimeterCartographicCW = Matrix2.Cartographic.fromRadians(
rectangle.west,
latCenter,
maximumHeight,
scratchPerimeterCartographicCW
);
const perimeterCartographicSW = Matrix2.Cartographic.fromRadians(
rectangle.west,
rectangle.south,
maximumHeight,
scratchPerimeterCartographicSW
);
const perimeterCartographicSC = Matrix2.Cartographic.fromRadians(
lonCenter,
rectangle.south,
maximumHeight,
scratchPerimeterCartographicSC
);
const perimeterCartesianNC = ellipsoid.cartographicToCartesian(
perimeterCartographicNC,
scratchPerimeterCartesianNC
);
let perimeterCartesianNW = ellipsoid.cartographicToCartesian(
perimeterCartographicNW,
scratchPerimeterCartesianNW
);
const perimeterCartesianCW = ellipsoid.cartographicToCartesian(
perimeterCartographicCW,
scratchPerimeterCartesianCW
);
let perimeterCartesianSW = ellipsoid.cartographicToCartesian(
perimeterCartographicSW,
scratchPerimeterCartesianSW
);
const perimeterCartesianSC = ellipsoid.cartographicToCartesian(
perimeterCartographicSC,
scratchPerimeterCartesianSC
);
const perimeterProjectedNC = tangentPlane.projectPointToNearestOnPlane(
perimeterCartesianNC,
scratchPerimeterProjectedNC
);
const perimeterProjectedNW = tangentPlane.projectPointToNearestOnPlane(
perimeterCartesianNW,
scratchPerimeterProjectedNW
);
const perimeterProjectedCW = tangentPlane.projectPointToNearestOnPlane(
perimeterCartesianCW,
scratchPerimeterProjectedCW
);
const perimeterProjectedSW = tangentPlane.projectPointToNearestOnPlane(
perimeterCartesianSW,
scratchPerimeterProjectedSW
);
const perimeterProjectedSC = tangentPlane.projectPointToNearestOnPlane(
perimeterCartesianSC,
scratchPerimeterProjectedSC
);
minX = Math.min(
perimeterProjectedNW.x,
perimeterProjectedCW.x,
perimeterProjectedSW.x
);
maxX = -minX; // symmetrical
maxY = Math.max(perimeterProjectedNW.y, perimeterProjectedNC.y);
minY = Math.min(perimeterProjectedSW.y, perimeterProjectedSC.y);
// Compute minimum Z using the rectangle at minimum height, since it will be deeper than the maximum height
perimeterCartographicNW.height = perimeterCartographicSW.height = minimumHeight;
perimeterCartesianNW = ellipsoid.cartographicToCartesian(
perimeterCartographicNW,
scratchPerimeterCartesianNW
);
perimeterCartesianSW = ellipsoid.cartographicToCartesian(
perimeterCartographicSW,
scratchPerimeterCartesianSW
);
minZ = Math.min(
Plane.Plane.getPointDistance(plane, perimeterCartesianNW),
Plane.Plane.getPointDistance(plane, perimeterCartesianSW)
);
maxZ = maximumHeight; // Since the tangent plane touches the surface at height = 0, this is okay
return fromPlaneExtents(
tangentPlane.origin,
tangentPlane.xAxis,
tangentPlane.yAxis,
tangentPlane.zAxis,
minX,
maxX,
minY,
maxY,
minZ,
maxZ,
result
);
}
// Handle the case where rectangle width is greater than PI (wraps around more than half the ellipsoid).
const fullyAboveEquator = rectangle.south > 0.0;
const fullyBelowEquator = rectangle.north < 0.0;
const latitudeNearestToEquator = fullyAboveEquator
? rectangle.south
: fullyBelowEquator
? rectangle.north
: 0.0;
const centerLongitude = Matrix2.Rectangle.center(
rectangle,
scratchRectangleCenterCartographic
).longitude;
// Plane is located at the rectangle's center longitude and the rectangle's latitude that is closest to the equator. It rotates around the Z axis.
// This results in a better fit than the obb approach for smaller rectangles, which orients with the rectangle's center normal.
const planeOrigin = Matrix2.Cartesian3.fromRadians(
centerLongitude,
latitudeNearestToEquator,
maximumHeight,
ellipsoid,
scratchPlaneOrigin
);
planeOrigin.z = 0.0; // center the plane on the equator to simpify plane normal calculation
const isPole =
Math.abs(planeOrigin.x) < ComponentDatatype.CesiumMath.EPSILON10 &&
Math.abs(planeOrigin.y) < ComponentDatatype.CesiumMath.EPSILON10;
const planeNormal = !isPole
? Matrix2.Cartesian3.normalize(planeOrigin, scratchPlaneNormal)
: Matrix2.Cartesian3.UNIT_X;
const planeYAxis = Matrix2.Cartesian3.UNIT_Z;
const planeXAxis = Matrix2.Cartesian3.cross(
planeNormal,
planeYAxis,
scratchPlaneXAxis
);
plane = Plane.Plane.fromPointNormal(planeOrigin, planeNormal, scratchPlane);
// Get the horizon point relative to the center. This will be the farthest extent in the plane's X dimension.
const horizonCartesian = Matrix2.Cartesian3.fromRadians(
centerLongitude + ComponentDatatype.CesiumMath.PI_OVER_TWO,
latitudeNearestToEquator,
maximumHeight,
ellipsoid,
scratchHorizonCartesian
);
maxX = Matrix2.Cartesian3.dot(
Plane.Plane.projectPointOntoPlane(
plane,
horizonCartesian,
scratchHorizonProjected
),
planeXAxis
);
minX = -maxX; // symmetrical
// Get the min and max Y, using the height that will give the largest extent
maxY = Matrix2.Cartesian3.fromRadians(
0.0,
rectangle.north,
fullyBelowEquator ? minimumHeight : maximumHeight,
ellipsoid,
scratchMaxY
).z;
minY = Matrix2.Cartesian3.fromRadians(
0.0,
rectangle.south,
fullyAboveEquator ? minimumHeight : maximumHeight,
ellipsoid,
scratchMinY
).z;
const farZ = Matrix2.Cartesian3.fromRadians(
rectangle.east,
latitudeNearestToEquator,
maximumHeight,
ellipsoid,
scratchZ
);
minZ = Plane.Plane.getPointDistance(plane, farZ);
maxZ = 0.0; // plane origin starts at maxZ already
// min and max are local to the plane axes
return fromPlaneExtents(
planeOrigin,
planeXAxis,
planeYAxis,
planeNormal,
minX,
maxX,
minY,
maxY,
minZ,
maxZ,
result
);
};
/**
* Computes an OrientedBoundingBox that bounds an affine transformation.
*
* @param {Matrix4} transformation The affine transformation.
* @param {OrientedBoundingBox} [result] The object onto which to store the result.
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if none was provided.
*/
OrientedBoundingBox.fromTransformation = function (transformation, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("transformation", transformation);
//>>includeEnd('debug');
if (!when.defined(result)) {
result = new OrientedBoundingBox();
}
result.center = Matrix2.Matrix4.getTranslation(transformation, result.center);
result.halfAxes = Matrix2.Matrix4.getMatrix3(transformation, result.halfAxes);
result.halfAxes = Matrix2.Matrix3.multiplyByScalar(
result.halfAxes,
0.5,
result.halfAxes
);
return result;
};
/**
* Duplicates a OrientedBoundingBox instance.
*
* @param {OrientedBoundingBox} box The bounding box to duplicate.
* @param {OrientedBoundingBox} [result] The object onto which to store the result.
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if none was provided. (Returns undefined if box is undefined)
*/
OrientedBoundingBox.clone = function (box, result) {
if (!when.defined(box)) {
return undefined;
}
if (!when.defined(result)) {
return new OrientedBoundingBox(box.center, box.halfAxes);
}
Matrix2.Cartesian3.clone(box.center, result.center);
Matrix2.Matrix3.clone(box.halfAxes, result.halfAxes);
return result;
};
/**
* Determines which side of a plane the oriented bounding box is located.
*
* @param {OrientedBoundingBox} box The oriented bounding box to test.
* @param {Plane} plane The plane to test against.
* @returns {Intersect} {@link Intersect.INSIDE} if the entire box is on the side of the plane
* the normal is pointing, {@link Intersect.OUTSIDE} if the entire box is
* on the opposite side, and {@link Intersect.INTERSECTING} if the box
* intersects the plane.
*/
OrientedBoundingBox.intersectPlane = function (box, plane) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(box)) {
throw new RuntimeError.DeveloperError("box is required.");
}
if (!when.defined(plane)) {
throw new RuntimeError.DeveloperError("plane is required.");
}
//>>includeEnd('debug');
const center = box.center;
const normal = plane.normal;
const halfAxes = box.halfAxes;
const normalX = normal.x,
normalY = normal.y,
normalZ = normal.z;
// plane is used as if it is its normal; the first three components are assumed to be normalized
const radEffective =
Math.abs(
normalX * halfAxes[Matrix2.Matrix3.COLUMN0ROW0] +
normalY * halfAxes[Matrix2.Matrix3.COLUMN0ROW1] +
normalZ * halfAxes[Matrix2.Matrix3.COLUMN0ROW2]
) +
Math.abs(
normalX * halfAxes[Matrix2.Matrix3.COLUMN1ROW0] +
normalY * halfAxes[Matrix2.Matrix3.COLUMN1ROW1] +
normalZ * halfAxes[Matrix2.Matrix3.COLUMN1ROW2]
) +
Math.abs(
normalX * halfAxes[Matrix2.Matrix3.COLUMN2ROW0] +
normalY * halfAxes[Matrix2.Matrix3.COLUMN2ROW1] +
normalZ * halfAxes[Matrix2.Matrix3.COLUMN2ROW2]
);
const distanceToPlane = Matrix2.Cartesian3.dot(normal, center) + plane.distance;
if (distanceToPlane <= -radEffective) {
// The entire box is on the negative side of the plane normal
return Transforms.Intersect.OUTSIDE;
} else if (distanceToPlane >= radEffective) {
// The entire box is on the positive side of the plane normal
return Transforms.Intersect.INSIDE;
}
return Transforms.Intersect.INTERSECTING;
};
const scratchCartesianU = new Matrix2.Cartesian3();
const scratchCartesianV = new Matrix2.Cartesian3();
const scratchCartesianW = new Matrix2.Cartesian3();
const scratchValidAxis2 = new Matrix2.Cartesian3();
const scratchValidAxis3 = new Matrix2.Cartesian3();
const scratchPPrime = new Matrix2.Cartesian3();
/**
* Computes the estimated distance squared from the closest point on a bounding box to a point.
*
* @param {OrientedBoundingBox} box The box.
* @param {Cartesian3} cartesian The point
* @returns {Number} The distance squared from the oriented bounding box to the point. Returns 0 if the point is inside the box.
*
* @example
* // Sort bounding boxes from back to front
* boxes.sort(function(a, b) {
* return Cesium.OrientedBoundingBox.distanceSquaredTo(b, camera.positionWC) - Cesium.OrientedBoundingBox.distanceSquaredTo(a, camera.positionWC);
* });
*/
OrientedBoundingBox.distanceSquaredTo = function (box, cartesian) {
// See Geometric Tools for Computer Graphics 10.4.2
//>>includeStart('debug', pragmas.debug);
if (!when.defined(box)) {
throw new RuntimeError.DeveloperError("box is required.");
}
if (!when.defined(cartesian)) {
throw new RuntimeError.DeveloperError("cartesian is required.");
}
//>>includeEnd('debug');
const offset = Matrix2.Cartesian3.subtract(cartesian, box.center, scratchOffset);
const halfAxes = box.halfAxes;
let u = Matrix2.Matrix3.getColumn(halfAxes, 0, scratchCartesianU);
let v = Matrix2.Matrix3.getColumn(halfAxes, 1, scratchCartesianV);
let w = Matrix2.Matrix3.getColumn(halfAxes, 2, scratchCartesianW);
const uHalf = Matrix2.Cartesian3.magnitude(u);
const vHalf = Matrix2.Cartesian3.magnitude(v);
const wHalf = Matrix2.Cartesian3.magnitude(w);
let uValid = true;
let vValid = true;
let wValid = true;
if (uHalf > 0) {
Matrix2.Cartesian3.divideByScalar(u, uHalf, u);
} else {
uValid = false;
}
if (vHalf > 0) {
Matrix2.Cartesian3.divideByScalar(v, vHalf, v);
} else {
vValid = false;
}
if (wHalf > 0) {
Matrix2.Cartesian3.divideByScalar(w, wHalf, w);
} else {
wValid = false;
}
const numberOfDegenerateAxes = !uValid + !vValid + !wValid;
let validAxis1;
let validAxis2;
let validAxis3;
if (numberOfDegenerateAxes === 1) {
let degenerateAxis = u;
validAxis1 = v;
validAxis2 = w;
if (!vValid) {
degenerateAxis = v;
validAxis1 = u;
} else if (!wValid) {
degenerateAxis = w;
validAxis2 = u;
}
validAxis3 = Matrix2.Cartesian3.cross(validAxis1, validAxis2, scratchValidAxis3);
if (degenerateAxis === u) {
u = validAxis3;
} else if (degenerateAxis === v) {
v = validAxis3;
} else if (degenerateAxis === w) {
w = validAxis3;
}
} else if (numberOfDegenerateAxes === 2) {
validAxis1 = u;
if (vValid) {
validAxis1 = v;
} else if (wValid) {
validAxis1 = w;
}
let crossVector = Matrix2.Cartesian3.UNIT_Y;
if (crossVector.equalsEpsilon(validAxis1, ComponentDatatype.CesiumMath.EPSILON3)) {
crossVector = Matrix2.Cartesian3.UNIT_X;
}
validAxis2 = Matrix2.Cartesian3.cross(validAxis1, crossVector, scratchValidAxis2);
Matrix2.Cartesian3.normalize(validAxis2, validAxis2);
validAxis3 = Matrix2.Cartesian3.cross(validAxis1, validAxis2, scratchValidAxis3);
Matrix2.Cartesian3.normalize(validAxis3, validAxis3);
if (validAxis1 === u) {
v = validAxis2;
w = validAxis3;
} else if (validAxis1 === v) {
w = validAxis2;
u = validAxis3;
} else if (validAxis1 === w) {
u = validAxis2;
v = validAxis3;
}
} else if (numberOfDegenerateAxes === 3) {
u = Matrix2.Cartesian3.UNIT_X;
v = Matrix2.Cartesian3.UNIT_Y;
w = Matrix2.Cartesian3.UNIT_Z;
}
const pPrime = scratchPPrime;
pPrime.x = Matrix2.Cartesian3.dot(offset, u);
pPrime.y = Matrix2.Cartesian3.dot(offset, v);
pPrime.z = Matrix2.Cartesian3.dot(offset, w);
let distanceSquared = 0.0;
let d;
if (pPrime.x < -uHalf) {
d = pPrime.x + uHalf;
distanceSquared += d * d;
} else if (pPrime.x > uHalf) {
d = pPrime.x - uHalf;
distanceSquared += d * d;
}
if (pPrime.y < -vHalf) {
d = pPrime.y + vHalf;
distanceSquared += d * d;
} else if (pPrime.y > vHalf) {
d = pPrime.y - vHalf;
distanceSquared += d * d;
}
if (pPrime.z < -wHalf) {
d = pPrime.z + wHalf;
distanceSquared += d * d;
} else if (pPrime.z > wHalf) {
d = pPrime.z - wHalf;
distanceSquared += d * d;
}
return distanceSquared;
};
const scratchCorner = new Matrix2.Cartesian3();
const scratchToCenter = new Matrix2.Cartesian3();
/**
* The distances calculated by the vector from the center of the bounding box to position projected onto direction.
* <br>
* If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the
* closest and farthest planes from position that intersect the bounding box.
*
* @param {OrientedBoundingBox} box The bounding box to calculate the distance to.
* @param {Cartesian3} position The position to calculate the distance from.
* @param {Cartesian3} direction The direction from position.
* @param {Interval} [result] A Interval to store the nearest and farthest distances.
* @returns {Interval} The nearest and farthest distances on the bounding box from position in direction.
*/
OrientedBoundingBox.computePlaneDistances = function (
box,
position,
direction,
result
) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(box)) {
throw new RuntimeError.DeveloperError("box is required.");
}
if (!when.defined(position)) {
throw new RuntimeError.DeveloperError("position is required.");
}
if (!when.defined(direction)) {
throw new RuntimeError.DeveloperError("direction is required.");
}
//>>includeEnd('debug');
if (!when.defined(result)) {
result = new Transforms.Interval();
}
let minDist = Number.POSITIVE_INFINITY;
let maxDist = Number.NEGATIVE_INFINITY;
const center = box.center;
const halfAxes = box.halfAxes;
const u = Matrix2.Matrix3.getColumn(halfAxes, 0, scratchCartesianU);
const v = Matrix2.Matrix3.getColumn(halfAxes, 1, scratchCartesianV);
const w = Matrix2.Matrix3.getColumn(halfAxes, 2, scratchCartesianW);
// project first corner
const corner = Matrix2.Cartesian3.add(u, v, scratchCorner);
Matrix2.Cartesian3.add(corner, w, corner);
Matrix2.Cartesian3.add(corner, center, corner);
const toCenter = Matrix2.Cartesian3.subtract(corner, position, scratchToCenter);
let mag = Matrix2.Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
// project second corner
Matrix2.Cartesian3.add(center, u, corner);
Matrix2.Cartesian3.add(corner, v, corner);
Matrix2.Cartesian3.subtract(corner, w, corner);
Matrix2.Cartesian3.subtract(corner, position, toCenter);
mag = Matrix2.Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
// project third corner
Matrix2.Cartesian3.add(center, u, corner);
Matrix2.Cartesian3.subtract(corner, v, corner);
Matrix2.Cartesian3.add(corner, w, corner);
Matrix2.Cartesian3.subtract(corner, position, toCenter);
mag = Matrix2.Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
// project fourth corner
Matrix2.Cartesian3.add(center, u, corner);
Matrix2.Cartesian3.subtract(corner, v, corner);
Matrix2.Cartesian3.subtract(corner, w, corner);
Matrix2.Cartesian3.subtract(corner, position, toCenter);
mag = Matrix2.Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
// project fifth corner
Matrix2.Cartesian3.subtract(center, u, corner);
Matrix2.Cartesian3.add(corner, v, corner);
Matrix2.Cartesian3.add(corner, w, corner);
Matrix2.Cartesian3.subtract(corner, position, toCenter);
mag = Matrix2.Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
// project sixth corner
Matrix2.Cartesian3.subtract(center, u, corner);
Matrix2.Cartesian3.add(corner, v, corner);
Matrix2.Cartesian3.subtract(corner, w, corner);
Matrix2.Cartesian3.subtract(corner, position, toCenter);
mag = Matrix2.Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
// project seventh corner
Matrix2.Cartesian3.subtract(center, u, corner);
Matrix2.Cartesian3.subtract(corner, v, corner);
Matrix2.Cartesian3.add(corner, w, corner);
Matrix2.Cartesian3.subtract(corner, position, toCenter);
mag = Matrix2.Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
// project eighth corner
Matrix2.Cartesian3.subtract(center, u, corner);
Matrix2.Cartesian3.subtract(corner, v, corner);
Matrix2.Cartesian3.subtract(corner, w, corner);
Matrix2.Cartesian3.subtract(corner, position, toCenter);
mag = Matrix2.Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
result.start = minDist;
result.stop = maxDist;
return result;
};
const scratchXAxis = new Matrix2.Cartesian3();
const scratchYAxis = new Matrix2.Cartesian3();
const scratchZAxis = new Matrix2.Cartesian3();
/**
* Computes the eight corners of an oriented bounding box. The corners are ordered by (-X, -Y, -Z), (-X, -Y, +Z), (-X, +Y, -Z), (-X, +Y, +Z), (+X, -Y, -Z), (+X, -Y, +Z), (+X, +Y, -Z), (+X, +Y, +Z).
*
* @param {OrientedBoundingBox} box The oriented bounding box.
* @param {Cartesian3[]} [result] An array of eight {@link Cartesian3} instances onto which to store the corners.
* @returns {Cartesian3[]} The modified result parameter or a new array if none was provided.
*/
OrientedBoundingBox.computeCorners = function (box, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("box", box);
//>>includeEnd('debug');
if (!when.defined(result)) {
result = [
new Matrix2.Cartesian3(),
new Matrix2.Cartesian3(),
new Matrix2.Cartesian3(),
new Matrix2.Cartesian3(),
new Matrix2.Cartesian3(),
new Matrix2.Cartesian3(),
new Matrix2.Cartesian3(),
new Matrix2.Cartesian3(),
];
}
const center = box.center;
const halfAxes = box.halfAxes;
const xAxis = Matrix2.Matrix3.getColumn(halfAxes, 0, scratchXAxis);
const yAxis = Matrix2.Matrix3.getColumn(halfAxes, 1, scratchYAxis);
const zAxis = Matrix2.Matrix3.getColumn(halfAxes, 2, scratchZAxis);
Matrix2.Cartesian3.clone(center, result[0]);
Matrix2.Cartesian3.subtract(result[0], xAxis, result[0]);
Matrix2.Cartesian3.subtract(result[0], yAxis, result[0]);
Matrix2.Cartesian3.subtract(result[0], zAxis, result[0]);
Matrix2.Cartesian3.clone(center, result[1]);
Matrix2.Cartesian3.subtract(result[1], xAxis, result[1]);
Matrix2.Cartesian3.subtract(result[1], yAxis, result[1]);
Matrix2.Cartesian3.add(result[1], zAxis, result[1]);
Matrix2.Cartesian3.clone(center, result[2]);
Matrix2.Cartesian3.subtract(result[2], xAxis, result[2]);
Matrix2.Cartesian3.add(result[2], yAxis, result[2]);
Matrix2.Cartesian3.subtract(result[2], zAxis, result[2]);
Matrix2.Cartesian3.clone(center, result[3]);
Matrix2.Cartesian3.subtract(result[3], xAxis, result[3]);
Matrix2.Cartesian3.add(result[3], yAxis, result[3]);
Matrix2.Cartesian3.add(result[3], zAxis, result[3]);
Matrix2.Cartesian3.clone(center, result[4]);
Matrix2.Cartesian3.add(result[4], xAxis, result[4]);
Matrix2.Cartesian3.subtract(result[4], yAxis, result[4]);
Matrix2.Cartesian3.subtract(result[4], zAxis, result[4]);
Matrix2.Cartesian3.clone(center, result[5]);
Matrix2.Cartesian3.add(result[5], xAxis, result[5]);
Matrix2.Cartesian3.subtract(result[5], yAxis, result[5]);
Matrix2.Cartesian3.add(result[5], zAxis, result[5]);
Matrix2.Cartesian3.clone(center, result[6]);
Matrix2.Cartesian3.add(result[6], xAxis, result[6]);
Matrix2.Cartesian3.add(result[6], yAxis, result[6]);
Matrix2.Cartesian3.subtract(result[6], zAxis, result[6]);
Matrix2.Cartesian3.clone(center, result[7]);
Matrix2.Cartesian3.add(result[7], xAxis, result[7]);
Matrix2.Cartesian3.add(result[7], yAxis, result[7]);
Matrix2.Cartesian3.add(result[7], zAxis, result[7]);
return result;
};
const scratchRotationScale = new Matrix2.Matrix3();
/**
* Computes a transformation matrix from an oriented bounding box.
*
* @param {OrientedBoundingBox} box The oriented bounding box.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter or a new {@link Matrix4} instance if none was provided.
*/
OrientedBoundingBox.computeTransformation = function (box, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("box", box);
//>>includeEnd('debug');
if (!when.defined(result)) {
result = new Matrix2.Matrix4();
}
const translation = box.center;
const rotationScale = Matrix2.Matrix3.multiplyByUniformScale(
box.halfAxes,
2.0,
scratchRotationScale
);
return Matrix2.Matrix4.fromRotationTranslation(rotationScale, translation, result);
};
const scratchBoundingSphere = new Transforms.BoundingSphere();
/**
* Determines whether or not a bounding box is hidden from view by the occluder.
*
* @param {OrientedBoundingBox} box The bounding box surrounding the occludee object.
* @param {Occluder} occluder The occluder.
* @returns {Boolean} <code>true</code> if the box is not visible; otherwise <code>false</code>.
*/
OrientedBoundingBox.isOccluded = function (box, occluder) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(box)) {
throw new RuntimeError.DeveloperError("box is required.");
}
if (!when.defined(occluder)) {
throw new RuntimeError.DeveloperError("occluder is required.");
}
//>>includeEnd('debug');
const sphere = Transforms.BoundingSphere.fromOrientedBoundingBox(
box,
scratchBoundingSphere
);
return !occluder.isBoundingSphereVisible(sphere);
};
/**
* Determines which side of a plane the oriented bounding box is located.
*
* @param {Plane} plane The plane to test against.
* @returns {Intersect} {@link Intersect.INSIDE} if the entire box is on the side of the plane
* the normal is pointing, {@link Intersect.OUTSIDE} if the entire box is
* on the opposite side, and {@link Intersect.INTERSECTING} if the box
* intersects the plane.
*/
OrientedBoundingBox.prototype.intersectPlane = function (plane) {
return OrientedBoundingBox.intersectPlane(this, plane);
};
/**
* Computes the estimated distance squared from the closest point on a bounding box to a point.
*
* @param {Cartesian3} cartesian The point
* @returns {Number} The estimated distance squared from the bounding sphere to the point.
*
* @example
* // Sort bounding boxes from back to front
* boxes.sort(function(a, b) {
* return b.distanceSquaredTo(camera.positionWC) - a.distanceSquaredTo(camera.positionWC);
* });
*/
OrientedBoundingBox.prototype.distanceSquaredTo = function (cartesian) {
return OrientedBoundingBox.distanceSquaredTo(this, cartesian);
};
/**
* The distances calculated by the vector from the center of the bounding box to position projected onto direction.
* <br>
* If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the
* closest and farthest planes from position that intersect the bounding box.
*
* @param {Cartesian3} position The position to calculate the distance from.
* @param {Cartesian3} direction The direction from position.
* @param {Interval} [result] A Interval to store the nearest and farthest distances.
* @returns {Interval} The nearest and farthest distances on the bounding box from position in direction.
*/
OrientedBoundingBox.prototype.computePlaneDistances = function (
position,
direction,
result
) {
return OrientedBoundingBox.computePlaneDistances(
this,
position,
direction,
result
);
};
/**
* Computes the eight corners of an oriented bounding box. The corners are ordered by (-X, -Y, -Z), (-X, -Y, +Z), (-X, +Y, -Z), (-X, +Y, +Z), (+X, -Y, -Z), (+X, -Y, +Z), (+X, +Y, -Z), (+X, +Y, +Z).
*
* @param {Cartesian3[]} [result] An array of eight {@link Cartesian3} instances onto which to store the corners.
* @returns {Cartesian3[]} The modified result parameter or a new array if none was provided.
*/
OrientedBoundingBox.prototype.computeCorners = function (result) {
return OrientedBoundingBox.computeCorners(this, result);
};
/**
* Computes a transformation matrix from an oriented bounding box.
*
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter or a new {@link Matrix4} instance if none was provided.
*/
OrientedBoundingBox.prototype.computeTransformation = function (result) {
return OrientedBoundingBox.computeTransformation(this, result);
};
/**
* Determines whether or not a bounding box is hidden from view by the occluder.
*
* @param {Occluder} occluder The occluder.
* @returns {Boolean} <code>true</code> if the sphere is not visible; otherwise <code>false</code>.
*/
OrientedBoundingBox.prototype.isOccluded = function (occluder) {
return OrientedBoundingBox.isOccluded(this, occluder);
};
/**
* Compares the provided OrientedBoundingBox componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {OrientedBoundingBox} left The first OrientedBoundingBox.
* @param {OrientedBoundingBox} right The second OrientedBoundingBox.
* @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
*/
OrientedBoundingBox.equals = function (left, right) {
return (
left === right ||
(when.defined(left) &&
when.defined(right) &&
Matrix2.Cartesian3.equals(left.center, right.center) &&
Matrix2.Matrix3.equals(left.halfAxes, right.halfAxes))
);
};
/**
* Duplicates this OrientedBoundingBox instance.
*
* @param {OrientedBoundingBox} [result] The object onto which to store the result.
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if one was not provided.
*/
OrientedBoundingBox.prototype.clone = function (result) {
return OrientedBoundingBox.clone(this, result);
};
/**
* Compares this OrientedBoundingBox against the provided OrientedBoundingBox componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {OrientedBoundingBox} [right] The right hand side OrientedBoundingBox.
* @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
*/
OrientedBoundingBox.prototype.equals = function (right) {
return OrientedBoundingBox.equals(this, right);
};
exports.OrientedBoundingBox = OrientedBoundingBox;
}));
//# sourceMappingURL=OrientedBoundingBox-1e433348.js.map