622 lines
23 KiB
JavaScript
622 lines
23 KiB
JavaScript
/**
|
|
* Cesium - https://github.com/CesiumGS/cesium
|
|
*
|
|
* Copyright 2011-2020 Cesium Contributors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* Columbus View (Pat. Pend.)
|
|
*
|
|
* Portions licensed separately.
|
|
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
|
|
*/
|
|
|
|
define(['exports', './Matrix2-265d9610', './RuntimeError-5b082e8f', './when-4bbc8319', './WebGLConstants-508b9636', './Transforms-8b90e17c'], (function (exports, Matrix2, RuntimeError, when, WebGLConstants, Transforms) { 'use strict';
|
|
|
|
/**
|
|
* @private
|
|
*/
|
|
const GeometryType = {
|
|
NONE: 0,
|
|
TRIANGLES: 1,
|
|
LINES: 2,
|
|
POLYLINES: 3,
|
|
};
|
|
var GeometryType$1 = Object.freeze(GeometryType);
|
|
|
|
/**
|
|
* The type of a geometric primitive, i.e., points, lines, and triangles.
|
|
*
|
|
* @enum {Number}
|
|
*/
|
|
const PrimitiveType = {
|
|
/**
|
|
* Points primitive where each vertex (or index) is a separate point.
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
POINTS: WebGLConstants.WebGLConstants.POINTS,
|
|
|
|
/**
|
|
* Lines primitive where each two vertices (or indices) is a line segment. Line segments are not necessarily connected.
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
LINES: WebGLConstants.WebGLConstants.LINES,
|
|
|
|
/**
|
|
* Line loop primitive where each vertex (or index) after the first connects a line to
|
|
* the previous vertex, and the last vertex implicitly connects to the first.
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
LINE_LOOP: WebGLConstants.WebGLConstants.LINE_LOOP,
|
|
|
|
/**
|
|
* Line strip primitive where each vertex (or index) after the first connects a line to the previous vertex.
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
LINE_STRIP: WebGLConstants.WebGLConstants.LINE_STRIP,
|
|
|
|
/**
|
|
* Triangles primitive where each three vertices (or indices) is a triangle. Triangles do not necessarily share edges.
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
TRIANGLES: WebGLConstants.WebGLConstants.TRIANGLES,
|
|
|
|
/**
|
|
* Triangle strip primitive where each vertex (or index) after the first two connect to
|
|
* the previous two vertices forming a triangle. For example, this can be used to model a wall.
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
TRIANGLE_STRIP: WebGLConstants.WebGLConstants.TRIANGLE_STRIP,
|
|
|
|
/**
|
|
* Triangle fan primitive where each vertex (or index) after the first two connect to
|
|
* the previous vertex and the first vertex forming a triangle. For example, this can be used
|
|
* to model a cone or circle.
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
TRIANGLE_FAN: WebGLConstants.WebGLConstants.TRIANGLE_FAN,
|
|
};
|
|
|
|
/**
|
|
* @private
|
|
*/
|
|
PrimitiveType.validate = function (primitiveType) {
|
|
return (
|
|
primitiveType === PrimitiveType.POINTS ||
|
|
primitiveType === PrimitiveType.LINES ||
|
|
primitiveType === PrimitiveType.LINE_LOOP ||
|
|
primitiveType === PrimitiveType.LINE_STRIP ||
|
|
primitiveType === PrimitiveType.TRIANGLES ||
|
|
primitiveType === PrimitiveType.TRIANGLE_STRIP ||
|
|
primitiveType === PrimitiveType.TRIANGLE_FAN
|
|
);
|
|
};
|
|
|
|
var PrimitiveType$1 = Object.freeze(PrimitiveType);
|
|
|
|
/**
|
|
* A geometry representation with attributes forming vertices and optional index data
|
|
* defining primitives. Geometries and an {@link Appearance}, which describes the shading,
|
|
* can be assigned to a {@link Primitive} for visualization. A <code>Primitive</code> can
|
|
* be created from many heterogeneous - in many cases - geometries for performance.
|
|
* <p>
|
|
* Geometries can be transformed and optimized using functions in {@link GeometryPipeline}.
|
|
* </p>
|
|
*
|
|
* @alias Geometry
|
|
* @constructor
|
|
*
|
|
* @param {Object} options Object with the following properties:
|
|
* @param {GeometryAttributes} options.attributes Attributes, which make up the geometry's vertices.
|
|
* @param {PrimitiveType} [options.primitiveType=PrimitiveType.TRIANGLES] The type of primitives in the geometry.
|
|
* @param {Uint16Array|Uint32Array} [options.indices] Optional index data that determines the primitives in the geometry.
|
|
* @param {BoundingSphere} [options.boundingSphere] An optional bounding sphere that fully enclosed the geometry.
|
|
*
|
|
* @see PolygonGeometry
|
|
* @see RectangleGeometry
|
|
* @see EllipseGeometry
|
|
* @see CircleGeometry
|
|
* @see WallGeometry
|
|
* @see SimplePolylineGeometry
|
|
* @see BoxGeometry
|
|
* @see EllipsoidGeometry
|
|
*
|
|
* @demo {@link https://sandcastle.cesium.com/index.html?src=Geometry%20and%20Appearances.html|Geometry and Appearances Demo}
|
|
*
|
|
* @example
|
|
* // Create geometry with a position attribute and indexed lines.
|
|
* const positions = new Float64Array([
|
|
* 0.0, 0.0, 0.0,
|
|
* 7500000.0, 0.0, 0.0,
|
|
* 0.0, 7500000.0, 0.0
|
|
* ]);
|
|
*
|
|
* const geometry = new Cesium.Geometry({
|
|
* attributes : {
|
|
* position : new Cesium.GeometryAttribute({
|
|
* componentDatatype : Cesium.ComponentDatatype.DOUBLE,
|
|
* componentsPerAttribute : 3,
|
|
* values : positions
|
|
* })
|
|
* },
|
|
* indices : new Uint16Array([0, 1, 1, 2, 2, 0]),
|
|
* primitiveType : Cesium.PrimitiveType.LINES,
|
|
* boundingSphere : Cesium.BoundingSphere.fromVertices(positions)
|
|
* });
|
|
*/
|
|
function Geometry(options) {
|
|
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
|
|
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.typeOf.object("options.attributes", options.attributes);
|
|
//>>includeEnd('debug');
|
|
|
|
/**
|
|
* Attributes, which make up the geometry's vertices. Each property in this object corresponds to a
|
|
* {@link GeometryAttribute} containing the attribute's data.
|
|
* <p>
|
|
* Attributes are always stored non-interleaved in a Geometry.
|
|
* </p>
|
|
* <p>
|
|
* There are reserved attribute names with well-known semantics. The following attributes
|
|
* are created by a Geometry (depending on the provided {@link VertexFormat}.
|
|
* <ul>
|
|
* <li><code>position</code> - 3D vertex position. 64-bit floating-point (for precision). 3 components per attribute. See {@link VertexFormat#position}.</li>
|
|
* <li><code>normal</code> - Normal (normalized), commonly used for lighting. 32-bit floating-point. 3 components per attribute. See {@link VertexFormat#normal}.</li>
|
|
* <li><code>st</code> - 2D texture coordinate. 32-bit floating-point. 2 components per attribute. See {@link VertexFormat#st}.</li>
|
|
* <li><code>bitangent</code> - Bitangent (normalized), used for tangent-space effects like bump mapping. 32-bit floating-point. 3 components per attribute. See {@link VertexFormat#bitangent}.</li>
|
|
* <li><code>tangent</code> - Tangent (normalized), used for tangent-space effects like bump mapping. 32-bit floating-point. 3 components per attribute. See {@link VertexFormat#tangent}.</li>
|
|
* </ul>
|
|
* </p>
|
|
* <p>
|
|
* The following attribute names are generally not created by a Geometry, but are added
|
|
* to a Geometry by a {@link Primitive} or {@link GeometryPipeline} functions to prepare
|
|
* the geometry for rendering.
|
|
* <ul>
|
|
* <li><code>position3DHigh</code> - High 32 bits for encoded 64-bit position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
|
|
* <li><code>position3DLow</code> - Low 32 bits for encoded 64-bit position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
|
|
* <li><code>position3DHigh</code> - High 32 bits for encoded 64-bit 2D (Columbus view) position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
|
|
* <li><code>position2DLow</code> - Low 32 bits for encoded 64-bit 2D (Columbus view) position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
|
|
* <li><code>color</code> - RGBA color (normalized) usually from {@link GeometryInstance#color}. 32-bit floating-point. 4 components per attribute.</li>
|
|
* <li><code>pickColor</code> - RGBA color used for picking. 32-bit floating-point. 4 components per attribute.</li>
|
|
* </ul>
|
|
* </p>
|
|
*
|
|
* @type GeometryAttributes
|
|
*
|
|
* @default undefined
|
|
*
|
|
*
|
|
* @example
|
|
* geometry.attributes.position = new Cesium.GeometryAttribute({
|
|
* componentDatatype : Cesium.ComponentDatatype.FLOAT,
|
|
* componentsPerAttribute : 3,
|
|
* values : new Float32Array(0)
|
|
* });
|
|
*
|
|
* @see GeometryAttribute
|
|
* @see VertexFormat
|
|
*/
|
|
this.attributes = options.attributes;
|
|
|
|
/**
|
|
* Optional index data that - along with {@link Geometry#primitiveType} -
|
|
* determines the primitives in the geometry.
|
|
*
|
|
* @type Array
|
|
*
|
|
* @default undefined
|
|
*/
|
|
this.indices = options.indices;
|
|
|
|
/**
|
|
* The type of primitives in the geometry. This is most often {@link PrimitiveType.TRIANGLES},
|
|
* but can varying based on the specific geometry.
|
|
*
|
|
* @type PrimitiveType
|
|
*
|
|
* @default undefined
|
|
*/
|
|
this.primitiveType = when.defaultValue(
|
|
options.primitiveType,
|
|
PrimitiveType$1.TRIANGLES
|
|
);
|
|
|
|
/**
|
|
* An optional bounding sphere that fully encloses the geometry. This is
|
|
* commonly used for culling.
|
|
*
|
|
* @type BoundingSphere
|
|
*
|
|
* @default undefined
|
|
*/
|
|
this.boundingSphere = options.boundingSphere;
|
|
|
|
/**
|
|
* @private
|
|
*/
|
|
this.geometryType = when.defaultValue(options.geometryType, GeometryType$1.NONE);
|
|
|
|
/**
|
|
* @private
|
|
*/
|
|
this.boundingSphereCV = options.boundingSphereCV;
|
|
|
|
/**
|
|
* Used for computing the bounding sphere for geometry using the applyOffset vertex attribute
|
|
* @private
|
|
*/
|
|
this.offsetAttribute = options.offsetAttribute;
|
|
}
|
|
|
|
/**
|
|
* Computes the number of vertices in a geometry. The runtime is linear with
|
|
* respect to the number of attributes in a vertex, not the number of vertices.
|
|
*
|
|
* @param {Geometry} geometry The geometry.
|
|
* @returns {Number} The number of vertices in the geometry.
|
|
*
|
|
* @example
|
|
* const numVertices = Cesium.Geometry.computeNumberOfVertices(geometry);
|
|
*/
|
|
Geometry.computeNumberOfVertices = function (geometry) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.typeOf.object("geometry", geometry);
|
|
//>>includeEnd('debug');
|
|
|
|
let numberOfVertices = -1;
|
|
for (const property in geometry.attributes) {
|
|
if (
|
|
geometry.attributes.hasOwnProperty(property) &&
|
|
when.defined(geometry.attributes[property]) &&
|
|
when.defined(geometry.attributes[property].values)
|
|
) {
|
|
const attribute = geometry.attributes[property];
|
|
const num = attribute.values.length / attribute.componentsPerAttribute;
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (numberOfVertices !== num && numberOfVertices !== -1) {
|
|
throw new RuntimeError.DeveloperError(
|
|
"All attribute lists must have the same number of attributes."
|
|
);
|
|
}
|
|
//>>includeEnd('debug');
|
|
numberOfVertices = num;
|
|
}
|
|
}
|
|
|
|
return numberOfVertices;
|
|
};
|
|
|
|
const rectangleCenterScratch = new Matrix2.Cartographic();
|
|
const enuCenterScratch = new Matrix2.Cartesian3();
|
|
const fixedFrameToEnuScratch = new Matrix2.Matrix4();
|
|
const boundingRectanglePointsCartographicScratch = [
|
|
new Matrix2.Cartographic(),
|
|
new Matrix2.Cartographic(),
|
|
new Matrix2.Cartographic(),
|
|
];
|
|
const boundingRectanglePointsEnuScratch = [
|
|
new Matrix2.Cartesian2(),
|
|
new Matrix2.Cartesian2(),
|
|
new Matrix2.Cartesian2(),
|
|
];
|
|
const points2DScratch = [new Matrix2.Cartesian2(), new Matrix2.Cartesian2(), new Matrix2.Cartesian2()];
|
|
const pointEnuScratch = new Matrix2.Cartesian3();
|
|
const enuRotationScratch = new Transforms.Quaternion();
|
|
const enuRotationMatrixScratch = new Matrix2.Matrix4();
|
|
const rotation2DScratch = new Matrix2.Matrix2();
|
|
|
|
/**
|
|
* For remapping texture coordinates when rendering GroundPrimitives with materials.
|
|
* GroundPrimitive texture coordinates are computed to align with the cartographic coordinate system on the globe.
|
|
* However, EllipseGeometry, RectangleGeometry, and PolygonGeometry all bake rotations to per-vertex texture coordinates
|
|
* using different strategies.
|
|
*
|
|
* This method is used by EllipseGeometry and PolygonGeometry to approximate the same visual effect.
|
|
* We encapsulate rotation and scale by computing a "transformed" texture coordinate system and computing
|
|
* a set of reference points from which "cartographic" texture coordinates can be remapped to the "transformed"
|
|
* system using distances to lines in 2D.
|
|
*
|
|
* This approximation becomes less accurate as the covered area increases, especially for GroundPrimitives near the poles,
|
|
* but is generally reasonable for polygons and ellipses around the size of USA states.
|
|
*
|
|
* RectangleGeometry has its own version of this method that computes remapping coordinates using cartographic space
|
|
* as an intermediary instead of local ENU, which is more accurate for large-area rectangles.
|
|
*
|
|
* @param {Cartesian3[]} positions Array of positions outlining the geometry
|
|
* @param {Number} stRotation Texture coordinate rotation.
|
|
* @param {Ellipsoid} ellipsoid Ellipsoid for projecting and generating local vectors.
|
|
* @param {Rectangle} boundingRectangle Bounding rectangle around the positions.
|
|
* @returns {Number[]} An array of 6 numbers specifying [minimum point, u extent, v extent] as points in the "cartographic" system.
|
|
* @private
|
|
*/
|
|
Geometry._textureCoordinateRotationPoints = function (
|
|
positions,
|
|
stRotation,
|
|
ellipsoid,
|
|
boundingRectangle
|
|
) {
|
|
let i;
|
|
|
|
// Create a local east-north-up coordinate system centered on the polygon's bounding rectangle.
|
|
// Project the southwest, northwest, and southeast corners of the bounding rectangle into the plane of ENU as 2D points.
|
|
// These are the equivalents of (0,0), (0,1), and (1,0) in the texture coordiante system computed in ShadowVolumeAppearanceFS,
|
|
// aka "ENU texture space."
|
|
const rectangleCenter = Matrix2.Rectangle.center(
|
|
boundingRectangle,
|
|
rectangleCenterScratch
|
|
);
|
|
const enuCenter = Matrix2.Cartographic.toCartesian(
|
|
rectangleCenter,
|
|
ellipsoid,
|
|
enuCenterScratch
|
|
);
|
|
const enuToFixedFrame = Transforms.Transforms.eastNorthUpToFixedFrame(
|
|
enuCenter,
|
|
ellipsoid,
|
|
fixedFrameToEnuScratch
|
|
);
|
|
const fixedFrameToEnu = Matrix2.Matrix4.inverse(
|
|
enuToFixedFrame,
|
|
fixedFrameToEnuScratch
|
|
);
|
|
|
|
const boundingPointsEnu = boundingRectanglePointsEnuScratch;
|
|
const boundingPointsCarto = boundingRectanglePointsCartographicScratch;
|
|
|
|
boundingPointsCarto[0].longitude = boundingRectangle.west;
|
|
boundingPointsCarto[0].latitude = boundingRectangle.south;
|
|
|
|
boundingPointsCarto[1].longitude = boundingRectangle.west;
|
|
boundingPointsCarto[1].latitude = boundingRectangle.north;
|
|
|
|
boundingPointsCarto[2].longitude = boundingRectangle.east;
|
|
boundingPointsCarto[2].latitude = boundingRectangle.south;
|
|
|
|
let posEnu = pointEnuScratch;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
Matrix2.Cartographic.toCartesian(boundingPointsCarto[i], ellipsoid, posEnu);
|
|
posEnu = Matrix2.Matrix4.multiplyByPointAsVector(fixedFrameToEnu, posEnu, posEnu);
|
|
boundingPointsEnu[i].x = posEnu.x;
|
|
boundingPointsEnu[i].y = posEnu.y;
|
|
}
|
|
|
|
// Rotate each point in the polygon around the up vector in the ENU by -stRotation and project into ENU as 2D.
|
|
// Compute the bounding box of these rotated points in the 2D ENU plane.
|
|
// Rotate the corners back by stRotation, then compute their equivalents in the ENU texture space using the corners computed earlier.
|
|
const rotation = Transforms.Quaternion.fromAxisAngle(
|
|
Matrix2.Cartesian3.UNIT_Z,
|
|
-stRotation,
|
|
enuRotationScratch
|
|
);
|
|
const textureMatrix = Matrix2.Matrix3.fromQuaternion(
|
|
rotation,
|
|
enuRotationMatrixScratch
|
|
);
|
|
|
|
const positionsLength = positions.length;
|
|
let enuMinX = Number.POSITIVE_INFINITY;
|
|
let enuMinY = Number.POSITIVE_INFINITY;
|
|
let enuMaxX = Number.NEGATIVE_INFINITY;
|
|
let enuMaxY = Number.NEGATIVE_INFINITY;
|
|
for (i = 0; i < positionsLength; i++) {
|
|
posEnu = Matrix2.Matrix4.multiplyByPointAsVector(
|
|
fixedFrameToEnu,
|
|
positions[i],
|
|
posEnu
|
|
);
|
|
posEnu = Matrix2.Matrix3.multiplyByVector(textureMatrix, posEnu, posEnu);
|
|
|
|
enuMinX = Math.min(enuMinX, posEnu.x);
|
|
enuMinY = Math.min(enuMinY, posEnu.y);
|
|
enuMaxX = Math.max(enuMaxX, posEnu.x);
|
|
enuMaxY = Math.max(enuMaxY, posEnu.y);
|
|
}
|
|
|
|
const toDesiredInComputed = Matrix2.Matrix2.fromRotation(
|
|
stRotation,
|
|
rotation2DScratch
|
|
);
|
|
|
|
const points2D = points2DScratch;
|
|
points2D[0].x = enuMinX;
|
|
points2D[0].y = enuMinY;
|
|
|
|
points2D[1].x = enuMinX;
|
|
points2D[1].y = enuMaxY;
|
|
|
|
points2D[2].x = enuMaxX;
|
|
points2D[2].y = enuMinY;
|
|
|
|
const boundingEnuMin = boundingPointsEnu[0];
|
|
const boundingPointsWidth = boundingPointsEnu[2].x - boundingEnuMin.x;
|
|
const boundingPointsHeight = boundingPointsEnu[1].y - boundingEnuMin.y;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
const point2D = points2D[i];
|
|
// rotate back
|
|
Matrix2.Matrix2.multiplyByVector(toDesiredInComputed, point2D, point2D);
|
|
|
|
// Convert point into east-north texture coordinate space
|
|
point2D.x = (point2D.x - boundingEnuMin.x) / boundingPointsWidth;
|
|
point2D.y = (point2D.y - boundingEnuMin.y) / boundingPointsHeight;
|
|
}
|
|
|
|
const minXYCorner = points2D[0];
|
|
const maxYCorner = points2D[1];
|
|
const maxXCorner = points2D[2];
|
|
const result = new Array(6);
|
|
Matrix2.Cartesian2.pack(minXYCorner, result);
|
|
Matrix2.Cartesian2.pack(maxYCorner, result, 2);
|
|
Matrix2.Cartesian2.pack(maxXCorner, result, 4);
|
|
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Values and type information for geometry attributes. A {@link Geometry}
|
|
* generally contains one or more attributes. All attributes together form
|
|
* the geometry's vertices.
|
|
*
|
|
* @alias GeometryAttribute
|
|
* @constructor
|
|
*
|
|
* @param {Object} [options] Object with the following properties:
|
|
* @param {ComponentDatatype} [options.componentDatatype] The datatype of each component in the attribute, e.g., individual elements in values.
|
|
* @param {Number} [options.componentsPerAttribute] A number between 1 and 4 that defines the number of components in an attributes.
|
|
* @param {Boolean} [options.normalize=false] When <code>true</code> and <code>componentDatatype</code> is an integer format, indicate that the components should be mapped to the range [0, 1] (unsigned) or [-1, 1] (signed) when they are accessed as floating-point for rendering.
|
|
* @param {number[]|Int8Array|Uint8Array|Int16Array|Uint16Array|Int32Array|Uint32Array|Float32Array|Float64Array} [options.values] The values for the attributes stored in a typed array.
|
|
*
|
|
* @exception {DeveloperError} options.componentsPerAttribute must be between 1 and 4.
|
|
*
|
|
*
|
|
* @example
|
|
* const geometry = new Cesium.Geometry({
|
|
* attributes : {
|
|
* position : new Cesium.GeometryAttribute({
|
|
* componentDatatype : Cesium.ComponentDatatype.FLOAT,
|
|
* componentsPerAttribute : 3,
|
|
* values : new Float32Array([
|
|
* 0.0, 0.0, 0.0,
|
|
* 7500000.0, 0.0, 0.0,
|
|
* 0.0, 7500000.0, 0.0
|
|
* ])
|
|
* })
|
|
* },
|
|
* primitiveType : Cesium.PrimitiveType.LINE_LOOP
|
|
* });
|
|
*
|
|
* @see Geometry
|
|
*/
|
|
function GeometryAttribute(options) {
|
|
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
|
|
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(options.componentDatatype)) {
|
|
throw new RuntimeError.DeveloperError("options.componentDatatype is required.");
|
|
}
|
|
if (!when.defined(options.componentsPerAttribute)) {
|
|
throw new RuntimeError.DeveloperError("options.componentsPerAttribute is required.");
|
|
}
|
|
if (
|
|
options.componentsPerAttribute < 1 ||
|
|
options.componentsPerAttribute > 4
|
|
) {
|
|
throw new RuntimeError.DeveloperError(
|
|
"options.componentsPerAttribute must be between 1 and 4."
|
|
);
|
|
}
|
|
if (!when.defined(options.values)) {
|
|
throw new RuntimeError.DeveloperError("options.values is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
/**
|
|
* The datatype of each component in the attribute, e.g., individual elements in
|
|
* {@link GeometryAttribute#values}.
|
|
*
|
|
* @type ComponentDatatype
|
|
*
|
|
* @default undefined
|
|
*/
|
|
this.componentDatatype = options.componentDatatype;
|
|
|
|
/**
|
|
* A number between 1 and 4 that defines the number of components in an attributes.
|
|
* For example, a position attribute with x, y, and z components would have 3 as
|
|
* shown in the code example.
|
|
*
|
|
* @type Number
|
|
*
|
|
* @default undefined
|
|
*
|
|
* @example
|
|
* attribute.componentDatatype = Cesium.ComponentDatatype.FLOAT;
|
|
* attribute.componentsPerAttribute = 3;
|
|
* attribute.values = new Float32Array([
|
|
* 0.0, 0.0, 0.0,
|
|
* 7500000.0, 0.0, 0.0,
|
|
* 0.0, 7500000.0, 0.0
|
|
* ]);
|
|
*/
|
|
this.componentsPerAttribute = options.componentsPerAttribute;
|
|
|
|
/**
|
|
* When <code>true</code> and <code>componentDatatype</code> is an integer format,
|
|
* indicate that the components should be mapped to the range [0, 1] (unsigned)
|
|
* or [-1, 1] (signed) when they are accessed as floating-point for rendering.
|
|
* <p>
|
|
* This is commonly used when storing colors using {@link ComponentDatatype.UNSIGNED_BYTE}.
|
|
* </p>
|
|
*
|
|
* @type Boolean
|
|
*
|
|
* @default false
|
|
*
|
|
* @example
|
|
* attribute.componentDatatype = Cesium.ComponentDatatype.UNSIGNED_BYTE;
|
|
* attribute.componentsPerAttribute = 4;
|
|
* attribute.normalize = true;
|
|
* attribute.values = new Uint8Array([
|
|
* Cesium.Color.floatToByte(color.red),
|
|
* Cesium.Color.floatToByte(color.green),
|
|
* Cesium.Color.floatToByte(color.blue),
|
|
* Cesium.Color.floatToByte(color.alpha)
|
|
* ]);
|
|
*/
|
|
this.normalize = when.defaultValue(options.normalize, false);
|
|
|
|
/**
|
|
* The values for the attributes stored in a typed array. In the code example,
|
|
* every three elements in <code>values</code> defines one attributes since
|
|
* <code>componentsPerAttribute</code> is 3.
|
|
*
|
|
* @type {number[]|Int8Array|Uint8Array|Int16Array|Uint16Array|Int32Array|Uint32Array|Float32Array|Float64Array}
|
|
*
|
|
* @default undefined
|
|
*
|
|
* @example
|
|
* attribute.componentDatatype = Cesium.ComponentDatatype.FLOAT;
|
|
* attribute.componentsPerAttribute = 3;
|
|
* attribute.values = new Float32Array([
|
|
* 0.0, 0.0, 0.0,
|
|
* 7500000.0, 0.0, 0.0,
|
|
* 0.0, 7500000.0, 0.0
|
|
* ]);
|
|
*/
|
|
this.values = options.values;
|
|
}
|
|
|
|
exports.Geometry = Geometry;
|
|
exports.GeometryAttribute = GeometryAttribute;
|
|
exports.GeometryType = GeometryType$1;
|
|
exports.PrimitiveType = PrimitiveType$1;
|
|
|
|
}));
|
|
//# sourceMappingURL=GeometryAttribute-4bcb785f.js.map
|