805 lines
25 KiB
JavaScript
805 lines
25 KiB
JavaScript
/**
|
|
* Cesium - https://github.com/CesiumGS/cesium
|
|
*
|
|
* Copyright 2011-2020 Cesium Contributors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* Columbus View (Pat. Pend.)
|
|
*
|
|
* Portions licensed separately.
|
|
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
|
|
*/
|
|
|
|
define(['exports', './Matrix2-265d9610', './EllipsoidTangentPlane-f1a69a20', './ComponentDatatype-aad54330', './PolylinePipeline-b9913663', './Transforms-8b90e17c', './when-4bbc8319', './RuntimeError-5b082e8f'], (function (exports, Matrix2, EllipsoidTangentPlane, ComponentDatatype, PolylinePipeline, Transforms, when, RuntimeError) { 'use strict';
|
|
|
|
/**
|
|
* Style options for corners.
|
|
*
|
|
* @demo The {@link https://sandcastle.cesium.com/index.html?src=Corridor.html&label=Geometries|Corridor Demo}
|
|
* demonstrates the three corner types, as used by {@link CorridorGraphics}.
|
|
*
|
|
* @enum {Number}
|
|
*/
|
|
const CornerType = {
|
|
/**
|
|
* <img src="Images/CornerTypeRounded.png" style="vertical-align: middle;" width="186" height="189" />
|
|
*
|
|
* Corner has a smooth edge.
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
ROUNDED: 0,
|
|
|
|
/**
|
|
* <img src="Images/CornerTypeMitered.png" style="vertical-align: middle;" width="186" height="189" />
|
|
*
|
|
* Corner point is the intersection of adjacent edges.
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
MITERED: 1,
|
|
|
|
/**
|
|
* <img src="Images/CornerTypeBeveled.png" style="vertical-align: middle;" width="186" height="189" />
|
|
*
|
|
* Corner is clipped.
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
BEVELED: 2,
|
|
};
|
|
var CornerType$1 = Object.freeze(CornerType);
|
|
|
|
const warnings = {};
|
|
|
|
/**
|
|
* Logs a one time message to the console. Use this function instead of
|
|
* <code>console.log</code> directly since this does not log duplicate messages
|
|
* unless it is called from multiple workers.
|
|
*
|
|
* @function oneTimeWarning
|
|
*
|
|
* @param {String} identifier The unique identifier for this warning.
|
|
* @param {String} [message=identifier] The message to log to the console.
|
|
*
|
|
* @example
|
|
* for(let i=0;i<foo.length;++i) {
|
|
* if (!defined(foo[i].bar)) {
|
|
* // Something that can be recovered from but may happen a lot
|
|
* oneTimeWarning('foo.bar undefined', 'foo.bar is undefined. Setting to 0.');
|
|
* foo[i].bar = 0;
|
|
* // ...
|
|
* }
|
|
* }
|
|
*
|
|
* @private
|
|
*/
|
|
function oneTimeWarning(identifier, message) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(identifier)) {
|
|
throw new RuntimeError.DeveloperError("identifier is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
if (!when.defined(warnings[identifier])) {
|
|
warnings[identifier] = true;
|
|
console.warn(when.defaultValue(message, identifier));
|
|
}
|
|
}
|
|
|
|
oneTimeWarning.geometryOutlines =
|
|
"Entity geometry outlines are unsupported on terrain. Outlines will be disabled. To enable outlines, disable geometry terrain clamping by explicitly setting height to 0.";
|
|
|
|
oneTimeWarning.geometryZIndex =
|
|
"Entity geometry with zIndex are unsupported when height or extrudedHeight are defined. zIndex will be ignored";
|
|
|
|
oneTimeWarning.geometryHeightReference =
|
|
"Entity corridor, ellipse, polygon or rectangle with heightReference must also have a defined height. heightReference will be ignored";
|
|
oneTimeWarning.geometryExtrudedHeightReference =
|
|
"Entity corridor, ellipse, polygon or rectangle with extrudedHeightReference must also have a defined extrudedHeight. extrudedHeightReference will be ignored";
|
|
|
|
const scratch2Array = [new Matrix2.Cartesian3(), new Matrix2.Cartesian3()];
|
|
const scratchCartesian1 = new Matrix2.Cartesian3();
|
|
const scratchCartesian2 = new Matrix2.Cartesian3();
|
|
const scratchCartesian3 = new Matrix2.Cartesian3();
|
|
const scratchCartesian4 = new Matrix2.Cartesian3();
|
|
const scratchCartesian5 = new Matrix2.Cartesian3();
|
|
const scratchCartesian6 = new Matrix2.Cartesian3();
|
|
const scratchCartesian7 = new Matrix2.Cartesian3();
|
|
const scratchCartesian8 = new Matrix2.Cartesian3();
|
|
const scratchCartesian9 = new Matrix2.Cartesian3();
|
|
|
|
const scratch1 = new Matrix2.Cartesian3();
|
|
const scratch2 = new Matrix2.Cartesian3();
|
|
|
|
/**
|
|
* @private
|
|
*/
|
|
const PolylineVolumeGeometryLibrary = {};
|
|
|
|
let cartographic = new Matrix2.Cartographic();
|
|
function scaleToSurface(positions, ellipsoid) {
|
|
const heights = new Array(positions.length);
|
|
for (let i = 0; i < positions.length; i++) {
|
|
const pos = positions[i];
|
|
cartographic = ellipsoid.cartesianToCartographic(pos, cartographic);
|
|
heights[i] = cartographic.height;
|
|
positions[i] = ellipsoid.scaleToGeodeticSurface(pos, pos);
|
|
}
|
|
return heights;
|
|
}
|
|
|
|
function subdivideHeights(points, h0, h1, granularity) {
|
|
const p0 = points[0];
|
|
const p1 = points[1];
|
|
const angleBetween = Matrix2.Cartesian3.angleBetween(p0, p1);
|
|
const numPoints = Math.ceil(angleBetween / granularity);
|
|
const heights = new Array(numPoints);
|
|
let i;
|
|
if (h0 === h1) {
|
|
for (i = 0; i < numPoints; i++) {
|
|
heights[i] = h0;
|
|
}
|
|
heights.push(h1);
|
|
return heights;
|
|
}
|
|
|
|
const dHeight = h1 - h0;
|
|
const heightPerVertex = dHeight / numPoints;
|
|
|
|
for (i = 1; i < numPoints; i++) {
|
|
const h = h0 + i * heightPerVertex;
|
|
heights[i] = h;
|
|
}
|
|
|
|
heights[0] = h0;
|
|
heights.push(h1);
|
|
return heights;
|
|
}
|
|
|
|
const nextScratch = new Matrix2.Cartesian3();
|
|
const prevScratch = new Matrix2.Cartesian3();
|
|
|
|
function computeRotationAngle(start, end, position, ellipsoid) {
|
|
const tangentPlane = new EllipsoidTangentPlane.EllipsoidTangentPlane(position, ellipsoid);
|
|
const next = tangentPlane.projectPointOntoPlane(
|
|
Matrix2.Cartesian3.add(position, start, nextScratch),
|
|
nextScratch
|
|
);
|
|
const prev = tangentPlane.projectPointOntoPlane(
|
|
Matrix2.Cartesian3.add(position, end, prevScratch),
|
|
prevScratch
|
|
);
|
|
const angle = Matrix2.Cartesian2.angleBetween(next, prev);
|
|
|
|
return prev.x * next.y - prev.y * next.x >= 0.0 ? -angle : angle;
|
|
}
|
|
|
|
const negativeX = new Matrix2.Cartesian3(-1, 0, 0);
|
|
let transform = new Matrix2.Matrix4();
|
|
const translation = new Matrix2.Matrix4();
|
|
let rotationZ = new Matrix2.Matrix3();
|
|
const scaleMatrix = Matrix2.Matrix3.IDENTITY.clone();
|
|
const westScratch = new Matrix2.Cartesian3();
|
|
const finalPosScratch = new Matrix2.Cartesian4();
|
|
const heightCartesian = new Matrix2.Cartesian3();
|
|
function addPosition(
|
|
center,
|
|
left,
|
|
shape,
|
|
finalPositions,
|
|
ellipsoid,
|
|
height,
|
|
xScalar,
|
|
repeat
|
|
) {
|
|
let west = westScratch;
|
|
let finalPosition = finalPosScratch;
|
|
transform = Transforms.Transforms.eastNorthUpToFixedFrame(center, ellipsoid, transform);
|
|
|
|
west = Matrix2.Matrix4.multiplyByPointAsVector(transform, negativeX, west);
|
|
west = Matrix2.Cartesian3.normalize(west, west);
|
|
const angle = computeRotationAngle(west, left, center, ellipsoid);
|
|
rotationZ = Matrix2.Matrix3.fromRotationZ(angle, rotationZ);
|
|
|
|
heightCartesian.z = height;
|
|
transform = Matrix2.Matrix4.multiplyTransformation(
|
|
transform,
|
|
Matrix2.Matrix4.fromRotationTranslation(rotationZ, heightCartesian, translation),
|
|
transform
|
|
);
|
|
const scale = scaleMatrix;
|
|
scale[0] = xScalar;
|
|
|
|
for (let j = 0; j < repeat; j++) {
|
|
for (let i = 0; i < shape.length; i += 3) {
|
|
finalPosition = Matrix2.Cartesian3.fromArray(shape, i, finalPosition);
|
|
finalPosition = Matrix2.Matrix3.multiplyByVector(
|
|
scale,
|
|
finalPosition,
|
|
finalPosition
|
|
);
|
|
finalPosition = Matrix2.Matrix4.multiplyByPoint(
|
|
transform,
|
|
finalPosition,
|
|
finalPosition
|
|
);
|
|
finalPositions.push(finalPosition.x, finalPosition.y, finalPosition.z);
|
|
}
|
|
}
|
|
|
|
return finalPositions;
|
|
}
|
|
|
|
const centerScratch = new Matrix2.Cartesian3();
|
|
function addPositions(
|
|
centers,
|
|
left,
|
|
shape,
|
|
finalPositions,
|
|
ellipsoid,
|
|
heights,
|
|
xScalar
|
|
) {
|
|
for (let i = 0; i < centers.length; i += 3) {
|
|
const center = Matrix2.Cartesian3.fromArray(centers, i, centerScratch);
|
|
finalPositions = addPosition(
|
|
center,
|
|
left,
|
|
shape,
|
|
finalPositions,
|
|
ellipsoid,
|
|
heights[i / 3],
|
|
xScalar,
|
|
1
|
|
);
|
|
}
|
|
return finalPositions;
|
|
}
|
|
|
|
function convertShapeTo3DDuplicate(shape2D, boundingRectangle) {
|
|
//orientate 2D shape to XZ plane center at (0, 0, 0), duplicate points
|
|
const length = shape2D.length;
|
|
const shape = new Array(length * 6);
|
|
let index = 0;
|
|
const xOffset = boundingRectangle.x + boundingRectangle.width / 2;
|
|
const yOffset = boundingRectangle.y + boundingRectangle.height / 2;
|
|
|
|
let point = shape2D[0];
|
|
shape[index++] = point.x - xOffset;
|
|
shape[index++] = 0.0;
|
|
shape[index++] = point.y - yOffset;
|
|
for (let i = 1; i < length; i++) {
|
|
point = shape2D[i];
|
|
const x = point.x - xOffset;
|
|
const z = point.y - yOffset;
|
|
shape[index++] = x;
|
|
shape[index++] = 0.0;
|
|
shape[index++] = z;
|
|
|
|
shape[index++] = x;
|
|
shape[index++] = 0.0;
|
|
shape[index++] = z;
|
|
}
|
|
point = shape2D[0];
|
|
shape[index++] = point.x - xOffset;
|
|
shape[index++] = 0.0;
|
|
shape[index++] = point.y - yOffset;
|
|
|
|
return shape;
|
|
}
|
|
|
|
function convertShapeTo3D(shape2D, boundingRectangle) {
|
|
//orientate 2D shape to XZ plane center at (0, 0, 0)
|
|
const length = shape2D.length;
|
|
const shape = new Array(length * 3);
|
|
let index = 0;
|
|
const xOffset = boundingRectangle.x + boundingRectangle.width / 2;
|
|
const yOffset = boundingRectangle.y + boundingRectangle.height / 2;
|
|
|
|
for (let i = 0; i < length; i++) {
|
|
shape[index++] = shape2D[i].x - xOffset;
|
|
shape[index++] = 0;
|
|
shape[index++] = shape2D[i].y - yOffset;
|
|
}
|
|
|
|
return shape;
|
|
}
|
|
|
|
const quaterion = new Transforms.Quaternion();
|
|
const startPointScratch = new Matrix2.Cartesian3();
|
|
const rotMatrix = new Matrix2.Matrix3();
|
|
function computeRoundCorner(
|
|
pivot,
|
|
startPoint,
|
|
endPoint,
|
|
cornerType,
|
|
leftIsOutside,
|
|
ellipsoid,
|
|
finalPositions,
|
|
shape,
|
|
height,
|
|
duplicatePoints
|
|
) {
|
|
const angle = Matrix2.Cartesian3.angleBetween(
|
|
Matrix2.Cartesian3.subtract(startPoint, pivot, scratch1),
|
|
Matrix2.Cartesian3.subtract(endPoint, pivot, scratch2)
|
|
);
|
|
const granularity =
|
|
cornerType === CornerType$1.BEVELED
|
|
? 0
|
|
: Math.ceil(angle / ComponentDatatype.CesiumMath.toRadians(5));
|
|
|
|
let m;
|
|
if (leftIsOutside) {
|
|
m = Matrix2.Matrix3.fromQuaternion(
|
|
Transforms.Quaternion.fromAxisAngle(
|
|
Matrix2.Cartesian3.negate(pivot, scratch1),
|
|
angle / (granularity + 1),
|
|
quaterion
|
|
),
|
|
rotMatrix
|
|
);
|
|
} else {
|
|
m = Matrix2.Matrix3.fromQuaternion(
|
|
Transforms.Quaternion.fromAxisAngle(pivot, angle / (granularity + 1), quaterion),
|
|
rotMatrix
|
|
);
|
|
}
|
|
|
|
let left;
|
|
let surfacePoint;
|
|
startPoint = Matrix2.Cartesian3.clone(startPoint, startPointScratch);
|
|
if (granularity > 0) {
|
|
const repeat = duplicatePoints ? 2 : 1;
|
|
for (let i = 0; i < granularity; i++) {
|
|
startPoint = Matrix2.Matrix3.multiplyByVector(m, startPoint, startPoint);
|
|
left = Matrix2.Cartesian3.subtract(startPoint, pivot, scratch1);
|
|
left = Matrix2.Cartesian3.normalize(left, left);
|
|
if (!leftIsOutside) {
|
|
left = Matrix2.Cartesian3.negate(left, left);
|
|
}
|
|
surfacePoint = ellipsoid.scaleToGeodeticSurface(startPoint, scratch2);
|
|
finalPositions = addPosition(
|
|
surfacePoint,
|
|
left,
|
|
shape,
|
|
finalPositions,
|
|
ellipsoid,
|
|
height,
|
|
1,
|
|
repeat
|
|
);
|
|
}
|
|
} else {
|
|
left = Matrix2.Cartesian3.subtract(startPoint, pivot, scratch1);
|
|
left = Matrix2.Cartesian3.normalize(left, left);
|
|
if (!leftIsOutside) {
|
|
left = Matrix2.Cartesian3.negate(left, left);
|
|
}
|
|
surfacePoint = ellipsoid.scaleToGeodeticSurface(startPoint, scratch2);
|
|
finalPositions = addPosition(
|
|
surfacePoint,
|
|
left,
|
|
shape,
|
|
finalPositions,
|
|
ellipsoid,
|
|
height,
|
|
1,
|
|
1
|
|
);
|
|
|
|
endPoint = Matrix2.Cartesian3.clone(endPoint, startPointScratch);
|
|
left = Matrix2.Cartesian3.subtract(endPoint, pivot, scratch1);
|
|
left = Matrix2.Cartesian3.normalize(left, left);
|
|
if (!leftIsOutside) {
|
|
left = Matrix2.Cartesian3.negate(left, left);
|
|
}
|
|
surfacePoint = ellipsoid.scaleToGeodeticSurface(endPoint, scratch2);
|
|
finalPositions = addPosition(
|
|
surfacePoint,
|
|
left,
|
|
shape,
|
|
finalPositions,
|
|
ellipsoid,
|
|
height,
|
|
1,
|
|
1
|
|
);
|
|
}
|
|
|
|
return finalPositions;
|
|
}
|
|
|
|
PolylineVolumeGeometryLibrary.removeDuplicatesFromShape = function (
|
|
shapePositions
|
|
) {
|
|
const length = shapePositions.length;
|
|
const cleanedPositions = [];
|
|
for (let i0 = length - 1, i1 = 0; i1 < length; i0 = i1++) {
|
|
const v0 = shapePositions[i0];
|
|
const v1 = shapePositions[i1];
|
|
|
|
if (!Matrix2.Cartesian2.equals(v0, v1)) {
|
|
cleanedPositions.push(v1); // Shallow copy!
|
|
}
|
|
}
|
|
|
|
return cleanedPositions;
|
|
};
|
|
|
|
PolylineVolumeGeometryLibrary.angleIsGreaterThanPi = function (
|
|
forward,
|
|
backward,
|
|
position,
|
|
ellipsoid
|
|
) {
|
|
const tangentPlane = new EllipsoidTangentPlane.EllipsoidTangentPlane(position, ellipsoid);
|
|
const next = tangentPlane.projectPointOntoPlane(
|
|
Matrix2.Cartesian3.add(position, forward, nextScratch),
|
|
nextScratch
|
|
);
|
|
const prev = tangentPlane.projectPointOntoPlane(
|
|
Matrix2.Cartesian3.add(position, backward, prevScratch),
|
|
prevScratch
|
|
);
|
|
|
|
return prev.x * next.y - prev.y * next.x >= 0.0;
|
|
};
|
|
|
|
const scratchForwardProjection = new Matrix2.Cartesian3();
|
|
const scratchBackwardProjection = new Matrix2.Cartesian3();
|
|
|
|
PolylineVolumeGeometryLibrary.computePositions = function (
|
|
positions,
|
|
shape2D,
|
|
boundingRectangle,
|
|
geometry,
|
|
duplicatePoints
|
|
) {
|
|
const ellipsoid = geometry._ellipsoid;
|
|
const heights = scaleToSurface(positions, ellipsoid);
|
|
const granularity = geometry._granularity;
|
|
const cornerType = geometry._cornerType;
|
|
const shapeForSides = duplicatePoints
|
|
? convertShapeTo3DDuplicate(shape2D, boundingRectangle)
|
|
: convertShapeTo3D(shape2D, boundingRectangle);
|
|
const shapeForEnds = duplicatePoints
|
|
? convertShapeTo3D(shape2D, boundingRectangle)
|
|
: undefined;
|
|
const heightOffset = boundingRectangle.height / 2;
|
|
const width = boundingRectangle.width / 2;
|
|
let length = positions.length;
|
|
let finalPositions = [];
|
|
let ends = duplicatePoints ? [] : undefined;
|
|
|
|
let forward = scratchCartesian1;
|
|
let backward = scratchCartesian2;
|
|
let cornerDirection = scratchCartesian3;
|
|
let surfaceNormal = scratchCartesian4;
|
|
let pivot = scratchCartesian5;
|
|
let start = scratchCartesian6;
|
|
let end = scratchCartesian7;
|
|
let left = scratchCartesian8;
|
|
let previousPosition = scratchCartesian9;
|
|
|
|
let position = positions[0];
|
|
let nextPosition = positions[1];
|
|
surfaceNormal = ellipsoid.geodeticSurfaceNormal(position, surfaceNormal);
|
|
forward = Matrix2.Cartesian3.subtract(nextPosition, position, forward);
|
|
forward = Matrix2.Cartesian3.normalize(forward, forward);
|
|
left = Matrix2.Cartesian3.cross(surfaceNormal, forward, left);
|
|
left = Matrix2.Cartesian3.normalize(left, left);
|
|
let h0 = heights[0];
|
|
let h1 = heights[1];
|
|
if (duplicatePoints) {
|
|
ends = addPosition(
|
|
position,
|
|
left,
|
|
shapeForEnds,
|
|
ends,
|
|
ellipsoid,
|
|
h0 + heightOffset,
|
|
1,
|
|
1
|
|
);
|
|
}
|
|
previousPosition = Matrix2.Cartesian3.clone(position, previousPosition);
|
|
position = nextPosition;
|
|
backward = Matrix2.Cartesian3.negate(forward, backward);
|
|
let subdividedHeights;
|
|
let subdividedPositions;
|
|
for (let i = 1; i < length - 1; i++) {
|
|
const repeat = duplicatePoints ? 2 : 1;
|
|
nextPosition = positions[i + 1];
|
|
if (position.equals(nextPosition)) {
|
|
oneTimeWarning(
|
|
"Positions are too close and are considered equivalent with rounding error."
|
|
);
|
|
continue;
|
|
}
|
|
forward = Matrix2.Cartesian3.subtract(nextPosition, position, forward);
|
|
forward = Matrix2.Cartesian3.normalize(forward, forward);
|
|
cornerDirection = Matrix2.Cartesian3.add(forward, backward, cornerDirection);
|
|
cornerDirection = Matrix2.Cartesian3.normalize(cornerDirection, cornerDirection);
|
|
surfaceNormal = ellipsoid.geodeticSurfaceNormal(position, surfaceNormal);
|
|
|
|
const forwardProjection = Matrix2.Cartesian3.multiplyByScalar(
|
|
surfaceNormal,
|
|
Matrix2.Cartesian3.dot(forward, surfaceNormal),
|
|
scratchForwardProjection
|
|
);
|
|
Matrix2.Cartesian3.subtract(forward, forwardProjection, forwardProjection);
|
|
Matrix2.Cartesian3.normalize(forwardProjection, forwardProjection);
|
|
|
|
const backwardProjection = Matrix2.Cartesian3.multiplyByScalar(
|
|
surfaceNormal,
|
|
Matrix2.Cartesian3.dot(backward, surfaceNormal),
|
|
scratchBackwardProjection
|
|
);
|
|
Matrix2.Cartesian3.subtract(backward, backwardProjection, backwardProjection);
|
|
Matrix2.Cartesian3.normalize(backwardProjection, backwardProjection);
|
|
|
|
const doCorner = !ComponentDatatype.CesiumMath.equalsEpsilon(
|
|
Math.abs(Matrix2.Cartesian3.dot(forwardProjection, backwardProjection)),
|
|
1.0,
|
|
ComponentDatatype.CesiumMath.EPSILON7
|
|
);
|
|
|
|
if (doCorner) {
|
|
cornerDirection = Matrix2.Cartesian3.cross(
|
|
cornerDirection,
|
|
surfaceNormal,
|
|
cornerDirection
|
|
);
|
|
cornerDirection = Matrix2.Cartesian3.cross(
|
|
surfaceNormal,
|
|
cornerDirection,
|
|
cornerDirection
|
|
);
|
|
cornerDirection = Matrix2.Cartesian3.normalize(cornerDirection, cornerDirection);
|
|
const scalar =
|
|
1 /
|
|
Math.max(
|
|
0.25,
|
|
Matrix2.Cartesian3.magnitude(
|
|
Matrix2.Cartesian3.cross(cornerDirection, backward, scratch1)
|
|
)
|
|
);
|
|
const leftIsOutside = PolylineVolumeGeometryLibrary.angleIsGreaterThanPi(
|
|
forward,
|
|
backward,
|
|
position,
|
|
ellipsoid
|
|
);
|
|
if (leftIsOutside) {
|
|
pivot = Matrix2.Cartesian3.add(
|
|
position,
|
|
Matrix2.Cartesian3.multiplyByScalar(
|
|
cornerDirection,
|
|
scalar * width,
|
|
cornerDirection
|
|
),
|
|
pivot
|
|
);
|
|
start = Matrix2.Cartesian3.add(
|
|
pivot,
|
|
Matrix2.Cartesian3.multiplyByScalar(left, width, start),
|
|
start
|
|
);
|
|
scratch2Array[0] = Matrix2.Cartesian3.clone(previousPosition, scratch2Array[0]);
|
|
scratch2Array[1] = Matrix2.Cartesian3.clone(start, scratch2Array[1]);
|
|
subdividedHeights = subdivideHeights(
|
|
scratch2Array,
|
|
h0 + heightOffset,
|
|
h1 + heightOffset,
|
|
granularity
|
|
);
|
|
subdividedPositions = PolylinePipeline.PolylinePipeline.generateArc({
|
|
positions: scratch2Array,
|
|
granularity: granularity,
|
|
ellipsoid: ellipsoid,
|
|
});
|
|
finalPositions = addPositions(
|
|
subdividedPositions,
|
|
left,
|
|
shapeForSides,
|
|
finalPositions,
|
|
ellipsoid,
|
|
subdividedHeights,
|
|
1
|
|
);
|
|
left = Matrix2.Cartesian3.cross(surfaceNormal, forward, left);
|
|
left = Matrix2.Cartesian3.normalize(left, left);
|
|
end = Matrix2.Cartesian3.add(
|
|
pivot,
|
|
Matrix2.Cartesian3.multiplyByScalar(left, width, end),
|
|
end
|
|
);
|
|
if (
|
|
cornerType === CornerType$1.ROUNDED ||
|
|
cornerType === CornerType$1.BEVELED
|
|
) {
|
|
computeRoundCorner(
|
|
pivot,
|
|
start,
|
|
end,
|
|
cornerType,
|
|
leftIsOutside,
|
|
ellipsoid,
|
|
finalPositions,
|
|
shapeForSides,
|
|
h1 + heightOffset,
|
|
duplicatePoints
|
|
);
|
|
} else {
|
|
cornerDirection = Matrix2.Cartesian3.negate(cornerDirection, cornerDirection);
|
|
finalPositions = addPosition(
|
|
position,
|
|
cornerDirection,
|
|
shapeForSides,
|
|
finalPositions,
|
|
ellipsoid,
|
|
h1 + heightOffset,
|
|
scalar,
|
|
repeat
|
|
);
|
|
}
|
|
previousPosition = Matrix2.Cartesian3.clone(end, previousPosition);
|
|
} else {
|
|
pivot = Matrix2.Cartesian3.add(
|
|
position,
|
|
Matrix2.Cartesian3.multiplyByScalar(
|
|
cornerDirection,
|
|
scalar * width,
|
|
cornerDirection
|
|
),
|
|
pivot
|
|
);
|
|
start = Matrix2.Cartesian3.add(
|
|
pivot,
|
|
Matrix2.Cartesian3.multiplyByScalar(left, -width, start),
|
|
start
|
|
);
|
|
scratch2Array[0] = Matrix2.Cartesian3.clone(previousPosition, scratch2Array[0]);
|
|
scratch2Array[1] = Matrix2.Cartesian3.clone(start, scratch2Array[1]);
|
|
subdividedHeights = subdivideHeights(
|
|
scratch2Array,
|
|
h0 + heightOffset,
|
|
h1 + heightOffset,
|
|
granularity
|
|
);
|
|
subdividedPositions = PolylinePipeline.PolylinePipeline.generateArc({
|
|
positions: scratch2Array,
|
|
granularity: granularity,
|
|
ellipsoid: ellipsoid,
|
|
});
|
|
finalPositions = addPositions(
|
|
subdividedPositions,
|
|
left,
|
|
shapeForSides,
|
|
finalPositions,
|
|
ellipsoid,
|
|
subdividedHeights,
|
|
1
|
|
);
|
|
left = Matrix2.Cartesian3.cross(surfaceNormal, forward, left);
|
|
left = Matrix2.Cartesian3.normalize(left, left);
|
|
end = Matrix2.Cartesian3.add(
|
|
pivot,
|
|
Matrix2.Cartesian3.multiplyByScalar(left, -width, end),
|
|
end
|
|
);
|
|
if (
|
|
cornerType === CornerType$1.ROUNDED ||
|
|
cornerType === CornerType$1.BEVELED
|
|
) {
|
|
computeRoundCorner(
|
|
pivot,
|
|
start,
|
|
end,
|
|
cornerType,
|
|
leftIsOutside,
|
|
ellipsoid,
|
|
finalPositions,
|
|
shapeForSides,
|
|
h1 + heightOffset,
|
|
duplicatePoints
|
|
);
|
|
} else {
|
|
finalPositions = addPosition(
|
|
position,
|
|
cornerDirection,
|
|
shapeForSides,
|
|
finalPositions,
|
|
ellipsoid,
|
|
h1 + heightOffset,
|
|
scalar,
|
|
repeat
|
|
);
|
|
}
|
|
previousPosition = Matrix2.Cartesian3.clone(end, previousPosition);
|
|
}
|
|
backward = Matrix2.Cartesian3.negate(forward, backward);
|
|
} else {
|
|
finalPositions = addPosition(
|
|
previousPosition,
|
|
left,
|
|
shapeForSides,
|
|
finalPositions,
|
|
ellipsoid,
|
|
h0 + heightOffset,
|
|
1,
|
|
1
|
|
);
|
|
previousPosition = position;
|
|
}
|
|
h0 = h1;
|
|
h1 = heights[i + 1];
|
|
position = nextPosition;
|
|
}
|
|
|
|
scratch2Array[0] = Matrix2.Cartesian3.clone(previousPosition, scratch2Array[0]);
|
|
scratch2Array[1] = Matrix2.Cartesian3.clone(position, scratch2Array[1]);
|
|
subdividedHeights = subdivideHeights(
|
|
scratch2Array,
|
|
h0 + heightOffset,
|
|
h1 + heightOffset,
|
|
granularity
|
|
);
|
|
subdividedPositions = PolylinePipeline.PolylinePipeline.generateArc({
|
|
positions: scratch2Array,
|
|
granularity: granularity,
|
|
ellipsoid: ellipsoid,
|
|
});
|
|
finalPositions = addPositions(
|
|
subdividedPositions,
|
|
left,
|
|
shapeForSides,
|
|
finalPositions,
|
|
ellipsoid,
|
|
subdividedHeights,
|
|
1
|
|
);
|
|
if (duplicatePoints) {
|
|
ends = addPosition(
|
|
position,
|
|
left,
|
|
shapeForEnds,
|
|
ends,
|
|
ellipsoid,
|
|
h1 + heightOffset,
|
|
1,
|
|
1
|
|
);
|
|
}
|
|
|
|
length = finalPositions.length;
|
|
const posLength = duplicatePoints ? length + ends.length : length;
|
|
const combinedPositions = new Float64Array(posLength);
|
|
combinedPositions.set(finalPositions);
|
|
if (duplicatePoints) {
|
|
combinedPositions.set(ends, length);
|
|
}
|
|
|
|
return combinedPositions;
|
|
};
|
|
|
|
exports.CornerType = CornerType$1;
|
|
exports.PolylineVolumeGeometryLibrary = PolylineVolumeGeometryLibrary;
|
|
exports.oneTimeWarning = oneTimeWarning;
|
|
|
|
}));
|
|
//# sourceMappingURL=PolylineVolumeGeometryLibrary-738776c0.js.map
|