qd-changjing/public/static/Build/CesiumUnminified/Workers/FrustumGeometry-a0a0f5aa.js

2537 lines
83 KiB
JavaScript

/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['exports', './Transforms-8b90e17c', './Matrix2-265d9610', './RuntimeError-5b082e8f', './ComponentDatatype-aad54330', './when-4bbc8319', './GeometryAttribute-4bcb785f', './GeometryAttributes-7827a6c2', './Plane-616c9c0a', './VertexFormat-07539138'], (function (exports, Transforms, Matrix2, RuntimeError, ComponentDatatype, when, GeometryAttribute, GeometryAttributes, Plane, VertexFormat) { 'use strict';
/**
* The culling volume defined by planes.
*
* @alias CullingVolume
* @constructor
*
* @param {Cartesian4[]} [planes] An array of clipping planes.
*/
function CullingVolume(planes) {
/**
* Each plane is represented by a Cartesian4 object, where the x, y, and z components
* define the unit vector normal to the plane, and the w component is the distance of the
* plane from the origin.
* @type {Cartesian4[]}
* @default []
*/
this.planes = when.defaultValue(planes, []);
}
const faces = [new Matrix2.Cartesian3(), new Matrix2.Cartesian3(), new Matrix2.Cartesian3()];
Matrix2.Cartesian3.clone(Matrix2.Cartesian3.UNIT_X, faces[0]);
Matrix2.Cartesian3.clone(Matrix2.Cartesian3.UNIT_Y, faces[1]);
Matrix2.Cartesian3.clone(Matrix2.Cartesian3.UNIT_Z, faces[2]);
const scratchPlaneCenter = new Matrix2.Cartesian3();
const scratchPlaneNormal = new Matrix2.Cartesian3();
const scratchPlane = new Plane.Plane(new Matrix2.Cartesian3(1.0, 0.0, 0.0), 0.0);
/**
* Constructs a culling volume from a bounding sphere. Creates six planes that create a box containing the sphere.
* The planes are aligned to the x, y, and z axes in world coordinates.
*
* @param {BoundingSphere} boundingSphere The bounding sphere used to create the culling volume.
* @param {CullingVolume} [result] The object onto which to store the result.
* @returns {CullingVolume} The culling volume created from the bounding sphere.
*/
CullingVolume.fromBoundingSphere = function (boundingSphere, result) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(boundingSphere)) {
throw new RuntimeError.DeveloperError("boundingSphere is required.");
}
//>>includeEnd('debug');
if (!when.defined(result)) {
result = new CullingVolume();
}
const length = faces.length;
const planes = result.planes;
planes.length = 2 * length;
const center = boundingSphere.center;
const radius = boundingSphere.radius;
let planeIndex = 0;
for (let i = 0; i < length; ++i) {
const faceNormal = faces[i];
let plane0 = planes[planeIndex];
let plane1 = planes[planeIndex + 1];
if (!when.defined(plane0)) {
plane0 = planes[planeIndex] = new Matrix2.Cartesian4();
}
if (!when.defined(plane1)) {
plane1 = planes[planeIndex + 1] = new Matrix2.Cartesian4();
}
Matrix2.Cartesian3.multiplyByScalar(faceNormal, -radius, scratchPlaneCenter);
Matrix2.Cartesian3.add(center, scratchPlaneCenter, scratchPlaneCenter);
plane0.x = faceNormal.x;
plane0.y = faceNormal.y;
plane0.z = faceNormal.z;
plane0.w = -Matrix2.Cartesian3.dot(faceNormal, scratchPlaneCenter);
Matrix2.Cartesian3.multiplyByScalar(faceNormal, radius, scratchPlaneCenter);
Matrix2.Cartesian3.add(center, scratchPlaneCenter, scratchPlaneCenter);
plane1.x = -faceNormal.x;
plane1.y = -faceNormal.y;
plane1.z = -faceNormal.z;
plane1.w = -Matrix2.Cartesian3.dot(
Matrix2.Cartesian3.negate(faceNormal, scratchPlaneNormal),
scratchPlaneCenter
);
planeIndex += 2;
}
return result;
};
/**
* Determines whether a bounding volume intersects the culling volume.
*
* @param {Object} boundingVolume The bounding volume whose intersection with the culling volume is to be tested.
* @returns {Intersect} Intersect.OUTSIDE, Intersect.INTERSECTING, or Intersect.INSIDE.
*/
CullingVolume.prototype.computeVisibility = function (boundingVolume) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(boundingVolume)) {
throw new RuntimeError.DeveloperError("boundingVolume is required.");
}
//>>includeEnd('debug');
const planes = this.planes;
let intersecting = false;
for (let k = 0, len = planes.length; k < len; ++k) {
const result = boundingVolume.intersectPlane(
Plane.Plane.fromCartesian4(planes[k], scratchPlane)
);
if (result === Transforms.Intersect.OUTSIDE) {
return Transforms.Intersect.OUTSIDE;
} else if (result === Transforms.Intersect.INTERSECTING) {
intersecting = true;
}
}
return intersecting ? Transforms.Intersect.INTERSECTING : Transforms.Intersect.INSIDE;
};
/**
* Determines whether a bounding volume intersects the culling volume.
*
* @param {Object} boundingVolume The bounding volume whose intersection with the culling volume is to be tested.
* @param {Number} parentPlaneMask A bit mask from the boundingVolume's parent's check against the same culling
* volume, such that if (planeMask & (1 << planeIndex) === 0), for k < 31, then
* the parent (and therefore this) volume is completely inside plane[planeIndex]
* and that plane check can be skipped.
* @returns {Number} A plane mask as described above (which can be applied to this boundingVolume's children).
*
* @private
*/
CullingVolume.prototype.computeVisibilityWithPlaneMask = function (
boundingVolume,
parentPlaneMask
) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(boundingVolume)) {
throw new RuntimeError.DeveloperError("boundingVolume is required.");
}
if (!when.defined(parentPlaneMask)) {
throw new RuntimeError.DeveloperError("parentPlaneMask is required.");
}
//>>includeEnd('debug');
if (
parentPlaneMask === CullingVolume.MASK_OUTSIDE ||
parentPlaneMask === CullingVolume.MASK_INSIDE
) {
// parent is completely outside or completely inside, so this child is as well.
return parentPlaneMask;
}
// Start with MASK_INSIDE (all zeros) so that after the loop, the return value can be compared with MASK_INSIDE.
// (Because if there are fewer than 31 planes, the upper bits wont be changed.)
let mask = CullingVolume.MASK_INSIDE;
const planes = this.planes;
for (let k = 0, len = planes.length; k < len; ++k) {
// For k greater than 31 (since 31 is the maximum number of INSIDE/INTERSECTING bits we can store), skip the optimization.
const flag = k < 31 ? 1 << k : 0;
if (k < 31 && (parentPlaneMask & flag) === 0) {
// boundingVolume is known to be INSIDE this plane.
continue;
}
const result = boundingVolume.intersectPlane(
Plane.Plane.fromCartesian4(planes[k], scratchPlane)
);
if (result === Transforms.Intersect.OUTSIDE) {
return CullingVolume.MASK_OUTSIDE;
} else if (result === Transforms.Intersect.INTERSECTING) {
mask |= flag;
}
}
return mask;
};
/**
* For plane masks (as used in {@link CullingVolume#computeVisibilityWithPlaneMask}), this special value
* represents the case where the object bounding volume is entirely outside the culling volume.
*
* @type {Number}
* @private
*/
CullingVolume.MASK_OUTSIDE = 0xffffffff;
/**
* For plane masks (as used in {@link CullingVolume.prototype.computeVisibilityWithPlaneMask}), this value
* represents the case where the object bounding volume is entirely inside the culling volume.
*
* @type {Number}
* @private
*/
CullingVolume.MASK_INSIDE = 0x00000000;
/**
* For plane masks (as used in {@link CullingVolume.prototype.computeVisibilityWithPlaneMask}), this value
* represents the case where the object bounding volume (may) intersect all planes of the culling volume.
*
* @type {Number}
* @private
*/
CullingVolume.MASK_INDETERMINATE = 0x7fffffff;
/**
* The viewing frustum is defined by 6 planes.
* Each plane is represented by a {@link Cartesian4} object, where the x, y, and z components
* define the unit vector normal to the plane, and the w component is the distance of the
* plane from the origin/camera position.
*
* @alias OrthographicOffCenterFrustum
* @constructor
*
* @param {Object} [options] An object with the following properties:
* @param {Number} [options.left] The left clipping plane distance.
* @param {Number} [options.right] The right clipping plane distance.
* @param {Number} [options.top] The top clipping plane distance.
* @param {Number} [options.bottom] The bottom clipping plane distance.
* @param {Number} [options.near=1.0] The near clipping plane distance.
* @param {Number} [options.far=500000000.0] The far clipping plane distance.
*
* @example
* const maxRadii = ellipsoid.maximumRadius;
*
* const frustum = new Cesium.OrthographicOffCenterFrustum();
* frustum.right = maxRadii * Cesium.Math.PI;
* frustum.left = -c.frustum.right;
* frustum.top = c.frustum.right * (canvas.clientHeight / canvas.clientWidth);
* frustum.bottom = -c.frustum.top;
* frustum.near = 0.01 * maxRadii;
* frustum.far = 50.0 * maxRadii;
*/
function OrthographicOffCenterFrustum(options) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
/**
* The left clipping plane.
* @type {Number}
* @default undefined
*/
this.left = options.left;
this._left = undefined;
/**
* The right clipping plane.
* @type {Number}
* @default undefined
*/
this.right = options.right;
this._right = undefined;
/**
* The top clipping plane.
* @type {Number}
* @default undefined
*/
this.top = options.top;
this._top = undefined;
/**
* The bottom clipping plane.
* @type {Number}
* @default undefined
*/
this.bottom = options.bottom;
this._bottom = undefined;
/**
* The distance of the near plane.
* @type {Number}
* @default 1.0
*/
this.near = when.defaultValue(options.near, 1.0);
this._near = this.near;
/**
* The distance of the far plane.
* @type {Number}
* @default 500000000.0;
*/
this.far = when.defaultValue(options.far, 500000000.0);
this._far = this.far;
this._cullingVolume = new CullingVolume();
this._orthographicMatrix = new Matrix2.Matrix4();
}
function update$3(frustum) {
//>>includeStart('debug', pragmas.debug);
if (
!when.defined(frustum.right) ||
!when.defined(frustum.left) ||
!when.defined(frustum.top) ||
!when.defined(frustum.bottom) ||
!when.defined(frustum.near) ||
!when.defined(frustum.far)
) {
throw new RuntimeError.DeveloperError(
"right, left, top, bottom, near, or far parameters are not set."
);
}
//>>includeEnd('debug');
if (
frustum.top !== frustum._top ||
frustum.bottom !== frustum._bottom ||
frustum.left !== frustum._left ||
frustum.right !== frustum._right ||
frustum.near !== frustum._near ||
frustum.far !== frustum._far
) {
//>>includeStart('debug', pragmas.debug);
if (frustum.left > frustum.right) {
throw new RuntimeError.DeveloperError("right must be greater than left.");
}
if (frustum.bottom > frustum.top) {
throw new RuntimeError.DeveloperError("top must be greater than bottom.");
}
if (frustum.near <= 0 || frustum.near > frustum.far) {
throw new RuntimeError.DeveloperError(
"near must be greater than zero and less than far."
);
}
//>>includeEnd('debug');
frustum._left = frustum.left;
frustum._right = frustum.right;
frustum._top = frustum.top;
frustum._bottom = frustum.bottom;
frustum._near = frustum.near;
frustum._far = frustum.far;
frustum._orthographicMatrix = Matrix2.Matrix4.computeOrthographicOffCenter(
frustum.left,
frustum.right,
frustum.bottom,
frustum.top,
frustum.near,
frustum.far,
frustum._orthographicMatrix
);
}
}
Object.defineProperties(OrthographicOffCenterFrustum.prototype, {
/**
* Gets the orthographic projection matrix computed from the view frustum.
* @memberof OrthographicOffCenterFrustum.prototype
* @type {Matrix4}
* @readonly
*/
projectionMatrix: {
get: function () {
update$3(this);
return this._orthographicMatrix;
},
},
});
const getPlanesRight$1 = new Matrix2.Cartesian3();
const getPlanesNearCenter$1 = new Matrix2.Cartesian3();
const getPlanesPoint = new Matrix2.Cartesian3();
const negateScratch = new Matrix2.Cartesian3();
/**
* Creates a culling volume for this frustum.
*
* @param {Cartesian3} position The eye position.
* @param {Cartesian3} direction The view direction.
* @param {Cartesian3} up The up direction.
* @returns {CullingVolume} A culling volume at the given position and orientation.
*
* @example
* // Check if a bounding volume intersects the frustum.
* const cullingVolume = frustum.computeCullingVolume(cameraPosition, cameraDirection, cameraUp);
* const intersect = cullingVolume.computeVisibility(boundingVolume);
*/
OrthographicOffCenterFrustum.prototype.computeCullingVolume = function (
position,
direction,
up
) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(position)) {
throw new RuntimeError.DeveloperError("position is required.");
}
if (!when.defined(direction)) {
throw new RuntimeError.DeveloperError("direction is required.");
}
if (!when.defined(up)) {
throw new RuntimeError.DeveloperError("up is required.");
}
//>>includeEnd('debug');
const planes = this._cullingVolume.planes;
const t = this.top;
const b = this.bottom;
const r = this.right;
const l = this.left;
const n = this.near;
const f = this.far;
const right = Matrix2.Cartesian3.cross(direction, up, getPlanesRight$1);
Matrix2.Cartesian3.normalize(right, right);
const nearCenter = getPlanesNearCenter$1;
Matrix2.Cartesian3.multiplyByScalar(direction, n, nearCenter);
Matrix2.Cartesian3.add(position, nearCenter, nearCenter);
const point = getPlanesPoint;
// Left plane
Matrix2.Cartesian3.multiplyByScalar(right, l, point);
Matrix2.Cartesian3.add(nearCenter, point, point);
let plane = planes[0];
if (!when.defined(plane)) {
plane = planes[0] = new Matrix2.Cartesian4();
}
plane.x = right.x;
plane.y = right.y;
plane.z = right.z;
plane.w = -Matrix2.Cartesian3.dot(right, point);
// Right plane
Matrix2.Cartesian3.multiplyByScalar(right, r, point);
Matrix2.Cartesian3.add(nearCenter, point, point);
plane = planes[1];
if (!when.defined(plane)) {
plane = planes[1] = new Matrix2.Cartesian4();
}
plane.x = -right.x;
plane.y = -right.y;
plane.z = -right.z;
plane.w = -Matrix2.Cartesian3.dot(Matrix2.Cartesian3.negate(right, negateScratch), point);
// Bottom plane
Matrix2.Cartesian3.multiplyByScalar(up, b, point);
Matrix2.Cartesian3.add(nearCenter, point, point);
plane = planes[2];
if (!when.defined(plane)) {
plane = planes[2] = new Matrix2.Cartesian4();
}
plane.x = up.x;
plane.y = up.y;
plane.z = up.z;
plane.w = -Matrix2.Cartesian3.dot(up, point);
// Top plane
Matrix2.Cartesian3.multiplyByScalar(up, t, point);
Matrix2.Cartesian3.add(nearCenter, point, point);
plane = planes[3];
if (!when.defined(plane)) {
plane = planes[3] = new Matrix2.Cartesian4();
}
plane.x = -up.x;
plane.y = -up.y;
plane.z = -up.z;
plane.w = -Matrix2.Cartesian3.dot(Matrix2.Cartesian3.negate(up, negateScratch), point);
// Near plane
plane = planes[4];
if (!when.defined(plane)) {
plane = planes[4] = new Matrix2.Cartesian4();
}
plane.x = direction.x;
plane.y = direction.y;
plane.z = direction.z;
plane.w = -Matrix2.Cartesian3.dot(direction, nearCenter);
// Far plane
Matrix2.Cartesian3.multiplyByScalar(direction, f, point);
Matrix2.Cartesian3.add(position, point, point);
plane = planes[5];
if (!when.defined(plane)) {
plane = planes[5] = new Matrix2.Cartesian4();
}
plane.x = -direction.x;
plane.y = -direction.y;
plane.z = -direction.z;
plane.w = -Matrix2.Cartesian3.dot(Matrix2.Cartesian3.negate(direction, negateScratch), point);
return this._cullingVolume;
};
/**
* Returns the pixel's width and height in meters.
*
* @param {Number} drawingBufferWidth The width of the drawing buffer.
* @param {Number} drawingBufferHeight The height of the drawing buffer.
* @param {Number} distance The distance to the near plane in meters.
* @param {Number} pixelRatio The scaling factor from pixel space to coordinate space.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new instance of {@link Cartesian2} with the pixel's width and height in the x and y properties, respectively.
*
* @exception {DeveloperError} drawingBufferWidth must be greater than zero.
* @exception {DeveloperError} drawingBufferHeight must be greater than zero.
* @exception {DeveloperError} pixelRatio must be greater than zero.
*
* @example
* // Example 1
* // Get the width and height of a pixel.
* const pixelSize = camera.frustum.getPixelDimensions(scene.drawingBufferWidth, scene.drawingBufferHeight, 0.0, scene.pixelRatio, new Cesium.Cartesian2());
*/
OrthographicOffCenterFrustum.prototype.getPixelDimensions = function (
drawingBufferWidth,
drawingBufferHeight,
distance,
pixelRatio,
result
) {
update$3(this);
//>>includeStart('debug', pragmas.debug);
if (!when.defined(drawingBufferWidth) || !when.defined(drawingBufferHeight)) {
throw new RuntimeError.DeveloperError(
"Both drawingBufferWidth and drawingBufferHeight are required."
);
}
if (drawingBufferWidth <= 0) {
throw new RuntimeError.DeveloperError("drawingBufferWidth must be greater than zero.");
}
if (drawingBufferHeight <= 0) {
throw new RuntimeError.DeveloperError("drawingBufferHeight must be greater than zero.");
}
if (!when.defined(distance)) {
throw new RuntimeError.DeveloperError("distance is required.");
}
if (!when.defined(pixelRatio)) {
throw new RuntimeError.DeveloperError("pixelRatio is required.");
}
if (pixelRatio <= 0) {
throw new RuntimeError.DeveloperError("pixelRatio must be greater than zero.");
}
if (!when.defined(result)) {
throw new RuntimeError.DeveloperError("A result object is required.");
}
//>>includeEnd('debug');
const frustumWidth = this.right - this.left;
const frustumHeight = this.top - this.bottom;
const pixelWidth = (pixelRatio * frustumWidth) / drawingBufferWidth;
const pixelHeight = (pixelRatio * frustumHeight) / drawingBufferHeight;
result.x = pixelWidth;
result.y = pixelHeight;
return result;
};
/**
* Returns a duplicate of a OrthographicOffCenterFrustum instance.
*
* @param {OrthographicOffCenterFrustum} [result] The object onto which to store the result.
* @returns {OrthographicOffCenterFrustum} The modified result parameter or a new OrthographicOffCenterFrustum instance if one was not provided.
*/
OrthographicOffCenterFrustum.prototype.clone = function (result) {
if (!when.defined(result)) {
result = new OrthographicOffCenterFrustum();
}
result.left = this.left;
result.right = this.right;
result.top = this.top;
result.bottom = this.bottom;
result.near = this.near;
result.far = this.far;
// force update of clone to compute matrices
result._left = undefined;
result._right = undefined;
result._top = undefined;
result._bottom = undefined;
result._near = undefined;
result._far = undefined;
return result;
};
/**
* Compares the provided OrthographicOffCenterFrustum componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {OrthographicOffCenterFrustum} [other] The right hand side OrthographicOffCenterFrustum.
* @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
*/
OrthographicOffCenterFrustum.prototype.equals = function (other) {
return (
when.defined(other) &&
other instanceof OrthographicOffCenterFrustum &&
this.right === other.right &&
this.left === other.left &&
this.top === other.top &&
this.bottom === other.bottom &&
this.near === other.near &&
this.far === other.far
);
};
/**
* Compares the provided OrthographicOffCenterFrustum componentwise and returns
* <code>true</code> if they pass an absolute or relative tolerance test,
* <code>false</code> otherwise.
*
* @param {OrthographicOffCenterFrustum} other The right hand side OrthographicOffCenterFrustum.
* @param {Number} relativeEpsilon The relative epsilon tolerance to use for equality testing.
* @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
* @returns {Boolean} <code>true</code> if this and other are within the provided epsilon, <code>false</code> otherwise.
*/
OrthographicOffCenterFrustum.prototype.equalsEpsilon = function (
other,
relativeEpsilon,
absoluteEpsilon
) {
return (
other === this ||
(when.defined(other) &&
other instanceof OrthographicOffCenterFrustum &&
ComponentDatatype.CesiumMath.equalsEpsilon(
this.right,
other.right,
relativeEpsilon,
absoluteEpsilon
) &&
ComponentDatatype.CesiumMath.equalsEpsilon(
this.left,
other.left,
relativeEpsilon,
absoluteEpsilon
) &&
ComponentDatatype.CesiumMath.equalsEpsilon(
this.top,
other.top,
relativeEpsilon,
absoluteEpsilon
) &&
ComponentDatatype.CesiumMath.equalsEpsilon(
this.bottom,
other.bottom,
relativeEpsilon,
absoluteEpsilon
) &&
ComponentDatatype.CesiumMath.equalsEpsilon(
this.near,
other.near,
relativeEpsilon,
absoluteEpsilon
) &&
ComponentDatatype.CesiumMath.equalsEpsilon(
this.far,
other.far,
relativeEpsilon,
absoluteEpsilon
))
);
};
/**
* The viewing frustum is defined by 6 planes.
* Each plane is represented by a {@link Cartesian4} object, where the x, y, and z components
* define the unit vector normal to the plane, and the w component is the distance of the
* plane from the origin/camera position.
*
* @alias OrthographicFrustum
* @constructor
*
* @param {Object} [options] An object with the following properties:
* @param {Number} [options.width] The width of the frustum in meters.
* @param {Number} [options.aspectRatio] The aspect ratio of the frustum's width to it's height.
* @param {Number} [options.near=1.0] The distance of the near plane.
* @param {Number} [options.far=500000000.0] The distance of the far plane.
*
* @example
* const maxRadii = ellipsoid.maximumRadius;
*
* const frustum = new Cesium.OrthographicFrustum();
* frustum.near = 0.01 * maxRadii;
* frustum.far = 50.0 * maxRadii;
*/
function OrthographicFrustum(options) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
this._offCenterFrustum = new OrthographicOffCenterFrustum();
/**
* The horizontal width of the frustum in meters.
* @type {Number}
* @default undefined
*/
this.width = options.width;
this._width = undefined;
/**
* The aspect ratio of the frustum's width to it's height.
* @type {Number}
* @default undefined
*/
this.aspectRatio = options.aspectRatio;
this._aspectRatio = undefined;
/**
* The distance of the near plane.
* @type {Number}
* @default 1.0
*/
this.near = when.defaultValue(options.near, 1.0);
this._near = this.near;
/**
* The distance of the far plane.
* @type {Number}
* @default 500000000.0;
*/
this.far = when.defaultValue(options.far, 500000000.0);
this._far = this.far;
}
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
OrthographicFrustum.packedLength = 4;
/**
* Stores the provided instance into the provided array.
*
* @param {OrthographicFrustum} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
OrthographicFrustum.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("value", value);
RuntimeError.Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
array[startingIndex++] = value.width;
array[startingIndex++] = value.aspectRatio;
array[startingIndex++] = value.near;
array[startingIndex] = value.far;
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {OrthographicFrustum} [result] The object into which to store the result.
* @returns {OrthographicFrustum} The modified result parameter or a new OrthographicFrustum instance if one was not provided.
*/
OrthographicFrustum.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
if (!when.defined(result)) {
result = new OrthographicFrustum();
}
result.width = array[startingIndex++];
result.aspectRatio = array[startingIndex++];
result.near = array[startingIndex++];
result.far = array[startingIndex];
return result;
};
function update$2(frustum) {
//>>includeStart('debug', pragmas.debug);
if (
!when.defined(frustum.width) ||
!when.defined(frustum.aspectRatio) ||
!when.defined(frustum.near) ||
!when.defined(frustum.far)
) {
throw new RuntimeError.DeveloperError(
"width, aspectRatio, near, or far parameters are not set."
);
}
//>>includeEnd('debug');
const f = frustum._offCenterFrustum;
if (
frustum.width !== frustum._width ||
frustum.aspectRatio !== frustum._aspectRatio ||
frustum.near !== frustum._near ||
frustum.far !== frustum._far
) {
//>>includeStart('debug', pragmas.debug);
if (frustum.aspectRatio < 0) {
throw new RuntimeError.DeveloperError("aspectRatio must be positive.");
}
if (frustum.near < 0 || frustum.near > frustum.far) {
throw new RuntimeError.DeveloperError(
"near must be greater than zero and less than far."
);
}
//>>includeEnd('debug');
frustum._aspectRatio = frustum.aspectRatio;
frustum._width = frustum.width;
frustum._near = frustum.near;
frustum._far = frustum.far;
const ratio = 1.0 / frustum.aspectRatio;
f.right = frustum.width * 0.5;
f.left = -f.right;
f.top = ratio * f.right;
f.bottom = -f.top;
f.near = frustum.near;
f.far = frustum.far;
}
}
Object.defineProperties(OrthographicFrustum.prototype, {
/**
* Gets the orthographic projection matrix computed from the view frustum.
* @memberof OrthographicFrustum.prototype
* @type {Matrix4}
* @readonly
*/
projectionMatrix: {
get: function () {
update$2(this);
return this._offCenterFrustum.projectionMatrix;
},
},
});
/**
* Creates a culling volume for this frustum.
*
* @param {Cartesian3} position The eye position.
* @param {Cartesian3} direction The view direction.
* @param {Cartesian3} up The up direction.
* @returns {CullingVolume} A culling volume at the given position and orientation.
*
* @example
* // Check if a bounding volume intersects the frustum.
* const cullingVolume = frustum.computeCullingVolume(cameraPosition, cameraDirection, cameraUp);
* const intersect = cullingVolume.computeVisibility(boundingVolume);
*/
OrthographicFrustum.prototype.computeCullingVolume = function (
position,
direction,
up
) {
update$2(this);
return this._offCenterFrustum.computeCullingVolume(position, direction, up);
};
/**
* Returns the pixel's width and height in meters.
*
* @param {Number} drawingBufferWidth The width of the drawing buffer.
* @param {Number} drawingBufferHeight The height of the drawing buffer.
* @param {Number} distance The distance to the near plane in meters.
* @param {Number} pixelRatio The scaling factor from pixel space to coordinate space.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new instance of {@link Cartesian2} with the pixel's width and height in the x and y properties, respectively.
*
* @exception {DeveloperError} drawingBufferWidth must be greater than zero.
* @exception {DeveloperError} drawingBufferHeight must be greater than zero.
* @exception {DeveloperError} pixelRatio must be greater than zero.
*
* @example
* // Example 1
* // Get the width and height of a pixel.
* const pixelSize = camera.frustum.getPixelDimensions(scene.drawingBufferWidth, scene.drawingBufferHeight, 0.0, scene.pixelRatio, new Cesium.Cartesian2());
*/
OrthographicFrustum.prototype.getPixelDimensions = function (
drawingBufferWidth,
drawingBufferHeight,
distance,
pixelRatio,
result
) {
update$2(this);
return this._offCenterFrustum.getPixelDimensions(
drawingBufferWidth,
drawingBufferHeight,
distance,
pixelRatio,
result
);
};
/**
* Returns a duplicate of a OrthographicFrustum instance.
*
* @param {OrthographicFrustum} [result] The object onto which to store the result.
* @returns {OrthographicFrustum} The modified result parameter or a new OrthographicFrustum instance if one was not provided.
*/
OrthographicFrustum.prototype.clone = function (result) {
if (!when.defined(result)) {
result = new OrthographicFrustum();
}
result.aspectRatio = this.aspectRatio;
result.width = this.width;
result.near = this.near;
result.far = this.far;
// force update of clone to compute matrices
result._aspectRatio = undefined;
result._width = undefined;
result._near = undefined;
result._far = undefined;
this._offCenterFrustum.clone(result._offCenterFrustum);
return result;
};
/**
* Compares the provided OrthographicFrustum componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {OrthographicFrustum} [other] The right hand side OrthographicFrustum.
* @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
*/
OrthographicFrustum.prototype.equals = function (other) {
if (!when.defined(other) || !(other instanceof OrthographicFrustum)) {
return false;
}
update$2(this);
update$2(other);
return (
this.width === other.width &&
this.aspectRatio === other.aspectRatio &&
this._offCenterFrustum.equals(other._offCenterFrustum)
);
};
/**
* Compares the provided OrthographicFrustum componentwise and returns
* <code>true</code> if they pass an absolute or relative tolerance test,
* <code>false</code> otherwise.
*
* @param {OrthographicFrustum} other The right hand side OrthographicFrustum.
* @param {Number} relativeEpsilon The relative epsilon tolerance to use for equality testing.
* @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
* @returns {Boolean} <code>true</code> if this and other are within the provided epsilon, <code>false</code> otherwise.
*/
OrthographicFrustum.prototype.equalsEpsilon = function (
other,
relativeEpsilon,
absoluteEpsilon
) {
if (!when.defined(other) || !(other instanceof OrthographicFrustum)) {
return false;
}
update$2(this);
update$2(other);
return (
ComponentDatatype.CesiumMath.equalsEpsilon(
this.width,
other.width,
relativeEpsilon,
absoluteEpsilon
) &&
ComponentDatatype.CesiumMath.equalsEpsilon(
this.aspectRatio,
other.aspectRatio,
relativeEpsilon,
absoluteEpsilon
) &&
this._offCenterFrustum.equalsEpsilon(
other._offCenterFrustum,
relativeEpsilon,
absoluteEpsilon
)
);
};
/**
* The viewing frustum is defined by 6 planes.
* Each plane is represented by a {@link Cartesian4} object, where the x, y, and z components
* define the unit vector normal to the plane, and the w component is the distance of the
* plane from the origin/camera position.
*
* @alias PerspectiveOffCenterFrustum
* @constructor
*
* @param {Object} [options] An object with the following properties:
* @param {Number} [options.left] The left clipping plane distance.
* @param {Number} [options.right] The right clipping plane distance.
* @param {Number} [options.top] The top clipping plane distance.
* @param {Number} [options.bottom] The bottom clipping plane distance.
* @param {Number} [options.near=1.0] The near clipping plane distance.
* @param {Number} [options.far=500000000.0] The far clipping plane distance.
*
* @example
* const frustum = new Cesium.PerspectiveOffCenterFrustum({
* left : -1.0,
* right : 1.0,
* top : 1.0,
* bottom : -1.0,
* near : 1.0,
* far : 100.0
* });
*
* @see PerspectiveFrustum
*/
function PerspectiveOffCenterFrustum(options) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
/**
* Defines the left clipping plane.
* @type {Number}
* @default undefined
*/
this.left = options.left;
this._left = undefined;
/**
* Defines the right clipping plane.
* @type {Number}
* @default undefined
*/
this.right = options.right;
this._right = undefined;
/**
* Defines the top clipping plane.
* @type {Number}
* @default undefined
*/
this.top = options.top;
this._top = undefined;
/**
* Defines the bottom clipping plane.
* @type {Number}
* @default undefined
*/
this.bottom = options.bottom;
this._bottom = undefined;
/**
* The distance of the near plane.
* @type {Number}
* @default 1.0
*/
this.near = when.defaultValue(options.near, 1.0);
this._near = this.near;
/**
* The distance of the far plane.
* @type {Number}
* @default 500000000.0
*/
this.far = when.defaultValue(options.far, 500000000.0);
this._far = this.far;
this._cullingVolume = new CullingVolume();
this._perspectiveMatrix = new Matrix2.Matrix4();
this._infinitePerspective = new Matrix2.Matrix4();
}
function update$1(frustum) {
//>>includeStart('debug', pragmas.debug);
if (
!when.defined(frustum.right) ||
!when.defined(frustum.left) ||
!when.defined(frustum.top) ||
!when.defined(frustum.bottom) ||
!when.defined(frustum.near) ||
!when.defined(frustum.far)
) {
throw new RuntimeError.DeveloperError(
"right, left, top, bottom, near, or far parameters are not set."
);
}
//>>includeEnd('debug');
const t = frustum.top;
const b = frustum.bottom;
const r = frustum.right;
const l = frustum.left;
const n = frustum.near;
const f = frustum.far;
if (
t !== frustum._top ||
b !== frustum._bottom ||
l !== frustum._left ||
r !== frustum._right ||
n !== frustum._near ||
f !== frustum._far
) {
//>>includeStart('debug', pragmas.debug);
if (frustum.near <= 0 || frustum.near > frustum.far) {
throw new RuntimeError.DeveloperError(
"near must be greater than zero and less than far."
);
}
//>>includeEnd('debug');
frustum._left = l;
frustum._right = r;
frustum._top = t;
frustum._bottom = b;
frustum._near = n;
frustum._far = f;
frustum._perspectiveMatrix = Matrix2.Matrix4.computePerspectiveOffCenter(
l,
r,
b,
t,
n,
f,
frustum._perspectiveMatrix
);
frustum._infinitePerspective = Matrix2.Matrix4.computeInfinitePerspectiveOffCenter(
l,
r,
b,
t,
n,
frustum._infinitePerspective
);
}
}
Object.defineProperties(PerspectiveOffCenterFrustum.prototype, {
/**
* Gets the perspective projection matrix computed from the view frustum.
* @memberof PerspectiveOffCenterFrustum.prototype
* @type {Matrix4}
* @readonly
*
* @see PerspectiveOffCenterFrustum#infiniteProjectionMatrix
*/
projectionMatrix: {
get: function () {
update$1(this);
return this._perspectiveMatrix;
},
},
/**
* Gets the perspective projection matrix computed from the view frustum with an infinite far plane.
* @memberof PerspectiveOffCenterFrustum.prototype
* @type {Matrix4}
* @readonly
*
* @see PerspectiveOffCenterFrustum#projectionMatrix
*/
infiniteProjectionMatrix: {
get: function () {
update$1(this);
return this._infinitePerspective;
},
},
});
const getPlanesRight = new Matrix2.Cartesian3();
const getPlanesNearCenter = new Matrix2.Cartesian3();
const getPlanesFarCenter = new Matrix2.Cartesian3();
const getPlanesNormal = new Matrix2.Cartesian3();
/**
* Creates a culling volume for this frustum.
*
* @param {Cartesian3} position The eye position.
* @param {Cartesian3} direction The view direction.
* @param {Cartesian3} up The up direction.
* @returns {CullingVolume} A culling volume at the given position and orientation.
*
* @example
* // Check if a bounding volume intersects the frustum.
* const cullingVolume = frustum.computeCullingVolume(cameraPosition, cameraDirection, cameraUp);
* const intersect = cullingVolume.computeVisibility(boundingVolume);
*/
PerspectiveOffCenterFrustum.prototype.computeCullingVolume = function (
position,
direction,
up
) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(position)) {
throw new RuntimeError.DeveloperError("position is required.");
}
if (!when.defined(direction)) {
throw new RuntimeError.DeveloperError("direction is required.");
}
if (!when.defined(up)) {
throw new RuntimeError.DeveloperError("up is required.");
}
//>>includeEnd('debug');
const planes = this._cullingVolume.planes;
const t = this.top;
const b = this.bottom;
const r = this.right;
const l = this.left;
const n = this.near;
const f = this.far;
const right = Matrix2.Cartesian3.cross(direction, up, getPlanesRight);
const nearCenter = getPlanesNearCenter;
Matrix2.Cartesian3.multiplyByScalar(direction, n, nearCenter);
Matrix2.Cartesian3.add(position, nearCenter, nearCenter);
const farCenter = getPlanesFarCenter;
Matrix2.Cartesian3.multiplyByScalar(direction, f, farCenter);
Matrix2.Cartesian3.add(position, farCenter, farCenter);
const normal = getPlanesNormal;
//Left plane computation
Matrix2.Cartesian3.multiplyByScalar(right, l, normal);
Matrix2.Cartesian3.add(nearCenter, normal, normal);
Matrix2.Cartesian3.subtract(normal, position, normal);
Matrix2.Cartesian3.normalize(normal, normal);
Matrix2.Cartesian3.cross(normal, up, normal);
Matrix2.Cartesian3.normalize(normal, normal);
let plane = planes[0];
if (!when.defined(plane)) {
plane = planes[0] = new Matrix2.Cartesian4();
}
plane.x = normal.x;
plane.y = normal.y;
plane.z = normal.z;
plane.w = -Matrix2.Cartesian3.dot(normal, position);
//Right plane computation
Matrix2.Cartesian3.multiplyByScalar(right, r, normal);
Matrix2.Cartesian3.add(nearCenter, normal, normal);
Matrix2.Cartesian3.subtract(normal, position, normal);
Matrix2.Cartesian3.cross(up, normal, normal);
Matrix2.Cartesian3.normalize(normal, normal);
plane = planes[1];
if (!when.defined(plane)) {
plane = planes[1] = new Matrix2.Cartesian4();
}
plane.x = normal.x;
plane.y = normal.y;
plane.z = normal.z;
plane.w = -Matrix2.Cartesian3.dot(normal, position);
//Bottom plane computation
Matrix2.Cartesian3.multiplyByScalar(up, b, normal);
Matrix2.Cartesian3.add(nearCenter, normal, normal);
Matrix2.Cartesian3.subtract(normal, position, normal);
Matrix2.Cartesian3.cross(right, normal, normal);
Matrix2.Cartesian3.normalize(normal, normal);
plane = planes[2];
if (!when.defined(plane)) {
plane = planes[2] = new Matrix2.Cartesian4();
}
plane.x = normal.x;
plane.y = normal.y;
plane.z = normal.z;
plane.w = -Matrix2.Cartesian3.dot(normal, position);
//Top plane computation
Matrix2.Cartesian3.multiplyByScalar(up, t, normal);
Matrix2.Cartesian3.add(nearCenter, normal, normal);
Matrix2.Cartesian3.subtract(normal, position, normal);
Matrix2.Cartesian3.cross(normal, right, normal);
Matrix2.Cartesian3.normalize(normal, normal);
plane = planes[3];
if (!when.defined(plane)) {
plane = planes[3] = new Matrix2.Cartesian4();
}
plane.x = normal.x;
plane.y = normal.y;
plane.z = normal.z;
plane.w = -Matrix2.Cartesian3.dot(normal, position);
//Near plane computation
plane = planes[4];
if (!when.defined(plane)) {
plane = planes[4] = new Matrix2.Cartesian4();
}
plane.x = direction.x;
plane.y = direction.y;
plane.z = direction.z;
plane.w = -Matrix2.Cartesian3.dot(direction, nearCenter);
//Far plane computation
Matrix2.Cartesian3.negate(direction, normal);
plane = planes[5];
if (!when.defined(plane)) {
plane = planes[5] = new Matrix2.Cartesian4();
}
plane.x = normal.x;
plane.y = normal.y;
plane.z = normal.z;
plane.w = -Matrix2.Cartesian3.dot(normal, farCenter);
return this._cullingVolume;
};
/**
* Returns the pixel's width and height in meters.
*
* @param {Number} drawingBufferWidth The width of the drawing buffer.
* @param {Number} drawingBufferHeight The height of the drawing buffer.
* @param {Number} distance The distance to the near plane in meters.
* @param {Number} pixelRatio The scaling factor from pixel space to coordinate space.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new instance of {@link Cartesian2} with the pixel's width and height in the x and y properties, respectively.
*
* @exception {DeveloperError} drawingBufferWidth must be greater than zero.
* @exception {DeveloperError} drawingBufferHeight must be greater than zero.
* @exception {DeveloperError} pixelRatio must be greater than zero.
*
* @example
* // Example 1
* // Get the width and height of a pixel.
* const pixelSize = camera.frustum.getPixelDimensions(scene.drawingBufferWidth, scene.drawingBufferHeight, 1.0, scene.pixelRatio, new Cesium.Cartesian2());
*
* @example
* // Example 2
* // Get the width and height of a pixel if the near plane was set to 'distance'.
* // For example, get the size of a pixel of an image on a billboard.
* const position = camera.position;
* const direction = camera.direction;
* const toCenter = Cesium.Cartesian3.subtract(primitive.boundingVolume.center, position, new Cesium.Cartesian3()); // vector from camera to a primitive
* const toCenterProj = Cesium.Cartesian3.multiplyByScalar(direction, Cesium.Cartesian3.dot(direction, toCenter), new Cesium.Cartesian3()); // project vector onto camera direction vector
* const distance = Cesium.Cartesian3.magnitude(toCenterProj);
* const pixelSize = camera.frustum.getPixelDimensions(scene.drawingBufferWidth, scene.drawingBufferHeight, distance, scene.pixelRatio, new Cesium.Cartesian2());
*/
PerspectiveOffCenterFrustum.prototype.getPixelDimensions = function (
drawingBufferWidth,
drawingBufferHeight,
distance,
pixelRatio,
result
) {
update$1(this);
//>>includeStart('debug', pragmas.debug);
if (!when.defined(drawingBufferWidth) || !when.defined(drawingBufferHeight)) {
throw new RuntimeError.DeveloperError(
"Both drawingBufferWidth and drawingBufferHeight are required."
);
}
if (drawingBufferWidth <= 0) {
throw new RuntimeError.DeveloperError("drawingBufferWidth must be greater than zero.");
}
if (drawingBufferHeight <= 0) {
throw new RuntimeError.DeveloperError("drawingBufferHeight must be greater than zero.");
}
if (!when.defined(distance)) {
throw new RuntimeError.DeveloperError("distance is required.");
}
if (!when.defined(pixelRatio)) {
throw new RuntimeError.DeveloperError("pixelRatio is required");
}
if (pixelRatio <= 0) {
throw new RuntimeError.DeveloperError("pixelRatio must be greater than zero.");
}
if (!when.defined(result)) {
throw new RuntimeError.DeveloperError("A result object is required.");
}
//>>includeEnd('debug');
const inverseNear = 1.0 / this.near;
let tanTheta = this.top * inverseNear;
const pixelHeight =
(2.0 * pixelRatio * distance * tanTheta) / drawingBufferHeight;
tanTheta = this.right * inverseNear;
const pixelWidth =
(2.0 * pixelRatio * distance * tanTheta) / drawingBufferWidth;
result.x = pixelWidth;
result.y = pixelHeight;
return result;
};
/**
* Returns a duplicate of a PerspectiveOffCenterFrustum instance.
*
* @param {PerspectiveOffCenterFrustum} [result] The object onto which to store the result.
* @returns {PerspectiveOffCenterFrustum} The modified result parameter or a new PerspectiveFrustum instance if one was not provided.
*/
PerspectiveOffCenterFrustum.prototype.clone = function (result) {
if (!when.defined(result)) {
result = new PerspectiveOffCenterFrustum();
}
result.right = this.right;
result.left = this.left;
result.top = this.top;
result.bottom = this.bottom;
result.near = this.near;
result.far = this.far;
// force update of clone to compute matrices
result._left = undefined;
result._right = undefined;
result._top = undefined;
result._bottom = undefined;
result._near = undefined;
result._far = undefined;
return result;
};
/**
* Compares the provided PerspectiveOffCenterFrustum componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {PerspectiveOffCenterFrustum} [other] The right hand side PerspectiveOffCenterFrustum.
* @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
*/
PerspectiveOffCenterFrustum.prototype.equals = function (other) {
return (
when.defined(other) &&
other instanceof PerspectiveOffCenterFrustum &&
this.right === other.right &&
this.left === other.left &&
this.top === other.top &&
this.bottom === other.bottom &&
this.near === other.near &&
this.far === other.far
);
};
/**
* Compares the provided PerspectiveOffCenterFrustum componentwise and returns
* <code>true</code> if they pass an absolute or relative tolerance test,
* <code>false</code> otherwise.
*
* @param {PerspectiveOffCenterFrustum} other The right hand side PerspectiveOffCenterFrustum.
* @param {Number} relativeEpsilon The relative epsilon tolerance to use for equality testing.
* @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
* @returns {Boolean} <code>true</code> if this and other are within the provided epsilon, <code>false</code> otherwise.
*/
PerspectiveOffCenterFrustum.prototype.equalsEpsilon = function (
other,
relativeEpsilon,
absoluteEpsilon
) {
return (
other === this ||
(when.defined(other) &&
other instanceof PerspectiveOffCenterFrustum &&
ComponentDatatype.CesiumMath.equalsEpsilon(
this.right,
other.right,
relativeEpsilon,
absoluteEpsilon
) &&
ComponentDatatype.CesiumMath.equalsEpsilon(
this.left,
other.left,
relativeEpsilon,
absoluteEpsilon
) &&
ComponentDatatype.CesiumMath.equalsEpsilon(
this.top,
other.top,
relativeEpsilon,
absoluteEpsilon
) &&
ComponentDatatype.CesiumMath.equalsEpsilon(
this.bottom,
other.bottom,
relativeEpsilon,
absoluteEpsilon
) &&
ComponentDatatype.CesiumMath.equalsEpsilon(
this.near,
other.near,
relativeEpsilon,
absoluteEpsilon
) &&
ComponentDatatype.CesiumMath.equalsEpsilon(
this.far,
other.far,
relativeEpsilon,
absoluteEpsilon
))
);
};
/**
* The viewing frustum is defined by 6 planes.
* Each plane is represented by a {@link Cartesian4} object, where the x, y, and z components
* define the unit vector normal to the plane, and the w component is the distance of the
* plane from the origin/camera position.
*
* @alias PerspectiveFrustum
* @constructor
*
* @param {Object} [options] An object with the following properties:
* @param {Number} [options.fov] The angle of the field of view (FOV), in radians.
* @param {Number} [options.aspectRatio] The aspect ratio of the frustum's width to it's height.
* @param {Number} [options.near=1.0] The distance of the near plane.
* @param {Number} [options.far=500000000.0] The distance of the far plane.
* @param {Number} [options.xOffset=0.0] The offset in the x direction.
* @param {Number} [options.yOffset=0.0] The offset in the y direction.
*
* @example
* const frustum = new Cesium.PerspectiveFrustum({
* fov : Cesium.Math.PI_OVER_THREE,
* aspectRatio : canvas.clientWidth / canvas.clientHeight
* near : 1.0,
* far : 1000.0
* });
*
* @see PerspectiveOffCenterFrustum
*/
function PerspectiveFrustum(options) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
this._offCenterFrustum = new PerspectiveOffCenterFrustum();
/**
* The angle of the field of view (FOV), in radians. This angle will be used
* as the horizontal FOV if the width is greater than the height, otherwise
* it will be the vertical FOV.
* @type {Number}
* @default undefined
*/
this.fov = options.fov;
this._fov = undefined;
this._fovy = undefined;
this._sseDenominator = undefined;
/**
* The aspect ratio of the frustum's width to it's height.
* @type {Number}
* @default undefined
*/
this.aspectRatio = options.aspectRatio;
this._aspectRatio = undefined;
/**
* The distance of the near plane.
* @type {Number}
* @default 1.0
*/
this.near = when.defaultValue(options.near, 1.0);
this._near = this.near;
/**
* The distance of the far plane.
* @type {Number}
* @default 500000000.0
*/
this.far = when.defaultValue(options.far, 500000000.0);
this._far = this.far;
/**
* Offsets the frustum in the x direction.
* @type {Number}
* @default 0.0
*/
this.xOffset = when.defaultValue(options.xOffset, 0.0);
this._xOffset = this.xOffset;
/**
* Offsets the frustum in the y direction.
* @type {Number}
* @default 0.0
*/
this.yOffset = when.defaultValue(options.yOffset, 0.0);
this._yOffset = this.yOffset;
}
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
PerspectiveFrustum.packedLength = 6;
/**
* Stores the provided instance into the provided array.
*
* @param {PerspectiveFrustum} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
PerspectiveFrustum.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("value", value);
RuntimeError.Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
array[startingIndex++] = value.fov;
array[startingIndex++] = value.aspectRatio;
array[startingIndex++] = value.near;
array[startingIndex++] = value.far;
array[startingIndex++] = value.xOffset;
array[startingIndex] = value.yOffset;
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {PerspectiveFrustum} [result] The object into which to store the result.
* @returns {PerspectiveFrustum} The modified result parameter or a new PerspectiveFrustum instance if one was not provided.
*/
PerspectiveFrustum.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
if (!when.defined(result)) {
result = new PerspectiveFrustum();
}
result.fov = array[startingIndex++];
result.aspectRatio = array[startingIndex++];
result.near = array[startingIndex++];
result.far = array[startingIndex++];
result.xOffset = array[startingIndex++];
result.yOffset = array[startingIndex];
return result;
};
function update(frustum) {
//>>includeStart('debug', pragmas.debug);
if (
!when.defined(frustum.fov) ||
!when.defined(frustum.aspectRatio) ||
!when.defined(frustum.near) ||
!when.defined(frustum.far)
) {
throw new RuntimeError.DeveloperError(
"fov, aspectRatio, near, or far parameters are not set."
);
}
//>>includeEnd('debug');
const f = frustum._offCenterFrustum;
if (
frustum.fov !== frustum._fov ||
frustum.aspectRatio !== frustum._aspectRatio ||
frustum.near !== frustum._near ||
frustum.far !== frustum._far ||
frustum.xOffset !== frustum._xOffset ||
frustum.yOffset !== frustum._yOffset
) {
//>>includeStart('debug', pragmas.debug);
if (frustum.fov < 0 || frustum.fov >= Math.PI) {
throw new RuntimeError.DeveloperError("fov must be in the range [0, PI).");
}
if (frustum.aspectRatio < 0) {
throw new RuntimeError.DeveloperError("aspectRatio must be positive.");
}
if (frustum.near < 0 || frustum.near > frustum.far) {
throw new RuntimeError.DeveloperError(
"near must be greater than zero and less than far."
);
}
//>>includeEnd('debug');
frustum._aspectRatio = frustum.aspectRatio;
frustum._fov = frustum.fov;
frustum._fovy =
frustum.aspectRatio <= 1
? frustum.fov
: Math.atan(Math.tan(frustum.fov * 0.5) / frustum.aspectRatio) * 2.0;
frustum._near = frustum.near;
frustum._far = frustum.far;
frustum._sseDenominator = 2.0 * Math.tan(0.5 * frustum._fovy);
frustum._xOffset = frustum.xOffset;
frustum._yOffset = frustum.yOffset;
f.top = frustum.near * Math.tan(0.5 * frustum._fovy);
f.bottom = -f.top;
f.right = frustum.aspectRatio * f.top;
f.left = -f.right;
f.near = frustum.near;
f.far = frustum.far;
f.right += frustum.xOffset;
f.left += frustum.xOffset;
f.top += frustum.yOffset;
f.bottom += frustum.yOffset;
}
}
Object.defineProperties(PerspectiveFrustum.prototype, {
/**
* Gets the perspective projection matrix computed from the view frustum.
* @memberof PerspectiveFrustum.prototype
* @type {Matrix4}
* @readonly
*
* @see PerspectiveFrustum#infiniteProjectionMatrix
*/
projectionMatrix: {
get: function () {
update(this);
return this._offCenterFrustum.projectionMatrix;
},
},
/**
* The perspective projection matrix computed from the view frustum with an infinite far plane.
* @memberof PerspectiveFrustum.prototype
* @type {Matrix4}
* @readonly
*
* @see PerspectiveFrustum#projectionMatrix
*/
infiniteProjectionMatrix: {
get: function () {
update(this);
return this._offCenterFrustum.infiniteProjectionMatrix;
},
},
/**
* Gets the angle of the vertical field of view, in radians.
* @memberof PerspectiveFrustum.prototype
* @type {Number}
* @readonly
* @default undefined
*/
fovy: {
get: function () {
update(this);
return this._fovy;
},
},
/**
* @readonly
* @private
*/
sseDenominator: {
get: function () {
update(this);
return this._sseDenominator;
},
},
});
/**
* Creates a culling volume for this frustum.
*
* @param {Cartesian3} position The eye position.
* @param {Cartesian3} direction The view direction.
* @param {Cartesian3} up The up direction.
* @returns {CullingVolume} A culling volume at the given position and orientation.
*
* @example
* // Check if a bounding volume intersects the frustum.
* const cullingVolume = frustum.computeCullingVolume(cameraPosition, cameraDirection, cameraUp);
* const intersect = cullingVolume.computeVisibility(boundingVolume);
*/
PerspectiveFrustum.prototype.computeCullingVolume = function (
position,
direction,
up
) {
update(this);
return this._offCenterFrustum.computeCullingVolume(position, direction, up);
};
/**
* Returns the pixel's width and height in meters.
*
* @param {Number} drawingBufferWidth The width of the drawing buffer.
* @param {Number} drawingBufferHeight The height of the drawing buffer.
* @param {Number} distance The distance to the near plane in meters.
* @param {Number} pixelRatio The scaling factor from pixel space to coordinate space.
* @param {Cartesian2} result The object onto which to store the result.
* @returns {Cartesian2} The modified result parameter or a new instance of {@link Cartesian2} with the pixel's width and height in the x and y properties, respectively.
*
* @exception {DeveloperError} drawingBufferWidth must be greater than zero.
* @exception {DeveloperError} drawingBufferHeight must be greater than zero.
* @exception {DeveloperError} pixelRatio must be greater than zero.
*
* @example
* // Example 1
* // Get the width and height of a pixel.
* const pixelSize = camera.frustum.getPixelDimensions(scene.drawingBufferWidth, scene.drawingBufferHeight, 1.0, scene.pixelRatio, new Cesium.Cartesian2());
*
* @example
* // Example 2
* // Get the width and height of a pixel if the near plane was set to 'distance'.
* // For example, get the size of a pixel of an image on a billboard.
* const position = camera.position;
* const direction = camera.direction;
* const toCenter = Cesium.Cartesian3.subtract(primitive.boundingVolume.center, position, new Cesium.Cartesian3()); // vector from camera to a primitive
* const toCenterProj = Cesium.Cartesian3.multiplyByScalar(direction, Cesium.Cartesian3.dot(direction, toCenter), new Cesium.Cartesian3()); // project vector onto camera direction vector
* const distance = Cesium.Cartesian3.magnitude(toCenterProj);
* const pixelSize = camera.frustum.getPixelDimensions(scene.drawingBufferWidth, scene.drawingBufferHeight, distance, scene.pixelRatio, new Cesium.Cartesian2());
*/
PerspectiveFrustum.prototype.getPixelDimensions = function (
drawingBufferWidth,
drawingBufferHeight,
distance,
pixelRatio,
result
) {
update(this);
return this._offCenterFrustum.getPixelDimensions(
drawingBufferWidth,
drawingBufferHeight,
distance,
pixelRatio,
result
);
};
/**
* Returns a duplicate of a PerspectiveFrustum instance.
*
* @param {PerspectiveFrustum} [result] The object onto which to store the result.
* @returns {PerspectiveFrustum} The modified result parameter or a new PerspectiveFrustum instance if one was not provided.
*/
PerspectiveFrustum.prototype.clone = function (result) {
if (!when.defined(result)) {
result = new PerspectiveFrustum();
}
result.aspectRatio = this.aspectRatio;
result.fov = this.fov;
result.near = this.near;
result.far = this.far;
// force update of clone to compute matrices
result._aspectRatio = undefined;
result._fov = undefined;
result._near = undefined;
result._far = undefined;
this._offCenterFrustum.clone(result._offCenterFrustum);
return result;
};
/**
* Compares the provided PerspectiveFrustum componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {PerspectiveFrustum} [other] The right hand side PerspectiveFrustum.
* @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
*/
PerspectiveFrustum.prototype.equals = function (other) {
if (!when.defined(other) || !(other instanceof PerspectiveFrustum)) {
return false;
}
update(this);
update(other);
return (
this.fov === other.fov &&
this.aspectRatio === other.aspectRatio &&
this._offCenterFrustum.equals(other._offCenterFrustum)
);
};
/**
* Compares the provided PerspectiveFrustum componentwise and returns
* <code>true</code> if they pass an absolute or relative tolerance test,
* <code>false</code> otherwise.
*
* @param {PerspectiveFrustum} other The right hand side PerspectiveFrustum.
* @param {Number} relativeEpsilon The relative epsilon tolerance to use for equality testing.
* @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
* @returns {Boolean} <code>true</code> if this and other are within the provided epsilon, <code>false</code> otherwise.
*/
PerspectiveFrustum.prototype.equalsEpsilon = function (
other,
relativeEpsilon,
absoluteEpsilon
) {
if (!when.defined(other) || !(other instanceof PerspectiveFrustum)) {
return false;
}
update(this);
update(other);
return (
ComponentDatatype.CesiumMath.equalsEpsilon(
this.fov,
other.fov,
relativeEpsilon,
absoluteEpsilon
) &&
ComponentDatatype.CesiumMath.equalsEpsilon(
this.aspectRatio,
other.aspectRatio,
relativeEpsilon,
absoluteEpsilon
) &&
this._offCenterFrustum.equalsEpsilon(
other._offCenterFrustum,
relativeEpsilon,
absoluteEpsilon
)
);
};
const PERSPECTIVE = 0;
const ORTHOGRAPHIC = 1;
/**
* Describes a frustum at the given the origin and orientation.
*
* @alias FrustumGeometry
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {PerspectiveFrustum|OrthographicFrustum} options.frustum The frustum.
* @param {Cartesian3} options.origin The origin of the frustum.
* @param {Quaternion} options.orientation The orientation of the frustum.
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
*/
function FrustumGeometry(options) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("options", options);
RuntimeError.Check.typeOf.object("options.frustum", options.frustum);
RuntimeError.Check.typeOf.object("options.origin", options.origin);
RuntimeError.Check.typeOf.object("options.orientation", options.orientation);
//>>includeEnd('debug');
const frustum = options.frustum;
const orientation = options.orientation;
const origin = options.origin;
const vertexFormat = when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT);
// This is private because it is used by DebugCameraPrimitive to draw a multi-frustum by
// creating multiple FrustumGeometrys. This way the near plane of one frustum doesn't overlap
// the far plane of another.
const drawNearPlane = when.defaultValue(options._drawNearPlane, true);
let frustumType;
let frustumPackedLength;
if (frustum instanceof PerspectiveFrustum) {
frustumType = PERSPECTIVE;
frustumPackedLength = PerspectiveFrustum.packedLength;
} else if (frustum instanceof OrthographicFrustum) {
frustumType = ORTHOGRAPHIC;
frustumPackedLength = OrthographicFrustum.packedLength;
}
this._frustumType = frustumType;
this._frustum = frustum.clone();
this._origin = Matrix2.Cartesian3.clone(origin);
this._orientation = Transforms.Quaternion.clone(orientation);
this._drawNearPlane = drawNearPlane;
this._vertexFormat = vertexFormat;
this._workerName = "createFrustumGeometry";
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
this.packedLength =
2 +
frustumPackedLength +
Matrix2.Cartesian3.packedLength +
Transforms.Quaternion.packedLength +
VertexFormat.VertexFormat.packedLength;
}
/**
* Stores the provided instance into the provided array.
*
* @param {FrustumGeometry} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
FrustumGeometry.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("value", value);
RuntimeError.Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
const frustumType = value._frustumType;
const frustum = value._frustum;
array[startingIndex++] = frustumType;
if (frustumType === PERSPECTIVE) {
PerspectiveFrustum.pack(frustum, array, startingIndex);
startingIndex += PerspectiveFrustum.packedLength;
} else {
OrthographicFrustum.pack(frustum, array, startingIndex);
startingIndex += OrthographicFrustum.packedLength;
}
Matrix2.Cartesian3.pack(value._origin, array, startingIndex);
startingIndex += Matrix2.Cartesian3.packedLength;
Transforms.Quaternion.pack(value._orientation, array, startingIndex);
startingIndex += Transforms.Quaternion.packedLength;
VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat.VertexFormat.packedLength;
array[startingIndex] = value._drawNearPlane ? 1.0 : 0.0;
return array;
};
const scratchPackPerspective = new PerspectiveFrustum();
const scratchPackOrthographic = new OrthographicFrustum();
const scratchPackQuaternion = new Transforms.Quaternion();
const scratchPackorigin = new Matrix2.Cartesian3();
const scratchVertexFormat = new VertexFormat.VertexFormat();
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {FrustumGeometry} [result] The object into which to store the result.
*/
FrustumGeometry.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
const frustumType = array[startingIndex++];
let frustum;
if (frustumType === PERSPECTIVE) {
frustum = PerspectiveFrustum.unpack(
array,
startingIndex,
scratchPackPerspective
);
startingIndex += PerspectiveFrustum.packedLength;
} else {
frustum = OrthographicFrustum.unpack(
array,
startingIndex,
scratchPackOrthographic
);
startingIndex += OrthographicFrustum.packedLength;
}
const origin = Matrix2.Cartesian3.unpack(array, startingIndex, scratchPackorigin);
startingIndex += Matrix2.Cartesian3.packedLength;
const orientation = Transforms.Quaternion.unpack(
array,
startingIndex,
scratchPackQuaternion
);
startingIndex += Transforms.Quaternion.packedLength;
const vertexFormat = VertexFormat.VertexFormat.unpack(
array,
startingIndex,
scratchVertexFormat
);
startingIndex += VertexFormat.VertexFormat.packedLength;
const drawNearPlane = array[startingIndex] === 1.0;
if (!when.defined(result)) {
return new FrustumGeometry({
frustum: frustum,
origin: origin,
orientation: orientation,
vertexFormat: vertexFormat,
_drawNearPlane: drawNearPlane,
});
}
const frustumResult =
frustumType === result._frustumType ? result._frustum : undefined;
result._frustum = frustum.clone(frustumResult);
result._frustumType = frustumType;
result._origin = Matrix2.Cartesian3.clone(origin, result._origin);
result._orientation = Transforms.Quaternion.clone(orientation, result._orientation);
result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat);
result._drawNearPlane = drawNearPlane;
return result;
};
function getAttributes(
offset,
normals,
tangents,
bitangents,
st,
normal,
tangent,
bitangent
) {
const stOffset = (offset / 3) * 2;
for (let i = 0; i < 4; ++i) {
if (when.defined(normals)) {
normals[offset] = normal.x;
normals[offset + 1] = normal.y;
normals[offset + 2] = normal.z;
}
if (when.defined(tangents)) {
tangents[offset] = tangent.x;
tangents[offset + 1] = tangent.y;
tangents[offset + 2] = tangent.z;
}
if (when.defined(bitangents)) {
bitangents[offset] = bitangent.x;
bitangents[offset + 1] = bitangent.y;
bitangents[offset + 2] = bitangent.z;
}
offset += 3;
}
st[stOffset] = 0.0;
st[stOffset + 1] = 0.0;
st[stOffset + 2] = 1.0;
st[stOffset + 3] = 0.0;
st[stOffset + 4] = 1.0;
st[stOffset + 5] = 1.0;
st[stOffset + 6] = 0.0;
st[stOffset + 7] = 1.0;
}
const scratchRotationMatrix = new Matrix2.Matrix3();
const scratchViewMatrix = new Matrix2.Matrix4();
const scratchInverseMatrix = new Matrix2.Matrix4();
const scratchXDirection = new Matrix2.Cartesian3();
const scratchYDirection = new Matrix2.Cartesian3();
const scratchZDirection = new Matrix2.Cartesian3();
const scratchNegativeX = new Matrix2.Cartesian3();
const scratchNegativeY = new Matrix2.Cartesian3();
const scratchNegativeZ = new Matrix2.Cartesian3();
const frustumSplits = new Array(3);
const frustumCornersNDC = new Array(4);
frustumCornersNDC[0] = new Matrix2.Cartesian4(-1.0, -1.0, 1.0, 1.0);
frustumCornersNDC[1] = new Matrix2.Cartesian4(1.0, -1.0, 1.0, 1.0);
frustumCornersNDC[2] = new Matrix2.Cartesian4(1.0, 1.0, 1.0, 1.0);
frustumCornersNDC[3] = new Matrix2.Cartesian4(-1.0, 1.0, 1.0, 1.0);
const scratchFrustumCorners = new Array(4);
for (let i = 0; i < 4; ++i) {
scratchFrustumCorners[i] = new Matrix2.Cartesian4();
}
FrustumGeometry._computeNearFarPlanes = function (
origin,
orientation,
frustumType,
frustum,
positions,
xDirection,
yDirection,
zDirection
) {
const rotationMatrix = Matrix2.Matrix3.fromQuaternion(
orientation,
scratchRotationMatrix
);
let x = when.defaultValue(xDirection, scratchXDirection);
let y = when.defaultValue(yDirection, scratchYDirection);
let z = when.defaultValue(zDirection, scratchZDirection);
x = Matrix2.Matrix3.getColumn(rotationMatrix, 0, x);
y = Matrix2.Matrix3.getColumn(rotationMatrix, 1, y);
z = Matrix2.Matrix3.getColumn(rotationMatrix, 2, z);
Matrix2.Cartesian3.normalize(x, x);
Matrix2.Cartesian3.normalize(y, y);
Matrix2.Cartesian3.normalize(z, z);
Matrix2.Cartesian3.negate(x, x);
const view = Matrix2.Matrix4.computeView(origin, z, y, x, scratchViewMatrix);
let inverseView;
let inverseViewProjection;
if (frustumType === PERSPECTIVE) {
const projection = frustum.projectionMatrix;
const viewProjection = Matrix2.Matrix4.multiply(
projection,
view,
scratchInverseMatrix
);
inverseViewProjection = Matrix2.Matrix4.inverse(
viewProjection,
scratchInverseMatrix
);
} else {
inverseView = Matrix2.Matrix4.inverseTransformation(view, scratchInverseMatrix);
}
if (when.defined(inverseViewProjection)) {
frustumSplits[0] = frustum.near;
frustumSplits[1] = frustum.far;
} else {
frustumSplits[0] = 0.0;
frustumSplits[1] = frustum.near;
frustumSplits[2] = frustum.far;
}
for (let i = 0; i < 2; ++i) {
for (let j = 0; j < 4; ++j) {
let corner = Matrix2.Cartesian4.clone(
frustumCornersNDC[j],
scratchFrustumCorners[j]
);
if (!when.defined(inverseViewProjection)) {
if (when.defined(frustum._offCenterFrustum)) {
frustum = frustum._offCenterFrustum;
}
const near = frustumSplits[i];
const far = frustumSplits[i + 1];
corner.x =
(corner.x * (frustum.right - frustum.left) +
frustum.left +
frustum.right) *
0.5;
corner.y =
(corner.y * (frustum.top - frustum.bottom) +
frustum.bottom +
frustum.top) *
0.5;
corner.z = (corner.z * (near - far) - near - far) * 0.5;
corner.w = 1.0;
Matrix2.Matrix4.multiplyByVector(inverseView, corner, corner);
} else {
corner = Matrix2.Matrix4.multiplyByVector(
inverseViewProjection,
corner,
corner
);
// Reverse perspective divide
const w = 1.0 / corner.w;
Matrix2.Cartesian3.multiplyByScalar(corner, w, corner);
Matrix2.Cartesian3.subtract(corner, origin, corner);
Matrix2.Cartesian3.normalize(corner, corner);
const fac = Matrix2.Cartesian3.dot(z, corner);
Matrix2.Cartesian3.multiplyByScalar(corner, frustumSplits[i] / fac, corner);
Matrix2.Cartesian3.add(corner, origin, corner);
}
positions[12 * i + j * 3] = corner.x;
positions[12 * i + j * 3 + 1] = corner.y;
positions[12 * i + j * 3 + 2] = corner.z;
}
}
};
/**
* Computes the geometric representation of a frustum, including its vertices, indices, and a bounding sphere.
*
* @param {FrustumGeometry} frustumGeometry A description of the frustum.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
FrustumGeometry.createGeometry = function (frustumGeometry) {
const frustumType = frustumGeometry._frustumType;
const frustum = frustumGeometry._frustum;
const origin = frustumGeometry._origin;
const orientation = frustumGeometry._orientation;
const drawNearPlane = frustumGeometry._drawNearPlane;
const vertexFormat = frustumGeometry._vertexFormat;
const numberOfPlanes = drawNearPlane ? 6 : 5;
let positions = new Float64Array(3 * 4 * 6);
FrustumGeometry._computeNearFarPlanes(
origin,
orientation,
frustumType,
frustum,
positions
);
// -x plane
let offset = 3 * 4 * 2;
positions[offset] = positions[3 * 4];
positions[offset + 1] = positions[3 * 4 + 1];
positions[offset + 2] = positions[3 * 4 + 2];
positions[offset + 3] = positions[0];
positions[offset + 4] = positions[1];
positions[offset + 5] = positions[2];
positions[offset + 6] = positions[3 * 3];
positions[offset + 7] = positions[3 * 3 + 1];
positions[offset + 8] = positions[3 * 3 + 2];
positions[offset + 9] = positions[3 * 7];
positions[offset + 10] = positions[3 * 7 + 1];
positions[offset + 11] = positions[3 * 7 + 2];
// -y plane
offset += 3 * 4;
positions[offset] = positions[3 * 5];
positions[offset + 1] = positions[3 * 5 + 1];
positions[offset + 2] = positions[3 * 5 + 2];
positions[offset + 3] = positions[3];
positions[offset + 4] = positions[3 + 1];
positions[offset + 5] = positions[3 + 2];
positions[offset + 6] = positions[0];
positions[offset + 7] = positions[1];
positions[offset + 8] = positions[2];
positions[offset + 9] = positions[3 * 4];
positions[offset + 10] = positions[3 * 4 + 1];
positions[offset + 11] = positions[3 * 4 + 2];
// +x plane
offset += 3 * 4;
positions[offset] = positions[3];
positions[offset + 1] = positions[3 + 1];
positions[offset + 2] = positions[3 + 2];
positions[offset + 3] = positions[3 * 5];
positions[offset + 4] = positions[3 * 5 + 1];
positions[offset + 5] = positions[3 * 5 + 2];
positions[offset + 6] = positions[3 * 6];
positions[offset + 7] = positions[3 * 6 + 1];
positions[offset + 8] = positions[3 * 6 + 2];
positions[offset + 9] = positions[3 * 2];
positions[offset + 10] = positions[3 * 2 + 1];
positions[offset + 11] = positions[3 * 2 + 2];
// +y plane
offset += 3 * 4;
positions[offset] = positions[3 * 2];
positions[offset + 1] = positions[3 * 2 + 1];
positions[offset + 2] = positions[3 * 2 + 2];
positions[offset + 3] = positions[3 * 6];
positions[offset + 4] = positions[3 * 6 + 1];
positions[offset + 5] = positions[3 * 6 + 2];
positions[offset + 6] = positions[3 * 7];
positions[offset + 7] = positions[3 * 7 + 1];
positions[offset + 8] = positions[3 * 7 + 2];
positions[offset + 9] = positions[3 * 3];
positions[offset + 10] = positions[3 * 3 + 1];
positions[offset + 11] = positions[3 * 3 + 2];
if (!drawNearPlane) {
positions = positions.subarray(3 * 4);
}
const attributes = new GeometryAttributes.GeometryAttributes({
position: new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: positions,
}),
});
if (
when.defined(vertexFormat.normal) ||
when.defined(vertexFormat.tangent) ||
when.defined(vertexFormat.bitangent) ||
when.defined(vertexFormat.st)
) {
const normals = when.defined(vertexFormat.normal)
? new Float32Array(3 * 4 * numberOfPlanes)
: undefined;
const tangents = when.defined(vertexFormat.tangent)
? new Float32Array(3 * 4 * numberOfPlanes)
: undefined;
const bitangents = when.defined(vertexFormat.bitangent)
? new Float32Array(3 * 4 * numberOfPlanes)
: undefined;
const st = when.defined(vertexFormat.st)
? new Float32Array(2 * 4 * numberOfPlanes)
: undefined;
const x = scratchXDirection;
const y = scratchYDirection;
const z = scratchZDirection;
const negativeX = Matrix2.Cartesian3.negate(x, scratchNegativeX);
const negativeY = Matrix2.Cartesian3.negate(y, scratchNegativeY);
const negativeZ = Matrix2.Cartesian3.negate(z, scratchNegativeZ);
offset = 0;
if (drawNearPlane) {
getAttributes(offset, normals, tangents, bitangents, st, negativeZ, x, y); // near
offset += 3 * 4;
}
getAttributes(offset, normals, tangents, bitangents, st, z, negativeX, y); // far
offset += 3 * 4;
getAttributes(
offset,
normals,
tangents,
bitangents,
st,
negativeX,
negativeZ,
y
); // -x
offset += 3 * 4;
getAttributes(
offset,
normals,
tangents,
bitangents,
st,
negativeY,
negativeZ,
negativeX
); // -y
offset += 3 * 4;
getAttributes(offset, normals, tangents, bitangents, st, x, z, y); // +x
offset += 3 * 4;
getAttributes(offset, normals, tangents, bitangents, st, y, z, negativeX); // +y
if (when.defined(normals)) {
attributes.normal = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: normals,
});
}
if (when.defined(tangents)) {
attributes.tangent = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: tangents,
});
}
if (when.defined(bitangents)) {
attributes.bitangent = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: bitangents,
});
}
if (when.defined(st)) {
attributes.st = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: st,
});
}
}
const indices = new Uint16Array(6 * numberOfPlanes);
for (let i = 0; i < numberOfPlanes; ++i) {
const indexOffset = i * 6;
const index = i * 4;
indices[indexOffset] = index;
indices[indexOffset + 1] = index + 1;
indices[indexOffset + 2] = index + 2;
indices[indexOffset + 3] = index;
indices[indexOffset + 4] = index + 2;
indices[indexOffset + 5] = index + 3;
}
return new GeometryAttribute.Geometry({
attributes: attributes,
indices: indices,
primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
boundingSphere: Transforms.BoundingSphere.fromVertices(positions),
});
};
exports.FrustumGeometry = FrustumGeometry;
exports.OrthographicFrustum = OrthographicFrustum;
exports.PerspectiveFrustum = PerspectiveFrustum;
}));
//# sourceMappingURL=FrustumGeometry-a0a0f5aa.js.map