545 lines
16 KiB
JavaScript
545 lines
16 KiB
JavaScript
/**
|
|
* Cesium - https://github.com/CesiumGS/cesium
|
|
*
|
|
* Copyright 2011-2020 Cesium Contributors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* Columbus View (Pat. Pend.)
|
|
*
|
|
* Portions licensed separately.
|
|
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
|
|
*/
|
|
|
|
define(['exports', './Matrix2-265d9610', './RuntimeError-5b082e8f', './when-4bbc8319', './ComponentDatatype-aad54330'], (function (exports, Matrix2, RuntimeError, when, ComponentDatatype) { 'use strict';
|
|
|
|
function setConstants(ellipsoidGeodesic) {
|
|
const uSquared = ellipsoidGeodesic._uSquared;
|
|
const a = ellipsoidGeodesic._ellipsoid.maximumRadius;
|
|
const b = ellipsoidGeodesic._ellipsoid.minimumRadius;
|
|
const f = (a - b) / a;
|
|
|
|
const cosineHeading = Math.cos(ellipsoidGeodesic._startHeading);
|
|
const sineHeading = Math.sin(ellipsoidGeodesic._startHeading);
|
|
|
|
const tanU = (1 - f) * Math.tan(ellipsoidGeodesic._start.latitude);
|
|
|
|
const cosineU = 1.0 / Math.sqrt(1.0 + tanU * tanU);
|
|
const sineU = cosineU * tanU;
|
|
|
|
const sigma = Math.atan2(tanU, cosineHeading);
|
|
|
|
const sineAlpha = cosineU * sineHeading;
|
|
const sineSquaredAlpha = sineAlpha * sineAlpha;
|
|
|
|
const cosineSquaredAlpha = 1.0 - sineSquaredAlpha;
|
|
const cosineAlpha = Math.sqrt(cosineSquaredAlpha);
|
|
|
|
const u2Over4 = uSquared / 4.0;
|
|
const u4Over16 = u2Over4 * u2Over4;
|
|
const u6Over64 = u4Over16 * u2Over4;
|
|
const u8Over256 = u4Over16 * u4Over16;
|
|
|
|
const a0 =
|
|
1.0 +
|
|
u2Over4 -
|
|
(3.0 * u4Over16) / 4.0 +
|
|
(5.0 * u6Over64) / 4.0 -
|
|
(175.0 * u8Over256) / 64.0;
|
|
const a1 = 1.0 - u2Over4 + (15.0 * u4Over16) / 8.0 - (35.0 * u6Over64) / 8.0;
|
|
const a2 = 1.0 - 3.0 * u2Over4 + (35.0 * u4Over16) / 4.0;
|
|
const a3 = 1.0 - 5.0 * u2Over4;
|
|
|
|
const distanceRatio =
|
|
a0 * sigma -
|
|
(a1 * Math.sin(2.0 * sigma) * u2Over4) / 2.0 -
|
|
(a2 * Math.sin(4.0 * sigma) * u4Over16) / 16.0 -
|
|
(a3 * Math.sin(6.0 * sigma) * u6Over64) / 48.0 -
|
|
(Math.sin(8.0 * sigma) * 5.0 * u8Over256) / 512;
|
|
|
|
const constants = ellipsoidGeodesic._constants;
|
|
|
|
constants.a = a;
|
|
constants.b = b;
|
|
constants.f = f;
|
|
constants.cosineHeading = cosineHeading;
|
|
constants.sineHeading = sineHeading;
|
|
constants.tanU = tanU;
|
|
constants.cosineU = cosineU;
|
|
constants.sineU = sineU;
|
|
constants.sigma = sigma;
|
|
constants.sineAlpha = sineAlpha;
|
|
constants.sineSquaredAlpha = sineSquaredAlpha;
|
|
constants.cosineSquaredAlpha = cosineSquaredAlpha;
|
|
constants.cosineAlpha = cosineAlpha;
|
|
constants.u2Over4 = u2Over4;
|
|
constants.u4Over16 = u4Over16;
|
|
constants.u6Over64 = u6Over64;
|
|
constants.u8Over256 = u8Over256;
|
|
constants.a0 = a0;
|
|
constants.a1 = a1;
|
|
constants.a2 = a2;
|
|
constants.a3 = a3;
|
|
constants.distanceRatio = distanceRatio;
|
|
}
|
|
|
|
function computeC(f, cosineSquaredAlpha) {
|
|
return (
|
|
(f * cosineSquaredAlpha * (4.0 + f * (4.0 - 3.0 * cosineSquaredAlpha))) /
|
|
16.0
|
|
);
|
|
}
|
|
|
|
function computeDeltaLambda(
|
|
f,
|
|
sineAlpha,
|
|
cosineSquaredAlpha,
|
|
sigma,
|
|
sineSigma,
|
|
cosineSigma,
|
|
cosineTwiceSigmaMidpoint
|
|
) {
|
|
const C = computeC(f, cosineSquaredAlpha);
|
|
|
|
return (
|
|
(1.0 - C) *
|
|
f *
|
|
sineAlpha *
|
|
(sigma +
|
|
C *
|
|
sineSigma *
|
|
(cosineTwiceSigmaMidpoint +
|
|
C *
|
|
cosineSigma *
|
|
(2.0 * cosineTwiceSigmaMidpoint * cosineTwiceSigmaMidpoint - 1.0)))
|
|
);
|
|
}
|
|
|
|
function vincentyInverseFormula(
|
|
ellipsoidGeodesic,
|
|
major,
|
|
minor,
|
|
firstLongitude,
|
|
firstLatitude,
|
|
secondLongitude,
|
|
secondLatitude
|
|
) {
|
|
const eff = (major - minor) / major;
|
|
const l = secondLongitude - firstLongitude;
|
|
|
|
const u1 = Math.atan((1 - eff) * Math.tan(firstLatitude));
|
|
const u2 = Math.atan((1 - eff) * Math.tan(secondLatitude));
|
|
|
|
const cosineU1 = Math.cos(u1);
|
|
const sineU1 = Math.sin(u1);
|
|
const cosineU2 = Math.cos(u2);
|
|
const sineU2 = Math.sin(u2);
|
|
|
|
const cc = cosineU1 * cosineU2;
|
|
const cs = cosineU1 * sineU2;
|
|
const ss = sineU1 * sineU2;
|
|
const sc = sineU1 * cosineU2;
|
|
|
|
let lambda = l;
|
|
let lambdaDot = ComponentDatatype.CesiumMath.TWO_PI;
|
|
|
|
let cosineLambda = Math.cos(lambda);
|
|
let sineLambda = Math.sin(lambda);
|
|
|
|
let sigma;
|
|
let cosineSigma;
|
|
let sineSigma;
|
|
let cosineSquaredAlpha;
|
|
let cosineTwiceSigmaMidpoint;
|
|
|
|
do {
|
|
cosineLambda = Math.cos(lambda);
|
|
sineLambda = Math.sin(lambda);
|
|
|
|
const temp = cs - sc * cosineLambda;
|
|
sineSigma = Math.sqrt(
|
|
cosineU2 * cosineU2 * sineLambda * sineLambda + temp * temp
|
|
);
|
|
cosineSigma = ss + cc * cosineLambda;
|
|
|
|
sigma = Math.atan2(sineSigma, cosineSigma);
|
|
|
|
let sineAlpha;
|
|
|
|
if (sineSigma === 0.0) {
|
|
sineAlpha = 0.0;
|
|
cosineSquaredAlpha = 1.0;
|
|
} else {
|
|
sineAlpha = (cc * sineLambda) / sineSigma;
|
|
cosineSquaredAlpha = 1.0 - sineAlpha * sineAlpha;
|
|
}
|
|
|
|
lambdaDot = lambda;
|
|
|
|
cosineTwiceSigmaMidpoint = cosineSigma - (2.0 * ss) / cosineSquaredAlpha;
|
|
|
|
if (!isFinite(cosineTwiceSigmaMidpoint)) {
|
|
cosineTwiceSigmaMidpoint = 0.0;
|
|
}
|
|
|
|
lambda =
|
|
l +
|
|
computeDeltaLambda(
|
|
eff,
|
|
sineAlpha,
|
|
cosineSquaredAlpha,
|
|
sigma,
|
|
sineSigma,
|
|
cosineSigma,
|
|
cosineTwiceSigmaMidpoint
|
|
);
|
|
} while (Math.abs(lambda - lambdaDot) > ComponentDatatype.CesiumMath.EPSILON12);
|
|
|
|
const uSquared =
|
|
(cosineSquaredAlpha * (major * major - minor * minor)) / (minor * minor);
|
|
const A =
|
|
1.0 +
|
|
(uSquared *
|
|
(4096.0 + uSquared * (uSquared * (320.0 - 175.0 * uSquared) - 768.0))) /
|
|
16384.0;
|
|
const B =
|
|
(uSquared *
|
|
(256.0 + uSquared * (uSquared * (74.0 - 47.0 * uSquared) - 128.0))) /
|
|
1024.0;
|
|
|
|
const cosineSquaredTwiceSigmaMidpoint =
|
|
cosineTwiceSigmaMidpoint * cosineTwiceSigmaMidpoint;
|
|
const deltaSigma =
|
|
B *
|
|
sineSigma *
|
|
(cosineTwiceSigmaMidpoint +
|
|
(B *
|
|
(cosineSigma * (2.0 * cosineSquaredTwiceSigmaMidpoint - 1.0) -
|
|
(B *
|
|
cosineTwiceSigmaMidpoint *
|
|
(4.0 * sineSigma * sineSigma - 3.0) *
|
|
(4.0 * cosineSquaredTwiceSigmaMidpoint - 3.0)) /
|
|
6.0)) /
|
|
4.0);
|
|
|
|
const distance = minor * A * (sigma - deltaSigma);
|
|
|
|
const startHeading = Math.atan2(
|
|
cosineU2 * sineLambda,
|
|
cs - sc * cosineLambda
|
|
);
|
|
const endHeading = Math.atan2(cosineU1 * sineLambda, cs * cosineLambda - sc);
|
|
|
|
ellipsoidGeodesic._distance = distance;
|
|
ellipsoidGeodesic._startHeading = startHeading;
|
|
ellipsoidGeodesic._endHeading = endHeading;
|
|
ellipsoidGeodesic._uSquared = uSquared;
|
|
}
|
|
|
|
const scratchCart1 = new Matrix2.Cartesian3();
|
|
const scratchCart2 = new Matrix2.Cartesian3();
|
|
function computeProperties(ellipsoidGeodesic, start, end, ellipsoid) {
|
|
const firstCartesian = Matrix2.Cartesian3.normalize(
|
|
ellipsoid.cartographicToCartesian(start, scratchCart2),
|
|
scratchCart1
|
|
);
|
|
const lastCartesian = Matrix2.Cartesian3.normalize(
|
|
ellipsoid.cartographicToCartesian(end, scratchCart2),
|
|
scratchCart2
|
|
);
|
|
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.typeOf.number.greaterThanOrEquals(
|
|
"value",
|
|
Math.abs(
|
|
Math.abs(Matrix2.Cartesian3.angleBetween(firstCartesian, lastCartesian)) - Math.PI
|
|
),
|
|
0.0125
|
|
);
|
|
//>>includeEnd('debug');
|
|
|
|
vincentyInverseFormula(
|
|
ellipsoidGeodesic,
|
|
ellipsoid.maximumRadius,
|
|
ellipsoid.minimumRadius,
|
|
start.longitude,
|
|
start.latitude,
|
|
end.longitude,
|
|
end.latitude
|
|
);
|
|
|
|
ellipsoidGeodesic._start = Matrix2.Cartographic.clone(
|
|
start,
|
|
ellipsoidGeodesic._start
|
|
);
|
|
ellipsoidGeodesic._end = Matrix2.Cartographic.clone(end, ellipsoidGeodesic._end);
|
|
ellipsoidGeodesic._start.height = 0;
|
|
ellipsoidGeodesic._end.height = 0;
|
|
|
|
setConstants(ellipsoidGeodesic);
|
|
}
|
|
|
|
/**
|
|
* Initializes a geodesic on the ellipsoid connecting the two provided planetodetic points.
|
|
*
|
|
* @alias EllipsoidGeodesic
|
|
* @constructor
|
|
*
|
|
* @param {Cartographic} [start] The initial planetodetic point on the path.
|
|
* @param {Cartographic} [end] The final planetodetic point on the path.
|
|
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the geodesic lies.
|
|
*/
|
|
function EllipsoidGeodesic(start, end, ellipsoid) {
|
|
const e = when.defaultValue(ellipsoid, Matrix2.Ellipsoid.WGS84);
|
|
this._ellipsoid = e;
|
|
this._start = new Matrix2.Cartographic();
|
|
this._end = new Matrix2.Cartographic();
|
|
|
|
this._constants = {};
|
|
this._startHeading = undefined;
|
|
this._endHeading = undefined;
|
|
this._distance = undefined;
|
|
this._uSquared = undefined;
|
|
|
|
if (when.defined(start) && when.defined(end)) {
|
|
computeProperties(this, start, end, e);
|
|
}
|
|
}
|
|
|
|
Object.defineProperties(EllipsoidGeodesic.prototype, {
|
|
/**
|
|
* Gets the ellipsoid.
|
|
* @memberof EllipsoidGeodesic.prototype
|
|
* @type {Ellipsoid}
|
|
* @readonly
|
|
*/
|
|
ellipsoid: {
|
|
get: function () {
|
|
return this._ellipsoid;
|
|
},
|
|
},
|
|
|
|
/**
|
|
* Gets the surface distance between the start and end point
|
|
* @memberof EllipsoidGeodesic.prototype
|
|
* @type {Number}
|
|
* @readonly
|
|
*/
|
|
surfaceDistance: {
|
|
get: function () {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.defined("distance", this._distance);
|
|
//>>includeEnd('debug');
|
|
|
|
return this._distance;
|
|
},
|
|
},
|
|
|
|
/**
|
|
* Gets the initial planetodetic point on the path.
|
|
* @memberof EllipsoidGeodesic.prototype
|
|
* @type {Cartographic}
|
|
* @readonly
|
|
*/
|
|
start: {
|
|
get: function () {
|
|
return this._start;
|
|
},
|
|
},
|
|
|
|
/**
|
|
* Gets the final planetodetic point on the path.
|
|
* @memberof EllipsoidGeodesic.prototype
|
|
* @type {Cartographic}
|
|
* @readonly
|
|
*/
|
|
end: {
|
|
get: function () {
|
|
return this._end;
|
|
},
|
|
},
|
|
|
|
/**
|
|
* Gets the heading at the initial point.
|
|
* @memberof EllipsoidGeodesic.prototype
|
|
* @type {Number}
|
|
* @readonly
|
|
*/
|
|
startHeading: {
|
|
get: function () {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.defined("distance", this._distance);
|
|
//>>includeEnd('debug');
|
|
|
|
return this._startHeading;
|
|
},
|
|
},
|
|
|
|
/**
|
|
* Gets the heading at the final point.
|
|
* @memberof EllipsoidGeodesic.prototype
|
|
* @type {Number}
|
|
* @readonly
|
|
*/
|
|
endHeading: {
|
|
get: function () {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.defined("distance", this._distance);
|
|
//>>includeEnd('debug');
|
|
|
|
return this._endHeading;
|
|
},
|
|
},
|
|
});
|
|
|
|
/**
|
|
* Sets the start and end points of the geodesic
|
|
*
|
|
* @param {Cartographic} start The initial planetodetic point on the path.
|
|
* @param {Cartographic} end The final planetodetic point on the path.
|
|
*/
|
|
EllipsoidGeodesic.prototype.setEndPoints = function (start, end) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.defined("start", start);
|
|
RuntimeError.Check.defined("end", end);
|
|
//>>includeEnd('debug');
|
|
|
|
computeProperties(this, start, end, this._ellipsoid);
|
|
};
|
|
|
|
/**
|
|
* Provides the location of a point at the indicated portion along the geodesic.
|
|
*
|
|
* @param {Number} fraction The portion of the distance between the initial and final points.
|
|
* @param {Cartographic} [result] The object in which to store the result.
|
|
* @returns {Cartographic} The location of the point along the geodesic.
|
|
*/
|
|
EllipsoidGeodesic.prototype.interpolateUsingFraction = function (
|
|
fraction,
|
|
result
|
|
) {
|
|
return this.interpolateUsingSurfaceDistance(
|
|
this._distance * fraction,
|
|
result
|
|
);
|
|
};
|
|
|
|
/**
|
|
* Provides the location of a point at the indicated distance along the geodesic.
|
|
*
|
|
* @param {Number} distance The distance from the inital point to the point of interest along the geodesic
|
|
* @param {Cartographic} [result] The object in which to store the result.
|
|
* @returns {Cartographic} The location of the point along the geodesic.
|
|
*
|
|
* @exception {DeveloperError} start and end must be set before calling function interpolateUsingSurfaceDistance
|
|
*/
|
|
EllipsoidGeodesic.prototype.interpolateUsingSurfaceDistance = function (
|
|
distance,
|
|
result
|
|
) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.defined("distance", this._distance);
|
|
//>>includeEnd('debug');
|
|
|
|
const constants = this._constants;
|
|
|
|
const s = constants.distanceRatio + distance / constants.b;
|
|
|
|
const cosine2S = Math.cos(2.0 * s);
|
|
const cosine4S = Math.cos(4.0 * s);
|
|
const cosine6S = Math.cos(6.0 * s);
|
|
const sine2S = Math.sin(2.0 * s);
|
|
const sine4S = Math.sin(4.0 * s);
|
|
const sine6S = Math.sin(6.0 * s);
|
|
const sine8S = Math.sin(8.0 * s);
|
|
|
|
const s2 = s * s;
|
|
const s3 = s * s2;
|
|
|
|
const u8Over256 = constants.u8Over256;
|
|
const u2Over4 = constants.u2Over4;
|
|
const u6Over64 = constants.u6Over64;
|
|
const u4Over16 = constants.u4Over16;
|
|
let sigma =
|
|
(2.0 * s3 * u8Over256 * cosine2S) / 3.0 +
|
|
s *
|
|
(1.0 -
|
|
u2Over4 +
|
|
(7.0 * u4Over16) / 4.0 -
|
|
(15.0 * u6Over64) / 4.0 +
|
|
(579.0 * u8Over256) / 64.0 -
|
|
(u4Over16 - (15.0 * u6Over64) / 4.0 + (187.0 * u8Over256) / 16.0) *
|
|
cosine2S -
|
|
((5.0 * u6Over64) / 4.0 - (115.0 * u8Over256) / 16.0) * cosine4S -
|
|
(29.0 * u8Over256 * cosine6S) / 16.0) +
|
|
(u2Over4 / 2.0 -
|
|
u4Over16 +
|
|
(71.0 * u6Over64) / 32.0 -
|
|
(85.0 * u8Over256) / 16.0) *
|
|
sine2S +
|
|
((5.0 * u4Over16) / 16.0 -
|
|
(5.0 * u6Over64) / 4.0 +
|
|
(383.0 * u8Over256) / 96.0) *
|
|
sine4S -
|
|
s2 *
|
|
((u6Over64 - (11.0 * u8Over256) / 2.0) * sine2S +
|
|
(5.0 * u8Over256 * sine4S) / 2.0) +
|
|
((29.0 * u6Over64) / 96.0 - (29.0 * u8Over256) / 16.0) * sine6S +
|
|
(539.0 * u8Over256 * sine8S) / 1536.0;
|
|
|
|
const theta = Math.asin(Math.sin(sigma) * constants.cosineAlpha);
|
|
const latitude = Math.atan((constants.a / constants.b) * Math.tan(theta));
|
|
|
|
// Redefine in terms of relative argument of latitude.
|
|
sigma = sigma - constants.sigma;
|
|
|
|
const cosineTwiceSigmaMidpoint = Math.cos(2.0 * constants.sigma + sigma);
|
|
|
|
const sineSigma = Math.sin(sigma);
|
|
const cosineSigma = Math.cos(sigma);
|
|
|
|
const cc = constants.cosineU * cosineSigma;
|
|
const ss = constants.sineU * sineSigma;
|
|
|
|
const lambda = Math.atan2(
|
|
sineSigma * constants.sineHeading,
|
|
cc - ss * constants.cosineHeading
|
|
);
|
|
|
|
const l =
|
|
lambda -
|
|
computeDeltaLambda(
|
|
constants.f,
|
|
constants.sineAlpha,
|
|
constants.cosineSquaredAlpha,
|
|
sigma,
|
|
sineSigma,
|
|
cosineSigma,
|
|
cosineTwiceSigmaMidpoint
|
|
);
|
|
|
|
if (when.defined(result)) {
|
|
result.longitude = this._start.longitude + l;
|
|
result.latitude = latitude;
|
|
result.height = 0.0;
|
|
return result;
|
|
}
|
|
|
|
return new Matrix2.Cartographic(this._start.longitude + l, latitude, 0.0);
|
|
};
|
|
|
|
exports.EllipsoidGeodesic = EllipsoidGeodesic;
|
|
|
|
}));
|
|
//# sourceMappingURL=EllipsoidGeodesic-ed024f16.js.map
|