qd-changjing/public/static/Build/CesiumUnminified/Workers/EllipseGeometryLibrary-4ab5...

390 lines
12 KiB
JavaScript

/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['exports', './Matrix2-265d9610', './ComponentDatatype-aad54330', './Transforms-8b90e17c'], (function (exports, Matrix2, ComponentDatatype, Transforms) { 'use strict';
const EllipseGeometryLibrary = {};
const rotAxis = new Matrix2.Cartesian3();
const tempVec = new Matrix2.Cartesian3();
const unitQuat = new Transforms.Quaternion();
const rotMtx = new Matrix2.Matrix3();
function pointOnEllipsoid(
theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
result
) {
const azimuth = theta + rotation;
Matrix2.Cartesian3.multiplyByScalar(eastVec, Math.cos(azimuth), rotAxis);
Matrix2.Cartesian3.multiplyByScalar(northVec, Math.sin(azimuth), tempVec);
Matrix2.Cartesian3.add(rotAxis, tempVec, rotAxis);
let cosThetaSquared = Math.cos(theta);
cosThetaSquared = cosThetaSquared * cosThetaSquared;
let sinThetaSquared = Math.sin(theta);
sinThetaSquared = sinThetaSquared * sinThetaSquared;
const radius =
ab / Math.sqrt(bSqr * cosThetaSquared + aSqr * sinThetaSquared);
const angle = radius / mag;
// Create the quaternion to rotate the position vector to the boundary of the ellipse.
Transforms.Quaternion.fromAxisAngle(rotAxis, angle, unitQuat);
Matrix2.Matrix3.fromQuaternion(unitQuat, rotMtx);
Matrix2.Matrix3.multiplyByVector(rotMtx, unitPos, result);
Matrix2.Cartesian3.normalize(result, result);
Matrix2.Cartesian3.multiplyByScalar(result, mag, result);
return result;
}
const scratchCartesian1 = new Matrix2.Cartesian3();
const scratchCartesian2 = new Matrix2.Cartesian3();
const scratchCartesian3 = new Matrix2.Cartesian3();
const scratchNormal = new Matrix2.Cartesian3();
/**
* Returns the positions raised to the given heights
* @private
*/
EllipseGeometryLibrary.raisePositionsToHeight = function (
positions,
options,
extrude
) {
const ellipsoid = options.ellipsoid;
const height = options.height;
const extrudedHeight = options.extrudedHeight;
const size = extrude ? (positions.length / 3) * 2 : positions.length / 3;
const finalPositions = new Float64Array(size * 3);
const length = positions.length;
const bottomOffset = extrude ? length : 0;
for (let i = 0; i < length; i += 3) {
const i1 = i + 1;
const i2 = i + 2;
const position = Matrix2.Cartesian3.fromArray(positions, i, scratchCartesian1);
ellipsoid.scaleToGeodeticSurface(position, position);
const extrudedPosition = Matrix2.Cartesian3.clone(position, scratchCartesian2);
const normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal);
const scaledNormal = Matrix2.Cartesian3.multiplyByScalar(
normal,
height,
scratchCartesian3
);
Matrix2.Cartesian3.add(position, scaledNormal, position);
if (extrude) {
Matrix2.Cartesian3.multiplyByScalar(normal, extrudedHeight, scaledNormal);
Matrix2.Cartesian3.add(extrudedPosition, scaledNormal, extrudedPosition);
finalPositions[i + bottomOffset] = extrudedPosition.x;
finalPositions[i1 + bottomOffset] = extrudedPosition.y;
finalPositions[i2 + bottomOffset] = extrudedPosition.z;
}
finalPositions[i] = position.x;
finalPositions[i1] = position.y;
finalPositions[i2] = position.z;
}
return finalPositions;
};
const unitPosScratch = new Matrix2.Cartesian3();
const eastVecScratch = new Matrix2.Cartesian3();
const northVecScratch = new Matrix2.Cartesian3();
/**
* Returns an array of positions that make up the ellipse.
* @private
*/
EllipseGeometryLibrary.computeEllipsePositions = function (
options,
addFillPositions,
addEdgePositions
) {
const semiMinorAxis = options.semiMinorAxis;
const semiMajorAxis = options.semiMajorAxis;
const rotation = options.rotation;
const center = options.center;
// Computing the arc-length of the ellipse is too expensive to be practical. Estimating it using the
// arc length of the sphere is too inaccurate and creates sharp edges when either the semi-major or
// semi-minor axis is much bigger than the other. Instead, scale the angle delta to make
// the distance along the ellipse boundary more closely match the granularity.
const granularity = options.granularity * 8.0;
const aSqr = semiMinorAxis * semiMinorAxis;
const bSqr = semiMajorAxis * semiMajorAxis;
const ab = semiMajorAxis * semiMinorAxis;
const mag = Matrix2.Cartesian3.magnitude(center);
const unitPos = Matrix2.Cartesian3.normalize(center, unitPosScratch);
let eastVec = Matrix2.Cartesian3.cross(Matrix2.Cartesian3.UNIT_Z, center, eastVecScratch);
eastVec = Matrix2.Cartesian3.normalize(eastVec, eastVec);
const northVec = Matrix2.Cartesian3.cross(unitPos, eastVec, northVecScratch);
// The number of points in the first quadrant
let numPts = 1 + Math.ceil(ComponentDatatype.CesiumMath.PI_OVER_TWO / granularity);
const deltaTheta = ComponentDatatype.CesiumMath.PI_OVER_TWO / (numPts - 1);
let theta = ComponentDatatype.CesiumMath.PI_OVER_TWO - numPts * deltaTheta;
if (theta < 0.0) {
numPts -= Math.ceil(Math.abs(theta) / deltaTheta);
}
// If the number of points were three, the ellipse
// would be tessellated like below:
//
// *---*
// / | \ | \
// *---*---*---*
// / | \ | \ | \ | \
// / .*---*---*---*. \
// * ` | \ | \ | \ | `*
// \`.*---*---*---*.`/
// \ | \ | \ | \ | /
// *---*---*---*
// \ | \ | /
// *---*
// The first and last column have one position and fan to connect to the adjacent column.
// Each other vertical column contains an even number of positions.
const size = 2 * (numPts * (numPts + 2));
const positions = addFillPositions ? new Array(size * 3) : undefined;
let positionIndex = 0;
let position = scratchCartesian1;
let reflectedPosition = scratchCartesian2;
const outerPositionsLength = numPts * 4 * 3;
let outerRightIndex = outerPositionsLength - 1;
let outerLeftIndex = 0;
const outerPositions = addEdgePositions
? new Array(outerPositionsLength)
: undefined;
let i;
let j;
let numInterior;
let t;
let interiorPosition;
// Compute points in the 'eastern' half of the ellipse
theta = ComponentDatatype.CesiumMath.PI_OVER_TWO;
position = pointOnEllipsoid(
theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
position
);
if (addFillPositions) {
positions[positionIndex++] = position.x;
positions[positionIndex++] = position.y;
positions[positionIndex++] = position.z;
}
if (addEdgePositions) {
outerPositions[outerRightIndex--] = position.z;
outerPositions[outerRightIndex--] = position.y;
outerPositions[outerRightIndex--] = position.x;
}
theta = ComponentDatatype.CesiumMath.PI_OVER_TWO - deltaTheta;
for (i = 1; i < numPts + 1; ++i) {
position = pointOnEllipsoid(
theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
position
);
reflectedPosition = pointOnEllipsoid(
Math.PI - theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
reflectedPosition
);
if (addFillPositions) {
positions[positionIndex++] = position.x;
positions[positionIndex++] = position.y;
positions[positionIndex++] = position.z;
numInterior = 2 * i + 2;
for (j = 1; j < numInterior - 1; ++j) {
t = j / (numInterior - 1);
interiorPosition = Matrix2.Cartesian3.lerp(
position,
reflectedPosition,
t,
scratchCartesian3
);
positions[positionIndex++] = interiorPosition.x;
positions[positionIndex++] = interiorPosition.y;
positions[positionIndex++] = interiorPosition.z;
}
positions[positionIndex++] = reflectedPosition.x;
positions[positionIndex++] = reflectedPosition.y;
positions[positionIndex++] = reflectedPosition.z;
}
if (addEdgePositions) {
outerPositions[outerRightIndex--] = position.z;
outerPositions[outerRightIndex--] = position.y;
outerPositions[outerRightIndex--] = position.x;
outerPositions[outerLeftIndex++] = reflectedPosition.x;
outerPositions[outerLeftIndex++] = reflectedPosition.y;
outerPositions[outerLeftIndex++] = reflectedPosition.z;
}
theta = ComponentDatatype.CesiumMath.PI_OVER_TWO - (i + 1) * deltaTheta;
}
// Compute points in the 'western' half of the ellipse
for (i = numPts; i > 1; --i) {
theta = ComponentDatatype.CesiumMath.PI_OVER_TWO - (i - 1) * deltaTheta;
position = pointOnEllipsoid(
-theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
position
);
reflectedPosition = pointOnEllipsoid(
theta + Math.PI,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
reflectedPosition
);
if (addFillPositions) {
positions[positionIndex++] = position.x;
positions[positionIndex++] = position.y;
positions[positionIndex++] = position.z;
numInterior = 2 * (i - 1) + 2;
for (j = 1; j < numInterior - 1; ++j) {
t = j / (numInterior - 1);
interiorPosition = Matrix2.Cartesian3.lerp(
position,
reflectedPosition,
t,
scratchCartesian3
);
positions[positionIndex++] = interiorPosition.x;
positions[positionIndex++] = interiorPosition.y;
positions[positionIndex++] = interiorPosition.z;
}
positions[positionIndex++] = reflectedPosition.x;
positions[positionIndex++] = reflectedPosition.y;
positions[positionIndex++] = reflectedPosition.z;
}
if (addEdgePositions) {
outerPositions[outerRightIndex--] = position.z;
outerPositions[outerRightIndex--] = position.y;
outerPositions[outerRightIndex--] = position.x;
outerPositions[outerLeftIndex++] = reflectedPosition.x;
outerPositions[outerLeftIndex++] = reflectedPosition.y;
outerPositions[outerLeftIndex++] = reflectedPosition.z;
}
}
theta = ComponentDatatype.CesiumMath.PI_OVER_TWO;
position = pointOnEllipsoid(
-theta,
rotation,
northVec,
eastVec,
aSqr,
ab,
bSqr,
mag,
unitPos,
position
);
const r = {};
if (addFillPositions) {
positions[positionIndex++] = position.x;
positions[positionIndex++] = position.y;
positions[positionIndex++] = position.z;
r.positions = positions;
r.numPts = numPts;
}
if (addEdgePositions) {
outerPositions[outerRightIndex--] = position.z;
outerPositions[outerRightIndex--] = position.y;
outerPositions[outerRightIndex--] = position.x;
r.outerPositions = outerPositions;
}
return r;
};
exports.EllipseGeometryLibrary = EllipseGeometryLibrary;
}));
//# sourceMappingURL=EllipseGeometryLibrary-4ab591fa.js.map