qd-changjing/public/static/Build/CesiumUnminified/Workers/EllipseGeometry-3ffe669c.js

1330 lines
46 KiB
JavaScript

/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['exports', './GeometryOffsetAttribute-7e016332', './Transforms-8b90e17c', './Matrix2-265d9610', './RuntimeError-5b082e8f', './ComponentDatatype-aad54330', './when-4bbc8319', './EllipseGeometryLibrary-4ab591fa', './GeometryAttribute-4bcb785f', './GeometryAttributes-7827a6c2', './GeometryInstance-d57564f8', './GeometryPipeline-e93f6439', './IndexDatatype-6739e544', './VertexFormat-07539138'], (function (exports, GeometryOffsetAttribute, Transforms, Matrix2, RuntimeError, ComponentDatatype, when, EllipseGeometryLibrary, GeometryAttribute, GeometryAttributes, GeometryInstance, GeometryPipeline, IndexDatatype, VertexFormat) { 'use strict';
const scratchCartesian1 = new Matrix2.Cartesian3();
const scratchCartesian2 = new Matrix2.Cartesian3();
const scratchCartesian3 = new Matrix2.Cartesian3();
const scratchCartesian4 = new Matrix2.Cartesian3();
const texCoordScratch = new Matrix2.Cartesian2();
const textureMatrixScratch = new Matrix2.Matrix3();
const tangentMatrixScratch = new Matrix2.Matrix3();
const quaternionScratch = new Transforms.Quaternion();
const scratchNormal = new Matrix2.Cartesian3();
const scratchTangent = new Matrix2.Cartesian3();
const scratchBitangent = new Matrix2.Cartesian3();
const scratchCartographic = new Matrix2.Cartographic();
const projectedCenterScratch = new Matrix2.Cartesian3();
const scratchMinTexCoord = new Matrix2.Cartesian2();
const scratchMaxTexCoord = new Matrix2.Cartesian2();
function computeTopBottomAttributes(positions, options, extrude) {
const vertexFormat = options.vertexFormat;
const center = options.center;
const semiMajorAxis = options.semiMajorAxis;
const semiMinorAxis = options.semiMinorAxis;
const ellipsoid = options.ellipsoid;
const stRotation = options.stRotation;
const size = extrude ? (positions.length / 3) * 2 : positions.length / 3;
const shadowVolume = options.shadowVolume;
const textureCoordinates = vertexFormat.st
? new Float32Array(size * 2)
: undefined;
const normals = vertexFormat.normal ? new Float32Array(size * 3) : undefined;
const tangents = vertexFormat.tangent
? new Float32Array(size * 3)
: undefined;
const bitangents = vertexFormat.bitangent
? new Float32Array(size * 3)
: undefined;
const extrudeNormals = shadowVolume ? new Float32Array(size * 3) : undefined;
let textureCoordIndex = 0;
// Raise positions to a height above the ellipsoid and compute the
// texture coordinates, normals, tangents, and bitangents.
let normal = scratchNormal;
let tangent = scratchTangent;
let bitangent = scratchBitangent;
const projection = new Transforms.GeographicProjection(ellipsoid);
const projectedCenter = projection.project(
ellipsoid.cartesianToCartographic(center, scratchCartographic),
projectedCenterScratch
);
const geodeticNormal = ellipsoid.scaleToGeodeticSurface(
center,
scratchCartesian1
);
ellipsoid.geodeticSurfaceNormal(geodeticNormal, geodeticNormal);
let textureMatrix = textureMatrixScratch;
let tangentMatrix = tangentMatrixScratch;
if (stRotation !== 0) {
let rotation = Transforms.Quaternion.fromAxisAngle(
geodeticNormal,
stRotation,
quaternionScratch
);
textureMatrix = Matrix2.Matrix3.fromQuaternion(rotation, textureMatrix);
rotation = Transforms.Quaternion.fromAxisAngle(
geodeticNormal,
-stRotation,
quaternionScratch
);
tangentMatrix = Matrix2.Matrix3.fromQuaternion(rotation, tangentMatrix);
} else {
textureMatrix = Matrix2.Matrix3.clone(Matrix2.Matrix3.IDENTITY, textureMatrix);
tangentMatrix = Matrix2.Matrix3.clone(Matrix2.Matrix3.IDENTITY, tangentMatrix);
}
const minTexCoord = Matrix2.Cartesian2.fromElements(
Number.POSITIVE_INFINITY,
Number.POSITIVE_INFINITY,
scratchMinTexCoord
);
const maxTexCoord = Matrix2.Cartesian2.fromElements(
Number.NEGATIVE_INFINITY,
Number.NEGATIVE_INFINITY,
scratchMaxTexCoord
);
let length = positions.length;
const bottomOffset = extrude ? length : 0;
const stOffset = (bottomOffset / 3) * 2;
for (let i = 0; i < length; i += 3) {
const i1 = i + 1;
const i2 = i + 2;
const position = Matrix2.Cartesian3.fromArray(positions, i, scratchCartesian1);
if (vertexFormat.st) {
const rotatedPoint = Matrix2.Matrix3.multiplyByVector(
textureMatrix,
position,
scratchCartesian2
);
const projectedPoint = projection.project(
ellipsoid.cartesianToCartographic(rotatedPoint, scratchCartographic),
scratchCartesian3
);
Matrix2.Cartesian3.subtract(projectedPoint, projectedCenter, projectedPoint);
texCoordScratch.x =
(projectedPoint.x + semiMajorAxis) / (2.0 * semiMajorAxis);
texCoordScratch.y =
(projectedPoint.y + semiMinorAxis) / (2.0 * semiMinorAxis);
minTexCoord.x = Math.min(texCoordScratch.x, minTexCoord.x);
minTexCoord.y = Math.min(texCoordScratch.y, minTexCoord.y);
maxTexCoord.x = Math.max(texCoordScratch.x, maxTexCoord.x);
maxTexCoord.y = Math.max(texCoordScratch.y, maxTexCoord.y);
if (extrude) {
textureCoordinates[textureCoordIndex + stOffset] = texCoordScratch.x;
textureCoordinates[textureCoordIndex + 1 + stOffset] =
texCoordScratch.y;
}
textureCoordinates[textureCoordIndex++] = texCoordScratch.x;
textureCoordinates[textureCoordIndex++] = texCoordScratch.y;
}
if (
vertexFormat.normal ||
vertexFormat.tangent ||
vertexFormat.bitangent ||
shadowVolume
) {
normal = ellipsoid.geodeticSurfaceNormal(position, normal);
if (shadowVolume) {
extrudeNormals[i + bottomOffset] = -normal.x;
extrudeNormals[i1 + bottomOffset] = -normal.y;
extrudeNormals[i2 + bottomOffset] = -normal.z;
}
if (
vertexFormat.normal ||
vertexFormat.tangent ||
vertexFormat.bitangent
) {
if (vertexFormat.tangent || vertexFormat.bitangent) {
tangent = Matrix2.Cartesian3.normalize(
Matrix2.Cartesian3.cross(Matrix2.Cartesian3.UNIT_Z, normal, tangent),
tangent
);
Matrix2.Matrix3.multiplyByVector(tangentMatrix, tangent, tangent);
}
if (vertexFormat.normal) {
normals[i] = normal.x;
normals[i1] = normal.y;
normals[i2] = normal.z;
if (extrude) {
normals[i + bottomOffset] = -normal.x;
normals[i1 + bottomOffset] = -normal.y;
normals[i2 + bottomOffset] = -normal.z;
}
}
if (vertexFormat.tangent) {
tangents[i] = tangent.x;
tangents[i1] = tangent.y;
tangents[i2] = tangent.z;
if (extrude) {
tangents[i + bottomOffset] = -tangent.x;
tangents[i1 + bottomOffset] = -tangent.y;
tangents[i2 + bottomOffset] = -tangent.z;
}
}
if (vertexFormat.bitangent) {
bitangent = Matrix2.Cartesian3.normalize(
Matrix2.Cartesian3.cross(normal, tangent, bitangent),
bitangent
);
bitangents[i] = bitangent.x;
bitangents[i1] = bitangent.y;
bitangents[i2] = bitangent.z;
if (extrude) {
bitangents[i + bottomOffset] = bitangent.x;
bitangents[i1 + bottomOffset] = bitangent.y;
bitangents[i2 + bottomOffset] = bitangent.z;
}
}
}
}
}
if (vertexFormat.st) {
length = textureCoordinates.length;
for (let k = 0; k < length; k += 2) {
textureCoordinates[k] =
(textureCoordinates[k] - minTexCoord.x) /
(maxTexCoord.x - minTexCoord.x);
textureCoordinates[k + 1] =
(textureCoordinates[k + 1] - minTexCoord.y) /
(maxTexCoord.y - minTexCoord.y);
}
}
const attributes = new GeometryAttributes.GeometryAttributes();
if (vertexFormat.position) {
const finalPositions = EllipseGeometryLibrary.EllipseGeometryLibrary.raisePositionsToHeight(
positions,
options,
extrude
);
attributes.position = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: finalPositions,
});
}
if (vertexFormat.st) {
attributes.st = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: textureCoordinates,
});
}
if (vertexFormat.normal) {
attributes.normal = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: normals,
});
}
if (vertexFormat.tangent) {
attributes.tangent = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: tangents,
});
}
if (vertexFormat.bitangent) {
attributes.bitangent = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: bitangents,
});
}
if (shadowVolume) {
attributes.extrudeDirection = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: extrudeNormals,
});
}
if (extrude && when.defined(options.offsetAttribute)) {
let offsetAttribute = new Uint8Array(size);
if (options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP) {
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, 1, 0, size / 2);
} else {
const offsetValue =
options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1;
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, offsetValue);
}
attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: offsetAttribute,
});
}
return attributes;
}
function topIndices(numPts) {
// numTriangles in half = 3 + 8 + 12 + ... = -1 + 4 + (4 + 4) + (4 + 4 + 4) + ... = -1 + 4 * (1 + 2 + 3 + ...)
// = -1 + 4 * ((n * ( n + 1)) / 2)
// total triangles = 2 * numTrangles in half
// indices = total triangles * 3;
// Substitute numPts for n above
const indices = new Array(12 * (numPts * (numPts + 1)) - 6);
let indicesIndex = 0;
let prevIndex;
let numInterior;
let positionIndex;
let i;
let j;
// Indices triangles to the 'right' of the north vector
prevIndex = 0;
positionIndex = 1;
for (i = 0; i < 3; i++) {
indices[indicesIndex++] = positionIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
}
for (i = 2; i < numPts + 1; ++i) {
positionIndex = i * (i + 1) - 1;
prevIndex = (i - 1) * i - 1;
indices[indicesIndex++] = positionIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
numInterior = 2 * i;
for (j = 0; j < numInterior - 1; ++j) {
indices[indicesIndex++] = positionIndex;
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
}
indices[indicesIndex++] = positionIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
}
// Indices for center column of triangles
numInterior = numPts * 2;
++positionIndex;
++prevIndex;
for (i = 0; i < numInterior - 1; ++i) {
indices[indicesIndex++] = positionIndex;
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
}
indices[indicesIndex++] = positionIndex;
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex++;
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex;
// Reverse the process creating indices to the 'left' of the north vector
++prevIndex;
for (i = numPts - 1; i > 1; --i) {
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
numInterior = 2 * i;
for (j = 0; j < numInterior - 1; ++j) {
indices[indicesIndex++] = positionIndex;
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
}
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = positionIndex++;
}
for (i = 0; i < 3; i++) {
indices[indicesIndex++] = prevIndex++;
indices[indicesIndex++] = prevIndex;
indices[indicesIndex++] = positionIndex;
}
return indices;
}
let boundingSphereCenter = new Matrix2.Cartesian3();
function computeEllipse(options) {
const center = options.center;
boundingSphereCenter = Matrix2.Cartesian3.multiplyByScalar(
options.ellipsoid.geodeticSurfaceNormal(center, boundingSphereCenter),
options.height,
boundingSphereCenter
);
boundingSphereCenter = Matrix2.Cartesian3.add(
center,
boundingSphereCenter,
boundingSphereCenter
);
const boundingSphere = new Transforms.BoundingSphere(
boundingSphereCenter,
options.semiMajorAxis
);
const cep = EllipseGeometryLibrary.EllipseGeometryLibrary.computeEllipsePositions(
options,
true,
false
);
const positions = cep.positions;
const numPts = cep.numPts;
const attributes = computeTopBottomAttributes(positions, options, false);
let indices = topIndices(numPts);
indices = IndexDatatype.IndexDatatype.createTypedArray(positions.length / 3, indices);
return {
boundingSphere: boundingSphere,
attributes: attributes,
indices: indices,
};
}
function computeWallAttributes(positions, options) {
const vertexFormat = options.vertexFormat;
const center = options.center;
const semiMajorAxis = options.semiMajorAxis;
const semiMinorAxis = options.semiMinorAxis;
const ellipsoid = options.ellipsoid;
const height = options.height;
const extrudedHeight = options.extrudedHeight;
const stRotation = options.stRotation;
const size = (positions.length / 3) * 2;
const finalPositions = new Float64Array(size * 3);
const textureCoordinates = vertexFormat.st
? new Float32Array(size * 2)
: undefined;
const normals = vertexFormat.normal ? new Float32Array(size * 3) : undefined;
const tangents = vertexFormat.tangent
? new Float32Array(size * 3)
: undefined;
const bitangents = vertexFormat.bitangent
? new Float32Array(size * 3)
: undefined;
const shadowVolume = options.shadowVolume;
const extrudeNormals = shadowVolume ? new Float32Array(size * 3) : undefined;
let textureCoordIndex = 0;
// Raise positions to a height above the ellipsoid and compute the
// texture coordinates, normals, tangents, and bitangents.
let normal = scratchNormal;
let tangent = scratchTangent;
let bitangent = scratchBitangent;
const projection = new Transforms.GeographicProjection(ellipsoid);
const projectedCenter = projection.project(
ellipsoid.cartesianToCartographic(center, scratchCartographic),
projectedCenterScratch
);
const geodeticNormal = ellipsoid.scaleToGeodeticSurface(
center,
scratchCartesian1
);
ellipsoid.geodeticSurfaceNormal(geodeticNormal, geodeticNormal);
const rotation = Transforms.Quaternion.fromAxisAngle(
geodeticNormal,
stRotation,
quaternionScratch
);
const textureMatrix = Matrix2.Matrix3.fromQuaternion(rotation, textureMatrixScratch);
const minTexCoord = Matrix2.Cartesian2.fromElements(
Number.POSITIVE_INFINITY,
Number.POSITIVE_INFINITY,
scratchMinTexCoord
);
const maxTexCoord = Matrix2.Cartesian2.fromElements(
Number.NEGATIVE_INFINITY,
Number.NEGATIVE_INFINITY,
scratchMaxTexCoord
);
let length = positions.length;
const stOffset = (length / 3) * 2;
for (let i = 0; i < length; i += 3) {
const i1 = i + 1;
const i2 = i + 2;
let position = Matrix2.Cartesian3.fromArray(positions, i, scratchCartesian1);
let extrudedPosition;
if (vertexFormat.st) {
const rotatedPoint = Matrix2.Matrix3.multiplyByVector(
textureMatrix,
position,
scratchCartesian2
);
const projectedPoint = projection.project(
ellipsoid.cartesianToCartographic(rotatedPoint, scratchCartographic),
scratchCartesian3
);
Matrix2.Cartesian3.subtract(projectedPoint, projectedCenter, projectedPoint);
texCoordScratch.x =
(projectedPoint.x + semiMajorAxis) / (2.0 * semiMajorAxis);
texCoordScratch.y =
(projectedPoint.y + semiMinorAxis) / (2.0 * semiMinorAxis);
minTexCoord.x = Math.min(texCoordScratch.x, minTexCoord.x);
minTexCoord.y = Math.min(texCoordScratch.y, minTexCoord.y);
maxTexCoord.x = Math.max(texCoordScratch.x, maxTexCoord.x);
maxTexCoord.y = Math.max(texCoordScratch.y, maxTexCoord.y);
textureCoordinates[textureCoordIndex + stOffset] = texCoordScratch.x;
textureCoordinates[textureCoordIndex + 1 + stOffset] = texCoordScratch.y;
textureCoordinates[textureCoordIndex++] = texCoordScratch.x;
textureCoordinates[textureCoordIndex++] = texCoordScratch.y;
}
position = ellipsoid.scaleToGeodeticSurface(position, position);
extrudedPosition = Matrix2.Cartesian3.clone(position, scratchCartesian2);
normal = ellipsoid.geodeticSurfaceNormal(position, normal);
if (shadowVolume) {
extrudeNormals[i + length] = -normal.x;
extrudeNormals[i1 + length] = -normal.y;
extrudeNormals[i2 + length] = -normal.z;
}
let scaledNormal = Matrix2.Cartesian3.multiplyByScalar(
normal,
height,
scratchCartesian4
);
position = Matrix2.Cartesian3.add(position, scaledNormal, position);
scaledNormal = Matrix2.Cartesian3.multiplyByScalar(
normal,
extrudedHeight,
scaledNormal
);
extrudedPosition = Matrix2.Cartesian3.add(
extrudedPosition,
scaledNormal,
extrudedPosition
);
if (vertexFormat.position) {
finalPositions[i + length] = extrudedPosition.x;
finalPositions[i1 + length] = extrudedPosition.y;
finalPositions[i2 + length] = extrudedPosition.z;
finalPositions[i] = position.x;
finalPositions[i1] = position.y;
finalPositions[i2] = position.z;
}
if (vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) {
bitangent = Matrix2.Cartesian3.clone(normal, bitangent);
const next = Matrix2.Cartesian3.fromArray(
positions,
(i + 3) % length,
scratchCartesian4
);
Matrix2.Cartesian3.subtract(next, position, next);
const bottom = Matrix2.Cartesian3.subtract(
extrudedPosition,
position,
scratchCartesian3
);
normal = Matrix2.Cartesian3.normalize(
Matrix2.Cartesian3.cross(bottom, next, normal),
normal
);
if (vertexFormat.normal) {
normals[i] = normal.x;
normals[i1] = normal.y;
normals[i2] = normal.z;
normals[i + length] = normal.x;
normals[i1 + length] = normal.y;
normals[i2 + length] = normal.z;
}
if (vertexFormat.tangent) {
tangent = Matrix2.Cartesian3.normalize(
Matrix2.Cartesian3.cross(bitangent, normal, tangent),
tangent
);
tangents[i] = tangent.x;
tangents[i1] = tangent.y;
tangents[i2] = tangent.z;
tangents[i + length] = tangent.x;
tangents[i + 1 + length] = tangent.y;
tangents[i + 2 + length] = tangent.z;
}
if (vertexFormat.bitangent) {
bitangents[i] = bitangent.x;
bitangents[i1] = bitangent.y;
bitangents[i2] = bitangent.z;
bitangents[i + length] = bitangent.x;
bitangents[i1 + length] = bitangent.y;
bitangents[i2 + length] = bitangent.z;
}
}
}
if (vertexFormat.st) {
length = textureCoordinates.length;
for (let k = 0; k < length; k += 2) {
textureCoordinates[k] =
(textureCoordinates[k] - minTexCoord.x) /
(maxTexCoord.x - minTexCoord.x);
textureCoordinates[k + 1] =
(textureCoordinates[k + 1] - minTexCoord.y) /
(maxTexCoord.y - minTexCoord.y);
}
}
const attributes = new GeometryAttributes.GeometryAttributes();
if (vertexFormat.position) {
attributes.position = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: finalPositions,
});
}
if (vertexFormat.st) {
attributes.st = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: textureCoordinates,
});
}
if (vertexFormat.normal) {
attributes.normal = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: normals,
});
}
if (vertexFormat.tangent) {
attributes.tangent = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: tangents,
});
}
if (vertexFormat.bitangent) {
attributes.bitangent = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: bitangents,
});
}
if (shadowVolume) {
attributes.extrudeDirection = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: extrudeNormals,
});
}
if (when.defined(options.offsetAttribute)) {
let offsetAttribute = new Uint8Array(size);
if (options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP) {
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, 1, 0, size / 2);
} else {
const offsetValue =
options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1;
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, offsetValue);
}
attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: offsetAttribute,
});
}
return attributes;
}
function computeWallIndices(positions) {
const length = positions.length / 3;
const indices = IndexDatatype.IndexDatatype.createTypedArray(length, length * 6);
let index = 0;
for (let i = 0; i < length; i++) {
const UL = i;
const LL = i + length;
const UR = (UL + 1) % length;
const LR = UR + length;
indices[index++] = UL;
indices[index++] = LL;
indices[index++] = UR;
indices[index++] = UR;
indices[index++] = LL;
indices[index++] = LR;
}
return indices;
}
const topBoundingSphere = new Transforms.BoundingSphere();
const bottomBoundingSphere = new Transforms.BoundingSphere();
function computeExtrudedEllipse(options) {
const center = options.center;
const ellipsoid = options.ellipsoid;
const semiMajorAxis = options.semiMajorAxis;
let scaledNormal = Matrix2.Cartesian3.multiplyByScalar(
ellipsoid.geodeticSurfaceNormal(center, scratchCartesian1),
options.height,
scratchCartesian1
);
topBoundingSphere.center = Matrix2.Cartesian3.add(
center,
scaledNormal,
topBoundingSphere.center
);
topBoundingSphere.radius = semiMajorAxis;
scaledNormal = Matrix2.Cartesian3.multiplyByScalar(
ellipsoid.geodeticSurfaceNormal(center, scaledNormal),
options.extrudedHeight,
scaledNormal
);
bottomBoundingSphere.center = Matrix2.Cartesian3.add(
center,
scaledNormal,
bottomBoundingSphere.center
);
bottomBoundingSphere.radius = semiMajorAxis;
const cep = EllipseGeometryLibrary.EllipseGeometryLibrary.computeEllipsePositions(
options,
true,
true
);
const positions = cep.positions;
const numPts = cep.numPts;
const outerPositions = cep.outerPositions;
const boundingSphere = Transforms.BoundingSphere.union(
topBoundingSphere,
bottomBoundingSphere
);
const topBottomAttributes = computeTopBottomAttributes(
positions,
options,
true
);
let indices = topIndices(numPts);
const length = indices.length;
indices.length = length * 2;
const posLength = positions.length / 3;
for (let i = 0; i < length; i += 3) {
indices[i + length] = indices[i + 2] + posLength;
indices[i + 1 + length] = indices[i + 1] + posLength;
indices[i + 2 + length] = indices[i] + posLength;
}
const topBottomIndices = IndexDatatype.IndexDatatype.createTypedArray(
(posLength * 2) / 3,
indices
);
const topBottomGeo = new GeometryAttribute.Geometry({
attributes: topBottomAttributes,
indices: topBottomIndices,
primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
});
const wallAttributes = computeWallAttributes(outerPositions, options);
indices = computeWallIndices(outerPositions);
const wallIndices = IndexDatatype.IndexDatatype.createTypedArray(
(outerPositions.length * 2) / 3,
indices
);
const wallGeo = new GeometryAttribute.Geometry({
attributes: wallAttributes,
indices: wallIndices,
primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
});
const geo = GeometryPipeline.GeometryPipeline.combineInstances([
new GeometryInstance.GeometryInstance({
geometry: topBottomGeo,
}),
new GeometryInstance.GeometryInstance({
geometry: wallGeo,
}),
]);
return {
boundingSphere: boundingSphere,
attributes: geo[0].attributes,
indices: geo[0].indices,
};
}
function computeRectangle(
center,
semiMajorAxis,
semiMinorAxis,
rotation,
granularity,
ellipsoid,
result
) {
const cep = EllipseGeometryLibrary.EllipseGeometryLibrary.computeEllipsePositions(
{
center: center,
semiMajorAxis: semiMajorAxis,
semiMinorAxis: semiMinorAxis,
rotation: rotation,
granularity: granularity,
},
false,
true
);
const positionsFlat = cep.outerPositions;
const positionsCount = positionsFlat.length / 3;
const positions = new Array(positionsCount);
for (let i = 0; i < positionsCount; ++i) {
positions[i] = Matrix2.Cartesian3.fromArray(positionsFlat, i * 3);
}
const rectangle = Matrix2.Rectangle.fromCartesianArray(positions, ellipsoid, result);
// Rectangle width goes beyond 180 degrees when the ellipse crosses a pole.
// When this happens, make the rectangle into a "circle" around the pole
if (rectangle.width > ComponentDatatype.CesiumMath.PI) {
rectangle.north =
rectangle.north > 0.0
? ComponentDatatype.CesiumMath.PI_OVER_TWO - ComponentDatatype.CesiumMath.EPSILON7
: rectangle.north;
rectangle.south =
rectangle.south < 0.0
? ComponentDatatype.CesiumMath.EPSILON7 - ComponentDatatype.CesiumMath.PI_OVER_TWO
: rectangle.south;
rectangle.east = ComponentDatatype.CesiumMath.PI;
rectangle.west = -ComponentDatatype.CesiumMath.PI;
}
return rectangle;
}
/**
* A description of an ellipse on an ellipsoid. Ellipse geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}.
*
* @alias EllipseGeometry
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {Cartesian3} options.center The ellipse's center point in the fixed frame.
* @param {Number} options.semiMajorAxis The length of the ellipse's semi-major axis in meters.
* @param {Number} options.semiMinorAxis The length of the ellipse's semi-minor axis in meters.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid the ellipse will be on.
* @param {Number} [options.height=0.0] The distance in meters between the ellipse and the ellipsoid surface.
* @param {Number} [options.extrudedHeight] The distance in meters between the ellipse's extruded face and the ellipsoid surface.
* @param {Number} [options.rotation=0.0] The angle of rotation counter-clockwise from north.
* @param {Number} [options.stRotation=0.0] The rotation of the texture coordinates counter-clockwise from north.
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The angular distance between points on the ellipse in radians.
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
*
* @exception {DeveloperError} semiMajorAxis and semiMinorAxis must be greater than zero.
* @exception {DeveloperError} semiMajorAxis must be greater than or equal to the semiMinorAxis.
* @exception {DeveloperError} granularity must be greater than zero.
*
*
* @example
* // Create an ellipse.
* const ellipse = new Cesium.EllipseGeometry({
* center : Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883),
* semiMajorAxis : 500000.0,
* semiMinorAxis : 300000.0,
* rotation : Cesium.Math.toRadians(60.0)
* });
* const geometry = Cesium.EllipseGeometry.createGeometry(ellipse);
*
* @see EllipseGeometry.createGeometry
*/
function EllipseGeometry(options) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
const center = options.center;
const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84);
const semiMajorAxis = options.semiMajorAxis;
const semiMinorAxis = options.semiMinorAxis;
const granularity = when.defaultValue(
options.granularity,
ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE
);
const vertexFormat = when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT);
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("options.center", center);
RuntimeError.Check.typeOf.number("options.semiMajorAxis", semiMajorAxis);
RuntimeError.Check.typeOf.number("options.semiMinorAxis", semiMinorAxis);
if (semiMajorAxis < semiMinorAxis) {
throw new RuntimeError.DeveloperError(
"semiMajorAxis must be greater than or equal to the semiMinorAxis."
);
}
if (granularity <= 0.0) {
throw new RuntimeError.DeveloperError("granularity must be greater than zero.");
}
//>>includeEnd('debug');
const height = when.defaultValue(options.height, 0.0);
const extrudedHeight = when.defaultValue(options.extrudedHeight, height);
this._center = Matrix2.Cartesian3.clone(center);
this._semiMajorAxis = semiMajorAxis;
this._semiMinorAxis = semiMinorAxis;
this._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid);
this._rotation = when.defaultValue(options.rotation, 0.0);
this._stRotation = when.defaultValue(options.stRotation, 0.0);
this._height = Math.max(extrudedHeight, height);
this._granularity = granularity;
this._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat);
this._extrudedHeight = Math.min(extrudedHeight, height);
this._shadowVolume = when.defaultValue(options.shadowVolume, false);
this._workerName = "createEllipseGeometry";
this._offsetAttribute = options.offsetAttribute;
this._rectangle = undefined;
this._textureCoordinateRotationPoints = undefined;
}
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
EllipseGeometry.packedLength =
Matrix2.Cartesian3.packedLength +
Matrix2.Ellipsoid.packedLength +
VertexFormat.VertexFormat.packedLength +
9;
/**
* Stores the provided instance into the provided array.
*
* @param {EllipseGeometry} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
EllipseGeometry.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("value", value);
RuntimeError.Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
Matrix2.Cartesian3.pack(value._center, array, startingIndex);
startingIndex += Matrix2.Cartesian3.packedLength;
Matrix2.Ellipsoid.pack(value._ellipsoid, array, startingIndex);
startingIndex += Matrix2.Ellipsoid.packedLength;
VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat.VertexFormat.packedLength;
array[startingIndex++] = value._semiMajorAxis;
array[startingIndex++] = value._semiMinorAxis;
array[startingIndex++] = value._rotation;
array[startingIndex++] = value._stRotation;
array[startingIndex++] = value._height;
array[startingIndex++] = value._granularity;
array[startingIndex++] = value._extrudedHeight;
array[startingIndex++] = value._shadowVolume ? 1.0 : 0.0;
array[startingIndex] = when.defaultValue(value._offsetAttribute, -1);
return array;
};
const scratchCenter = new Matrix2.Cartesian3();
const scratchEllipsoid = new Matrix2.Ellipsoid();
const scratchVertexFormat = new VertexFormat.VertexFormat();
const scratchOptions = {
center: scratchCenter,
ellipsoid: scratchEllipsoid,
vertexFormat: scratchVertexFormat,
semiMajorAxis: undefined,
semiMinorAxis: undefined,
rotation: undefined,
stRotation: undefined,
height: undefined,
granularity: undefined,
extrudedHeight: undefined,
shadowVolume: undefined,
offsetAttribute: undefined,
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {EllipseGeometry} [result] The object into which to store the result.
* @returns {EllipseGeometry} The modified result parameter or a new EllipseGeometry instance if one was not provided.
*/
EllipseGeometry.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
const center = Matrix2.Cartesian3.unpack(array, startingIndex, scratchCenter);
startingIndex += Matrix2.Cartesian3.packedLength;
const ellipsoid = Matrix2.Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);
startingIndex += Matrix2.Ellipsoid.packedLength;
const vertexFormat = VertexFormat.VertexFormat.unpack(
array,
startingIndex,
scratchVertexFormat
);
startingIndex += VertexFormat.VertexFormat.packedLength;
const semiMajorAxis = array[startingIndex++];
const semiMinorAxis = array[startingIndex++];
const rotation = array[startingIndex++];
const stRotation = array[startingIndex++];
const height = array[startingIndex++];
const granularity = array[startingIndex++];
const extrudedHeight = array[startingIndex++];
const shadowVolume = array[startingIndex++] === 1.0;
const offsetAttribute = array[startingIndex];
if (!when.defined(result)) {
scratchOptions.height = height;
scratchOptions.extrudedHeight = extrudedHeight;
scratchOptions.granularity = granularity;
scratchOptions.stRotation = stRotation;
scratchOptions.rotation = rotation;
scratchOptions.semiMajorAxis = semiMajorAxis;
scratchOptions.semiMinorAxis = semiMinorAxis;
scratchOptions.shadowVolume = shadowVolume;
scratchOptions.offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
return new EllipseGeometry(scratchOptions);
}
result._center = Matrix2.Cartesian3.clone(center, result._center);
result._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid, result._ellipsoid);
result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat);
result._semiMajorAxis = semiMajorAxis;
result._semiMinorAxis = semiMinorAxis;
result._rotation = rotation;
result._stRotation = stRotation;
result._height = height;
result._granularity = granularity;
result._extrudedHeight = extrudedHeight;
result._shadowVolume = shadowVolume;
result._offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
return result;
};
/**
* Computes the bounding rectangle based on the provided options
*
* @param {Object} options Object with the following properties:
* @param {Cartesian3} options.center The ellipse's center point in the fixed frame.
* @param {Number} options.semiMajorAxis The length of the ellipse's semi-major axis in meters.
* @param {Number} options.semiMinorAxis The length of the ellipse's semi-minor axis in meters.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid the ellipse will be on.
* @param {Number} [options.rotation=0.0] The angle of rotation counter-clockwise from north.
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The angular distance between points on the ellipse in radians.
* @param {Rectangle} [result] An object in which to store the result
*
* @returns {Rectangle} The result rectangle
*/
EllipseGeometry.computeRectangle = function (options, result) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
const center = options.center;
const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84);
const semiMajorAxis = options.semiMajorAxis;
const semiMinorAxis = options.semiMinorAxis;
const granularity = when.defaultValue(
options.granularity,
ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE
);
const rotation = when.defaultValue(options.rotation, 0.0);
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("options.center", center);
RuntimeError.Check.typeOf.number("options.semiMajorAxis", semiMajorAxis);
RuntimeError.Check.typeOf.number("options.semiMinorAxis", semiMinorAxis);
if (semiMajorAxis < semiMinorAxis) {
throw new RuntimeError.DeveloperError(
"semiMajorAxis must be greater than or equal to the semiMinorAxis."
);
}
if (granularity <= 0.0) {
throw new RuntimeError.DeveloperError("granularity must be greater than zero.");
}
//>>includeEnd('debug');
return computeRectangle(
center,
semiMajorAxis,
semiMinorAxis,
rotation,
granularity,
ellipsoid,
result
);
};
/**
* Computes the geometric representation of a ellipse on an ellipsoid, including its vertices, indices, and a bounding sphere.
*
* @param {EllipseGeometry} ellipseGeometry A description of the ellipse.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
EllipseGeometry.createGeometry = function (ellipseGeometry) {
if (
ellipseGeometry._semiMajorAxis <= 0.0 ||
ellipseGeometry._semiMinorAxis <= 0.0
) {
return;
}
const height = ellipseGeometry._height;
const extrudedHeight = ellipseGeometry._extrudedHeight;
const extrude = !ComponentDatatype.CesiumMath.equalsEpsilon(
height,
extrudedHeight,
0,
ComponentDatatype.CesiumMath.EPSILON2
);
ellipseGeometry._center = ellipseGeometry._ellipsoid.scaleToGeodeticSurface(
ellipseGeometry._center,
ellipseGeometry._center
);
const options = {
center: ellipseGeometry._center,
semiMajorAxis: ellipseGeometry._semiMajorAxis,
semiMinorAxis: ellipseGeometry._semiMinorAxis,
ellipsoid: ellipseGeometry._ellipsoid,
rotation: ellipseGeometry._rotation,
height: height,
granularity: ellipseGeometry._granularity,
vertexFormat: ellipseGeometry._vertexFormat,
stRotation: ellipseGeometry._stRotation,
};
let geometry;
if (extrude) {
options.extrudedHeight = extrudedHeight;
options.shadowVolume = ellipseGeometry._shadowVolume;
options.offsetAttribute = ellipseGeometry._offsetAttribute;
geometry = computeExtrudedEllipse(options);
} else {
geometry = computeEllipse(options);
if (when.defined(ellipseGeometry._offsetAttribute)) {
const length = geometry.attributes.position.values.length;
const applyOffset = new Uint8Array(length / 3);
const offsetValue =
ellipseGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE
? 0
: 1;
GeometryOffsetAttribute.arrayFill(applyOffset, offsetValue);
geometry.attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: applyOffset,
});
}
}
return new GeometryAttribute.Geometry({
attributes: geometry.attributes,
indices: geometry.indices,
primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
boundingSphere: geometry.boundingSphere,
offsetAttribute: ellipseGeometry._offsetAttribute,
});
};
/**
* @private
*/
EllipseGeometry.createShadowVolume = function (
ellipseGeometry,
minHeightFunc,
maxHeightFunc
) {
const granularity = ellipseGeometry._granularity;
const ellipsoid = ellipseGeometry._ellipsoid;
const minHeight = minHeightFunc(granularity, ellipsoid);
const maxHeight = maxHeightFunc(granularity, ellipsoid);
return new EllipseGeometry({
center: ellipseGeometry._center,
semiMajorAxis: ellipseGeometry._semiMajorAxis,
semiMinorAxis: ellipseGeometry._semiMinorAxis,
ellipsoid: ellipsoid,
rotation: ellipseGeometry._rotation,
stRotation: ellipseGeometry._stRotation,
granularity: granularity,
extrudedHeight: minHeight,
height: maxHeight,
vertexFormat: VertexFormat.VertexFormat.POSITION_ONLY,
shadowVolume: true,
});
};
function textureCoordinateRotationPoints(ellipseGeometry) {
const stRotation = -ellipseGeometry._stRotation;
if (stRotation === 0.0) {
return [0, 0, 0, 1, 1, 0];
}
const cep = EllipseGeometryLibrary.EllipseGeometryLibrary.computeEllipsePositions(
{
center: ellipseGeometry._center,
semiMajorAxis: ellipseGeometry._semiMajorAxis,
semiMinorAxis: ellipseGeometry._semiMinorAxis,
rotation: ellipseGeometry._rotation,
granularity: ellipseGeometry._granularity,
},
false,
true
);
const positionsFlat = cep.outerPositions;
const positionsCount = positionsFlat.length / 3;
const positions = new Array(positionsCount);
for (let i = 0; i < positionsCount; ++i) {
positions[i] = Matrix2.Cartesian3.fromArray(positionsFlat, i * 3);
}
const ellipsoid = ellipseGeometry._ellipsoid;
const boundingRectangle = ellipseGeometry.rectangle;
return GeometryAttribute.Geometry._textureCoordinateRotationPoints(
positions,
stRotation,
ellipsoid,
boundingRectangle
);
}
Object.defineProperties(EllipseGeometry.prototype, {
/**
* @private
*/
rectangle: {
get: function () {
if (!when.defined(this._rectangle)) {
this._rectangle = computeRectangle(
this._center,
this._semiMajorAxis,
this._semiMinorAxis,
this._rotation,
this._granularity,
this._ellipsoid
);
}
return this._rectangle;
},
},
/**
* For remapping texture coordinates when rendering EllipseGeometries as GroundPrimitives.
* @private
*/
textureCoordinateRotationPoints: {
get: function () {
if (!when.defined(this._textureCoordinateRotationPoints)) {
this._textureCoordinateRotationPoints = textureCoordinateRotationPoints(
this
);
}
return this._textureCoordinateRotationPoints;
},
},
});
exports.EllipseGeometry = EllipseGeometry;
}));
//# sourceMappingURL=EllipseGeometry-3ffe669c.js.map