1330 lines
46 KiB
JavaScript
1330 lines
46 KiB
JavaScript
/**
|
|
* Cesium - https://github.com/CesiumGS/cesium
|
|
*
|
|
* Copyright 2011-2020 Cesium Contributors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* Columbus View (Pat. Pend.)
|
|
*
|
|
* Portions licensed separately.
|
|
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
|
|
*/
|
|
|
|
define(['exports', './GeometryOffsetAttribute-7e016332', './Transforms-8b90e17c', './Matrix2-265d9610', './RuntimeError-5b082e8f', './ComponentDatatype-aad54330', './when-4bbc8319', './EllipseGeometryLibrary-4ab591fa', './GeometryAttribute-4bcb785f', './GeometryAttributes-7827a6c2', './GeometryInstance-d57564f8', './GeometryPipeline-e93f6439', './IndexDatatype-6739e544', './VertexFormat-07539138'], (function (exports, GeometryOffsetAttribute, Transforms, Matrix2, RuntimeError, ComponentDatatype, when, EllipseGeometryLibrary, GeometryAttribute, GeometryAttributes, GeometryInstance, GeometryPipeline, IndexDatatype, VertexFormat) { 'use strict';
|
|
|
|
const scratchCartesian1 = new Matrix2.Cartesian3();
|
|
const scratchCartesian2 = new Matrix2.Cartesian3();
|
|
const scratchCartesian3 = new Matrix2.Cartesian3();
|
|
const scratchCartesian4 = new Matrix2.Cartesian3();
|
|
const texCoordScratch = new Matrix2.Cartesian2();
|
|
const textureMatrixScratch = new Matrix2.Matrix3();
|
|
const tangentMatrixScratch = new Matrix2.Matrix3();
|
|
const quaternionScratch = new Transforms.Quaternion();
|
|
|
|
const scratchNormal = new Matrix2.Cartesian3();
|
|
const scratchTangent = new Matrix2.Cartesian3();
|
|
const scratchBitangent = new Matrix2.Cartesian3();
|
|
|
|
const scratchCartographic = new Matrix2.Cartographic();
|
|
const projectedCenterScratch = new Matrix2.Cartesian3();
|
|
|
|
const scratchMinTexCoord = new Matrix2.Cartesian2();
|
|
const scratchMaxTexCoord = new Matrix2.Cartesian2();
|
|
|
|
function computeTopBottomAttributes(positions, options, extrude) {
|
|
const vertexFormat = options.vertexFormat;
|
|
const center = options.center;
|
|
const semiMajorAxis = options.semiMajorAxis;
|
|
const semiMinorAxis = options.semiMinorAxis;
|
|
const ellipsoid = options.ellipsoid;
|
|
const stRotation = options.stRotation;
|
|
const size = extrude ? (positions.length / 3) * 2 : positions.length / 3;
|
|
const shadowVolume = options.shadowVolume;
|
|
|
|
const textureCoordinates = vertexFormat.st
|
|
? new Float32Array(size * 2)
|
|
: undefined;
|
|
const normals = vertexFormat.normal ? new Float32Array(size * 3) : undefined;
|
|
const tangents = vertexFormat.tangent
|
|
? new Float32Array(size * 3)
|
|
: undefined;
|
|
const bitangents = vertexFormat.bitangent
|
|
? new Float32Array(size * 3)
|
|
: undefined;
|
|
|
|
const extrudeNormals = shadowVolume ? new Float32Array(size * 3) : undefined;
|
|
|
|
let textureCoordIndex = 0;
|
|
|
|
// Raise positions to a height above the ellipsoid and compute the
|
|
// texture coordinates, normals, tangents, and bitangents.
|
|
let normal = scratchNormal;
|
|
let tangent = scratchTangent;
|
|
let bitangent = scratchBitangent;
|
|
|
|
const projection = new Transforms.GeographicProjection(ellipsoid);
|
|
const projectedCenter = projection.project(
|
|
ellipsoid.cartesianToCartographic(center, scratchCartographic),
|
|
projectedCenterScratch
|
|
);
|
|
|
|
const geodeticNormal = ellipsoid.scaleToGeodeticSurface(
|
|
center,
|
|
scratchCartesian1
|
|
);
|
|
ellipsoid.geodeticSurfaceNormal(geodeticNormal, geodeticNormal);
|
|
|
|
let textureMatrix = textureMatrixScratch;
|
|
let tangentMatrix = tangentMatrixScratch;
|
|
if (stRotation !== 0) {
|
|
let rotation = Transforms.Quaternion.fromAxisAngle(
|
|
geodeticNormal,
|
|
stRotation,
|
|
quaternionScratch
|
|
);
|
|
textureMatrix = Matrix2.Matrix3.fromQuaternion(rotation, textureMatrix);
|
|
|
|
rotation = Transforms.Quaternion.fromAxisAngle(
|
|
geodeticNormal,
|
|
-stRotation,
|
|
quaternionScratch
|
|
);
|
|
tangentMatrix = Matrix2.Matrix3.fromQuaternion(rotation, tangentMatrix);
|
|
} else {
|
|
textureMatrix = Matrix2.Matrix3.clone(Matrix2.Matrix3.IDENTITY, textureMatrix);
|
|
tangentMatrix = Matrix2.Matrix3.clone(Matrix2.Matrix3.IDENTITY, tangentMatrix);
|
|
}
|
|
|
|
const minTexCoord = Matrix2.Cartesian2.fromElements(
|
|
Number.POSITIVE_INFINITY,
|
|
Number.POSITIVE_INFINITY,
|
|
scratchMinTexCoord
|
|
);
|
|
const maxTexCoord = Matrix2.Cartesian2.fromElements(
|
|
Number.NEGATIVE_INFINITY,
|
|
Number.NEGATIVE_INFINITY,
|
|
scratchMaxTexCoord
|
|
);
|
|
|
|
let length = positions.length;
|
|
const bottomOffset = extrude ? length : 0;
|
|
const stOffset = (bottomOffset / 3) * 2;
|
|
for (let i = 0; i < length; i += 3) {
|
|
const i1 = i + 1;
|
|
const i2 = i + 2;
|
|
const position = Matrix2.Cartesian3.fromArray(positions, i, scratchCartesian1);
|
|
|
|
if (vertexFormat.st) {
|
|
const rotatedPoint = Matrix2.Matrix3.multiplyByVector(
|
|
textureMatrix,
|
|
position,
|
|
scratchCartesian2
|
|
);
|
|
const projectedPoint = projection.project(
|
|
ellipsoid.cartesianToCartographic(rotatedPoint, scratchCartographic),
|
|
scratchCartesian3
|
|
);
|
|
Matrix2.Cartesian3.subtract(projectedPoint, projectedCenter, projectedPoint);
|
|
|
|
texCoordScratch.x =
|
|
(projectedPoint.x + semiMajorAxis) / (2.0 * semiMajorAxis);
|
|
texCoordScratch.y =
|
|
(projectedPoint.y + semiMinorAxis) / (2.0 * semiMinorAxis);
|
|
|
|
minTexCoord.x = Math.min(texCoordScratch.x, minTexCoord.x);
|
|
minTexCoord.y = Math.min(texCoordScratch.y, minTexCoord.y);
|
|
maxTexCoord.x = Math.max(texCoordScratch.x, maxTexCoord.x);
|
|
maxTexCoord.y = Math.max(texCoordScratch.y, maxTexCoord.y);
|
|
|
|
if (extrude) {
|
|
textureCoordinates[textureCoordIndex + stOffset] = texCoordScratch.x;
|
|
textureCoordinates[textureCoordIndex + 1 + stOffset] =
|
|
texCoordScratch.y;
|
|
}
|
|
|
|
textureCoordinates[textureCoordIndex++] = texCoordScratch.x;
|
|
textureCoordinates[textureCoordIndex++] = texCoordScratch.y;
|
|
}
|
|
|
|
if (
|
|
vertexFormat.normal ||
|
|
vertexFormat.tangent ||
|
|
vertexFormat.bitangent ||
|
|
shadowVolume
|
|
) {
|
|
normal = ellipsoid.geodeticSurfaceNormal(position, normal);
|
|
|
|
if (shadowVolume) {
|
|
extrudeNormals[i + bottomOffset] = -normal.x;
|
|
extrudeNormals[i1 + bottomOffset] = -normal.y;
|
|
extrudeNormals[i2 + bottomOffset] = -normal.z;
|
|
}
|
|
|
|
if (
|
|
vertexFormat.normal ||
|
|
vertexFormat.tangent ||
|
|
vertexFormat.bitangent
|
|
) {
|
|
if (vertexFormat.tangent || vertexFormat.bitangent) {
|
|
tangent = Matrix2.Cartesian3.normalize(
|
|
Matrix2.Cartesian3.cross(Matrix2.Cartesian3.UNIT_Z, normal, tangent),
|
|
tangent
|
|
);
|
|
Matrix2.Matrix3.multiplyByVector(tangentMatrix, tangent, tangent);
|
|
}
|
|
if (vertexFormat.normal) {
|
|
normals[i] = normal.x;
|
|
normals[i1] = normal.y;
|
|
normals[i2] = normal.z;
|
|
if (extrude) {
|
|
normals[i + bottomOffset] = -normal.x;
|
|
normals[i1 + bottomOffset] = -normal.y;
|
|
normals[i2 + bottomOffset] = -normal.z;
|
|
}
|
|
}
|
|
|
|
if (vertexFormat.tangent) {
|
|
tangents[i] = tangent.x;
|
|
tangents[i1] = tangent.y;
|
|
tangents[i2] = tangent.z;
|
|
if (extrude) {
|
|
tangents[i + bottomOffset] = -tangent.x;
|
|
tangents[i1 + bottomOffset] = -tangent.y;
|
|
tangents[i2 + bottomOffset] = -tangent.z;
|
|
}
|
|
}
|
|
|
|
if (vertexFormat.bitangent) {
|
|
bitangent = Matrix2.Cartesian3.normalize(
|
|
Matrix2.Cartesian3.cross(normal, tangent, bitangent),
|
|
bitangent
|
|
);
|
|
bitangents[i] = bitangent.x;
|
|
bitangents[i1] = bitangent.y;
|
|
bitangents[i2] = bitangent.z;
|
|
if (extrude) {
|
|
bitangents[i + bottomOffset] = bitangent.x;
|
|
bitangents[i1 + bottomOffset] = bitangent.y;
|
|
bitangents[i2 + bottomOffset] = bitangent.z;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (vertexFormat.st) {
|
|
length = textureCoordinates.length;
|
|
for (let k = 0; k < length; k += 2) {
|
|
textureCoordinates[k] =
|
|
(textureCoordinates[k] - minTexCoord.x) /
|
|
(maxTexCoord.x - minTexCoord.x);
|
|
textureCoordinates[k + 1] =
|
|
(textureCoordinates[k + 1] - minTexCoord.y) /
|
|
(maxTexCoord.y - minTexCoord.y);
|
|
}
|
|
}
|
|
|
|
const attributes = new GeometryAttributes.GeometryAttributes();
|
|
|
|
if (vertexFormat.position) {
|
|
const finalPositions = EllipseGeometryLibrary.EllipseGeometryLibrary.raisePositionsToHeight(
|
|
positions,
|
|
options,
|
|
extrude
|
|
);
|
|
attributes.position = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
|
|
componentsPerAttribute: 3,
|
|
values: finalPositions,
|
|
});
|
|
}
|
|
|
|
if (vertexFormat.st) {
|
|
attributes.st = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 2,
|
|
values: textureCoordinates,
|
|
});
|
|
}
|
|
|
|
if (vertexFormat.normal) {
|
|
attributes.normal = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: normals,
|
|
});
|
|
}
|
|
|
|
if (vertexFormat.tangent) {
|
|
attributes.tangent = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: tangents,
|
|
});
|
|
}
|
|
|
|
if (vertexFormat.bitangent) {
|
|
attributes.bitangent = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: bitangents,
|
|
});
|
|
}
|
|
|
|
if (shadowVolume) {
|
|
attributes.extrudeDirection = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: extrudeNormals,
|
|
});
|
|
}
|
|
|
|
if (extrude && when.defined(options.offsetAttribute)) {
|
|
let offsetAttribute = new Uint8Array(size);
|
|
if (options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP) {
|
|
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, 1, 0, size / 2);
|
|
} else {
|
|
const offsetValue =
|
|
options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1;
|
|
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, offsetValue);
|
|
}
|
|
|
|
attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
|
|
componentsPerAttribute: 1,
|
|
values: offsetAttribute,
|
|
});
|
|
}
|
|
|
|
return attributes;
|
|
}
|
|
|
|
function topIndices(numPts) {
|
|
// numTriangles in half = 3 + 8 + 12 + ... = -1 + 4 + (4 + 4) + (4 + 4 + 4) + ... = -1 + 4 * (1 + 2 + 3 + ...)
|
|
// = -1 + 4 * ((n * ( n + 1)) / 2)
|
|
// total triangles = 2 * numTrangles in half
|
|
// indices = total triangles * 3;
|
|
// Substitute numPts for n above
|
|
|
|
const indices = new Array(12 * (numPts * (numPts + 1)) - 6);
|
|
let indicesIndex = 0;
|
|
let prevIndex;
|
|
let numInterior;
|
|
let positionIndex;
|
|
let i;
|
|
let j;
|
|
// Indices triangles to the 'right' of the north vector
|
|
|
|
prevIndex = 0;
|
|
positionIndex = 1;
|
|
for (i = 0; i < 3; i++) {
|
|
indices[indicesIndex++] = positionIndex++;
|
|
indices[indicesIndex++] = prevIndex;
|
|
indices[indicesIndex++] = positionIndex;
|
|
}
|
|
|
|
for (i = 2; i < numPts + 1; ++i) {
|
|
positionIndex = i * (i + 1) - 1;
|
|
prevIndex = (i - 1) * i - 1;
|
|
|
|
indices[indicesIndex++] = positionIndex++;
|
|
indices[indicesIndex++] = prevIndex;
|
|
indices[indicesIndex++] = positionIndex;
|
|
|
|
numInterior = 2 * i;
|
|
for (j = 0; j < numInterior - 1; ++j) {
|
|
indices[indicesIndex++] = positionIndex;
|
|
indices[indicesIndex++] = prevIndex++;
|
|
indices[indicesIndex++] = prevIndex;
|
|
|
|
indices[indicesIndex++] = positionIndex++;
|
|
indices[indicesIndex++] = prevIndex;
|
|
indices[indicesIndex++] = positionIndex;
|
|
}
|
|
|
|
indices[indicesIndex++] = positionIndex++;
|
|
indices[indicesIndex++] = prevIndex;
|
|
indices[indicesIndex++] = positionIndex;
|
|
}
|
|
|
|
// Indices for center column of triangles
|
|
numInterior = numPts * 2;
|
|
++positionIndex;
|
|
++prevIndex;
|
|
for (i = 0; i < numInterior - 1; ++i) {
|
|
indices[indicesIndex++] = positionIndex;
|
|
indices[indicesIndex++] = prevIndex++;
|
|
indices[indicesIndex++] = prevIndex;
|
|
|
|
indices[indicesIndex++] = positionIndex++;
|
|
indices[indicesIndex++] = prevIndex;
|
|
indices[indicesIndex++] = positionIndex;
|
|
}
|
|
|
|
indices[indicesIndex++] = positionIndex;
|
|
indices[indicesIndex++] = prevIndex++;
|
|
indices[indicesIndex++] = prevIndex;
|
|
|
|
indices[indicesIndex++] = positionIndex++;
|
|
indices[indicesIndex++] = prevIndex++;
|
|
indices[indicesIndex++] = prevIndex;
|
|
|
|
// Reverse the process creating indices to the 'left' of the north vector
|
|
++prevIndex;
|
|
for (i = numPts - 1; i > 1; --i) {
|
|
indices[indicesIndex++] = prevIndex++;
|
|
indices[indicesIndex++] = prevIndex;
|
|
indices[indicesIndex++] = positionIndex;
|
|
|
|
numInterior = 2 * i;
|
|
for (j = 0; j < numInterior - 1; ++j) {
|
|
indices[indicesIndex++] = positionIndex;
|
|
indices[indicesIndex++] = prevIndex++;
|
|
indices[indicesIndex++] = prevIndex;
|
|
|
|
indices[indicesIndex++] = positionIndex++;
|
|
indices[indicesIndex++] = prevIndex;
|
|
indices[indicesIndex++] = positionIndex;
|
|
}
|
|
|
|
indices[indicesIndex++] = prevIndex++;
|
|
indices[indicesIndex++] = prevIndex++;
|
|
indices[indicesIndex++] = positionIndex++;
|
|
}
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
indices[indicesIndex++] = prevIndex++;
|
|
indices[indicesIndex++] = prevIndex;
|
|
indices[indicesIndex++] = positionIndex;
|
|
}
|
|
return indices;
|
|
}
|
|
|
|
let boundingSphereCenter = new Matrix2.Cartesian3();
|
|
|
|
function computeEllipse(options) {
|
|
const center = options.center;
|
|
boundingSphereCenter = Matrix2.Cartesian3.multiplyByScalar(
|
|
options.ellipsoid.geodeticSurfaceNormal(center, boundingSphereCenter),
|
|
options.height,
|
|
boundingSphereCenter
|
|
);
|
|
boundingSphereCenter = Matrix2.Cartesian3.add(
|
|
center,
|
|
boundingSphereCenter,
|
|
boundingSphereCenter
|
|
);
|
|
const boundingSphere = new Transforms.BoundingSphere(
|
|
boundingSphereCenter,
|
|
options.semiMajorAxis
|
|
);
|
|
const cep = EllipseGeometryLibrary.EllipseGeometryLibrary.computeEllipsePositions(
|
|
options,
|
|
true,
|
|
false
|
|
);
|
|
const positions = cep.positions;
|
|
const numPts = cep.numPts;
|
|
const attributes = computeTopBottomAttributes(positions, options, false);
|
|
let indices = topIndices(numPts);
|
|
indices = IndexDatatype.IndexDatatype.createTypedArray(positions.length / 3, indices);
|
|
return {
|
|
boundingSphere: boundingSphere,
|
|
attributes: attributes,
|
|
indices: indices,
|
|
};
|
|
}
|
|
|
|
function computeWallAttributes(positions, options) {
|
|
const vertexFormat = options.vertexFormat;
|
|
const center = options.center;
|
|
const semiMajorAxis = options.semiMajorAxis;
|
|
const semiMinorAxis = options.semiMinorAxis;
|
|
const ellipsoid = options.ellipsoid;
|
|
const height = options.height;
|
|
const extrudedHeight = options.extrudedHeight;
|
|
const stRotation = options.stRotation;
|
|
const size = (positions.length / 3) * 2;
|
|
|
|
const finalPositions = new Float64Array(size * 3);
|
|
const textureCoordinates = vertexFormat.st
|
|
? new Float32Array(size * 2)
|
|
: undefined;
|
|
const normals = vertexFormat.normal ? new Float32Array(size * 3) : undefined;
|
|
const tangents = vertexFormat.tangent
|
|
? new Float32Array(size * 3)
|
|
: undefined;
|
|
const bitangents = vertexFormat.bitangent
|
|
? new Float32Array(size * 3)
|
|
: undefined;
|
|
|
|
const shadowVolume = options.shadowVolume;
|
|
const extrudeNormals = shadowVolume ? new Float32Array(size * 3) : undefined;
|
|
|
|
let textureCoordIndex = 0;
|
|
|
|
// Raise positions to a height above the ellipsoid and compute the
|
|
// texture coordinates, normals, tangents, and bitangents.
|
|
let normal = scratchNormal;
|
|
let tangent = scratchTangent;
|
|
let bitangent = scratchBitangent;
|
|
|
|
const projection = new Transforms.GeographicProjection(ellipsoid);
|
|
const projectedCenter = projection.project(
|
|
ellipsoid.cartesianToCartographic(center, scratchCartographic),
|
|
projectedCenterScratch
|
|
);
|
|
|
|
const geodeticNormal = ellipsoid.scaleToGeodeticSurface(
|
|
center,
|
|
scratchCartesian1
|
|
);
|
|
ellipsoid.geodeticSurfaceNormal(geodeticNormal, geodeticNormal);
|
|
const rotation = Transforms.Quaternion.fromAxisAngle(
|
|
geodeticNormal,
|
|
stRotation,
|
|
quaternionScratch
|
|
);
|
|
const textureMatrix = Matrix2.Matrix3.fromQuaternion(rotation, textureMatrixScratch);
|
|
|
|
const minTexCoord = Matrix2.Cartesian2.fromElements(
|
|
Number.POSITIVE_INFINITY,
|
|
Number.POSITIVE_INFINITY,
|
|
scratchMinTexCoord
|
|
);
|
|
const maxTexCoord = Matrix2.Cartesian2.fromElements(
|
|
Number.NEGATIVE_INFINITY,
|
|
Number.NEGATIVE_INFINITY,
|
|
scratchMaxTexCoord
|
|
);
|
|
|
|
let length = positions.length;
|
|
const stOffset = (length / 3) * 2;
|
|
for (let i = 0; i < length; i += 3) {
|
|
const i1 = i + 1;
|
|
const i2 = i + 2;
|
|
let position = Matrix2.Cartesian3.fromArray(positions, i, scratchCartesian1);
|
|
let extrudedPosition;
|
|
|
|
if (vertexFormat.st) {
|
|
const rotatedPoint = Matrix2.Matrix3.multiplyByVector(
|
|
textureMatrix,
|
|
position,
|
|
scratchCartesian2
|
|
);
|
|
const projectedPoint = projection.project(
|
|
ellipsoid.cartesianToCartographic(rotatedPoint, scratchCartographic),
|
|
scratchCartesian3
|
|
);
|
|
Matrix2.Cartesian3.subtract(projectedPoint, projectedCenter, projectedPoint);
|
|
|
|
texCoordScratch.x =
|
|
(projectedPoint.x + semiMajorAxis) / (2.0 * semiMajorAxis);
|
|
texCoordScratch.y =
|
|
(projectedPoint.y + semiMinorAxis) / (2.0 * semiMinorAxis);
|
|
|
|
minTexCoord.x = Math.min(texCoordScratch.x, minTexCoord.x);
|
|
minTexCoord.y = Math.min(texCoordScratch.y, minTexCoord.y);
|
|
maxTexCoord.x = Math.max(texCoordScratch.x, maxTexCoord.x);
|
|
maxTexCoord.y = Math.max(texCoordScratch.y, maxTexCoord.y);
|
|
|
|
textureCoordinates[textureCoordIndex + stOffset] = texCoordScratch.x;
|
|
textureCoordinates[textureCoordIndex + 1 + stOffset] = texCoordScratch.y;
|
|
|
|
textureCoordinates[textureCoordIndex++] = texCoordScratch.x;
|
|
textureCoordinates[textureCoordIndex++] = texCoordScratch.y;
|
|
}
|
|
|
|
position = ellipsoid.scaleToGeodeticSurface(position, position);
|
|
extrudedPosition = Matrix2.Cartesian3.clone(position, scratchCartesian2);
|
|
normal = ellipsoid.geodeticSurfaceNormal(position, normal);
|
|
|
|
if (shadowVolume) {
|
|
extrudeNormals[i + length] = -normal.x;
|
|
extrudeNormals[i1 + length] = -normal.y;
|
|
extrudeNormals[i2 + length] = -normal.z;
|
|
}
|
|
|
|
let scaledNormal = Matrix2.Cartesian3.multiplyByScalar(
|
|
normal,
|
|
height,
|
|
scratchCartesian4
|
|
);
|
|
position = Matrix2.Cartesian3.add(position, scaledNormal, position);
|
|
scaledNormal = Matrix2.Cartesian3.multiplyByScalar(
|
|
normal,
|
|
extrudedHeight,
|
|
scaledNormal
|
|
);
|
|
extrudedPosition = Matrix2.Cartesian3.add(
|
|
extrudedPosition,
|
|
scaledNormal,
|
|
extrudedPosition
|
|
);
|
|
|
|
if (vertexFormat.position) {
|
|
finalPositions[i + length] = extrudedPosition.x;
|
|
finalPositions[i1 + length] = extrudedPosition.y;
|
|
finalPositions[i2 + length] = extrudedPosition.z;
|
|
|
|
finalPositions[i] = position.x;
|
|
finalPositions[i1] = position.y;
|
|
finalPositions[i2] = position.z;
|
|
}
|
|
|
|
if (vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) {
|
|
bitangent = Matrix2.Cartesian3.clone(normal, bitangent);
|
|
const next = Matrix2.Cartesian3.fromArray(
|
|
positions,
|
|
(i + 3) % length,
|
|
scratchCartesian4
|
|
);
|
|
Matrix2.Cartesian3.subtract(next, position, next);
|
|
const bottom = Matrix2.Cartesian3.subtract(
|
|
extrudedPosition,
|
|
position,
|
|
scratchCartesian3
|
|
);
|
|
|
|
normal = Matrix2.Cartesian3.normalize(
|
|
Matrix2.Cartesian3.cross(bottom, next, normal),
|
|
normal
|
|
);
|
|
|
|
if (vertexFormat.normal) {
|
|
normals[i] = normal.x;
|
|
normals[i1] = normal.y;
|
|
normals[i2] = normal.z;
|
|
|
|
normals[i + length] = normal.x;
|
|
normals[i1 + length] = normal.y;
|
|
normals[i2 + length] = normal.z;
|
|
}
|
|
|
|
if (vertexFormat.tangent) {
|
|
tangent = Matrix2.Cartesian3.normalize(
|
|
Matrix2.Cartesian3.cross(bitangent, normal, tangent),
|
|
tangent
|
|
);
|
|
tangents[i] = tangent.x;
|
|
tangents[i1] = tangent.y;
|
|
tangents[i2] = tangent.z;
|
|
|
|
tangents[i + length] = tangent.x;
|
|
tangents[i + 1 + length] = tangent.y;
|
|
tangents[i + 2 + length] = tangent.z;
|
|
}
|
|
|
|
if (vertexFormat.bitangent) {
|
|
bitangents[i] = bitangent.x;
|
|
bitangents[i1] = bitangent.y;
|
|
bitangents[i2] = bitangent.z;
|
|
|
|
bitangents[i + length] = bitangent.x;
|
|
bitangents[i1 + length] = bitangent.y;
|
|
bitangents[i2 + length] = bitangent.z;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (vertexFormat.st) {
|
|
length = textureCoordinates.length;
|
|
for (let k = 0; k < length; k += 2) {
|
|
textureCoordinates[k] =
|
|
(textureCoordinates[k] - minTexCoord.x) /
|
|
(maxTexCoord.x - minTexCoord.x);
|
|
textureCoordinates[k + 1] =
|
|
(textureCoordinates[k + 1] - minTexCoord.y) /
|
|
(maxTexCoord.y - minTexCoord.y);
|
|
}
|
|
}
|
|
|
|
const attributes = new GeometryAttributes.GeometryAttributes();
|
|
|
|
if (vertexFormat.position) {
|
|
attributes.position = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
|
|
componentsPerAttribute: 3,
|
|
values: finalPositions,
|
|
});
|
|
}
|
|
|
|
if (vertexFormat.st) {
|
|
attributes.st = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 2,
|
|
values: textureCoordinates,
|
|
});
|
|
}
|
|
|
|
if (vertexFormat.normal) {
|
|
attributes.normal = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: normals,
|
|
});
|
|
}
|
|
|
|
if (vertexFormat.tangent) {
|
|
attributes.tangent = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: tangents,
|
|
});
|
|
}
|
|
|
|
if (vertexFormat.bitangent) {
|
|
attributes.bitangent = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: bitangents,
|
|
});
|
|
}
|
|
|
|
if (shadowVolume) {
|
|
attributes.extrudeDirection = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: extrudeNormals,
|
|
});
|
|
}
|
|
|
|
if (when.defined(options.offsetAttribute)) {
|
|
let offsetAttribute = new Uint8Array(size);
|
|
if (options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP) {
|
|
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, 1, 0, size / 2);
|
|
} else {
|
|
const offsetValue =
|
|
options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1;
|
|
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, offsetValue);
|
|
}
|
|
attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
|
|
componentsPerAttribute: 1,
|
|
values: offsetAttribute,
|
|
});
|
|
}
|
|
|
|
return attributes;
|
|
}
|
|
|
|
function computeWallIndices(positions) {
|
|
const length = positions.length / 3;
|
|
const indices = IndexDatatype.IndexDatatype.createTypedArray(length, length * 6);
|
|
let index = 0;
|
|
for (let i = 0; i < length; i++) {
|
|
const UL = i;
|
|
const LL = i + length;
|
|
const UR = (UL + 1) % length;
|
|
const LR = UR + length;
|
|
indices[index++] = UL;
|
|
indices[index++] = LL;
|
|
indices[index++] = UR;
|
|
indices[index++] = UR;
|
|
indices[index++] = LL;
|
|
indices[index++] = LR;
|
|
}
|
|
|
|
return indices;
|
|
}
|
|
|
|
const topBoundingSphere = new Transforms.BoundingSphere();
|
|
const bottomBoundingSphere = new Transforms.BoundingSphere();
|
|
|
|
function computeExtrudedEllipse(options) {
|
|
const center = options.center;
|
|
const ellipsoid = options.ellipsoid;
|
|
const semiMajorAxis = options.semiMajorAxis;
|
|
let scaledNormal = Matrix2.Cartesian3.multiplyByScalar(
|
|
ellipsoid.geodeticSurfaceNormal(center, scratchCartesian1),
|
|
options.height,
|
|
scratchCartesian1
|
|
);
|
|
topBoundingSphere.center = Matrix2.Cartesian3.add(
|
|
center,
|
|
scaledNormal,
|
|
topBoundingSphere.center
|
|
);
|
|
topBoundingSphere.radius = semiMajorAxis;
|
|
|
|
scaledNormal = Matrix2.Cartesian3.multiplyByScalar(
|
|
ellipsoid.geodeticSurfaceNormal(center, scaledNormal),
|
|
options.extrudedHeight,
|
|
scaledNormal
|
|
);
|
|
bottomBoundingSphere.center = Matrix2.Cartesian3.add(
|
|
center,
|
|
scaledNormal,
|
|
bottomBoundingSphere.center
|
|
);
|
|
bottomBoundingSphere.radius = semiMajorAxis;
|
|
|
|
const cep = EllipseGeometryLibrary.EllipseGeometryLibrary.computeEllipsePositions(
|
|
options,
|
|
true,
|
|
true
|
|
);
|
|
const positions = cep.positions;
|
|
const numPts = cep.numPts;
|
|
const outerPositions = cep.outerPositions;
|
|
const boundingSphere = Transforms.BoundingSphere.union(
|
|
topBoundingSphere,
|
|
bottomBoundingSphere
|
|
);
|
|
const topBottomAttributes = computeTopBottomAttributes(
|
|
positions,
|
|
options,
|
|
true
|
|
);
|
|
let indices = topIndices(numPts);
|
|
const length = indices.length;
|
|
indices.length = length * 2;
|
|
const posLength = positions.length / 3;
|
|
for (let i = 0; i < length; i += 3) {
|
|
indices[i + length] = indices[i + 2] + posLength;
|
|
indices[i + 1 + length] = indices[i + 1] + posLength;
|
|
indices[i + 2 + length] = indices[i] + posLength;
|
|
}
|
|
|
|
const topBottomIndices = IndexDatatype.IndexDatatype.createTypedArray(
|
|
(posLength * 2) / 3,
|
|
indices
|
|
);
|
|
|
|
const topBottomGeo = new GeometryAttribute.Geometry({
|
|
attributes: topBottomAttributes,
|
|
indices: topBottomIndices,
|
|
primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
|
|
});
|
|
|
|
const wallAttributes = computeWallAttributes(outerPositions, options);
|
|
indices = computeWallIndices(outerPositions);
|
|
const wallIndices = IndexDatatype.IndexDatatype.createTypedArray(
|
|
(outerPositions.length * 2) / 3,
|
|
indices
|
|
);
|
|
|
|
const wallGeo = new GeometryAttribute.Geometry({
|
|
attributes: wallAttributes,
|
|
indices: wallIndices,
|
|
primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
|
|
});
|
|
|
|
const geo = GeometryPipeline.GeometryPipeline.combineInstances([
|
|
new GeometryInstance.GeometryInstance({
|
|
geometry: topBottomGeo,
|
|
}),
|
|
new GeometryInstance.GeometryInstance({
|
|
geometry: wallGeo,
|
|
}),
|
|
]);
|
|
|
|
return {
|
|
boundingSphere: boundingSphere,
|
|
attributes: geo[0].attributes,
|
|
indices: geo[0].indices,
|
|
};
|
|
}
|
|
|
|
function computeRectangle(
|
|
center,
|
|
semiMajorAxis,
|
|
semiMinorAxis,
|
|
rotation,
|
|
granularity,
|
|
ellipsoid,
|
|
result
|
|
) {
|
|
const cep = EllipseGeometryLibrary.EllipseGeometryLibrary.computeEllipsePositions(
|
|
{
|
|
center: center,
|
|
semiMajorAxis: semiMajorAxis,
|
|
semiMinorAxis: semiMinorAxis,
|
|
rotation: rotation,
|
|
granularity: granularity,
|
|
},
|
|
false,
|
|
true
|
|
);
|
|
const positionsFlat = cep.outerPositions;
|
|
const positionsCount = positionsFlat.length / 3;
|
|
const positions = new Array(positionsCount);
|
|
for (let i = 0; i < positionsCount; ++i) {
|
|
positions[i] = Matrix2.Cartesian3.fromArray(positionsFlat, i * 3);
|
|
}
|
|
const rectangle = Matrix2.Rectangle.fromCartesianArray(positions, ellipsoid, result);
|
|
// Rectangle width goes beyond 180 degrees when the ellipse crosses a pole.
|
|
// When this happens, make the rectangle into a "circle" around the pole
|
|
if (rectangle.width > ComponentDatatype.CesiumMath.PI) {
|
|
rectangle.north =
|
|
rectangle.north > 0.0
|
|
? ComponentDatatype.CesiumMath.PI_OVER_TWO - ComponentDatatype.CesiumMath.EPSILON7
|
|
: rectangle.north;
|
|
rectangle.south =
|
|
rectangle.south < 0.0
|
|
? ComponentDatatype.CesiumMath.EPSILON7 - ComponentDatatype.CesiumMath.PI_OVER_TWO
|
|
: rectangle.south;
|
|
rectangle.east = ComponentDatatype.CesiumMath.PI;
|
|
rectangle.west = -ComponentDatatype.CesiumMath.PI;
|
|
}
|
|
return rectangle;
|
|
}
|
|
|
|
/**
|
|
* A description of an ellipse on an ellipsoid. Ellipse geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}.
|
|
*
|
|
* @alias EllipseGeometry
|
|
* @constructor
|
|
*
|
|
* @param {Object} options Object with the following properties:
|
|
* @param {Cartesian3} options.center The ellipse's center point in the fixed frame.
|
|
* @param {Number} options.semiMajorAxis The length of the ellipse's semi-major axis in meters.
|
|
* @param {Number} options.semiMinorAxis The length of the ellipse's semi-minor axis in meters.
|
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid the ellipse will be on.
|
|
* @param {Number} [options.height=0.0] The distance in meters between the ellipse and the ellipsoid surface.
|
|
* @param {Number} [options.extrudedHeight] The distance in meters between the ellipse's extruded face and the ellipsoid surface.
|
|
* @param {Number} [options.rotation=0.0] The angle of rotation counter-clockwise from north.
|
|
* @param {Number} [options.stRotation=0.0] The rotation of the texture coordinates counter-clockwise from north.
|
|
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The angular distance between points on the ellipse in radians.
|
|
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
|
|
*
|
|
* @exception {DeveloperError} semiMajorAxis and semiMinorAxis must be greater than zero.
|
|
* @exception {DeveloperError} semiMajorAxis must be greater than or equal to the semiMinorAxis.
|
|
* @exception {DeveloperError} granularity must be greater than zero.
|
|
*
|
|
*
|
|
* @example
|
|
* // Create an ellipse.
|
|
* const ellipse = new Cesium.EllipseGeometry({
|
|
* center : Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883),
|
|
* semiMajorAxis : 500000.0,
|
|
* semiMinorAxis : 300000.0,
|
|
* rotation : Cesium.Math.toRadians(60.0)
|
|
* });
|
|
* const geometry = Cesium.EllipseGeometry.createGeometry(ellipse);
|
|
*
|
|
* @see EllipseGeometry.createGeometry
|
|
*/
|
|
function EllipseGeometry(options) {
|
|
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
|
|
|
|
const center = options.center;
|
|
const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84);
|
|
const semiMajorAxis = options.semiMajorAxis;
|
|
const semiMinorAxis = options.semiMinorAxis;
|
|
const granularity = when.defaultValue(
|
|
options.granularity,
|
|
ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE
|
|
);
|
|
const vertexFormat = when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT);
|
|
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.defined("options.center", center);
|
|
RuntimeError.Check.typeOf.number("options.semiMajorAxis", semiMajorAxis);
|
|
RuntimeError.Check.typeOf.number("options.semiMinorAxis", semiMinorAxis);
|
|
if (semiMajorAxis < semiMinorAxis) {
|
|
throw new RuntimeError.DeveloperError(
|
|
"semiMajorAxis must be greater than or equal to the semiMinorAxis."
|
|
);
|
|
}
|
|
if (granularity <= 0.0) {
|
|
throw new RuntimeError.DeveloperError("granularity must be greater than zero.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
const height = when.defaultValue(options.height, 0.0);
|
|
const extrudedHeight = when.defaultValue(options.extrudedHeight, height);
|
|
|
|
this._center = Matrix2.Cartesian3.clone(center);
|
|
this._semiMajorAxis = semiMajorAxis;
|
|
this._semiMinorAxis = semiMinorAxis;
|
|
this._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid);
|
|
this._rotation = when.defaultValue(options.rotation, 0.0);
|
|
this._stRotation = when.defaultValue(options.stRotation, 0.0);
|
|
this._height = Math.max(extrudedHeight, height);
|
|
this._granularity = granularity;
|
|
this._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat);
|
|
this._extrudedHeight = Math.min(extrudedHeight, height);
|
|
this._shadowVolume = when.defaultValue(options.shadowVolume, false);
|
|
this._workerName = "createEllipseGeometry";
|
|
this._offsetAttribute = options.offsetAttribute;
|
|
|
|
this._rectangle = undefined;
|
|
this._textureCoordinateRotationPoints = undefined;
|
|
}
|
|
|
|
/**
|
|
* The number of elements used to pack the object into an array.
|
|
* @type {Number}
|
|
*/
|
|
EllipseGeometry.packedLength =
|
|
Matrix2.Cartesian3.packedLength +
|
|
Matrix2.Ellipsoid.packedLength +
|
|
VertexFormat.VertexFormat.packedLength +
|
|
9;
|
|
|
|
/**
|
|
* Stores the provided instance into the provided array.
|
|
*
|
|
* @param {EllipseGeometry} value The value to pack.
|
|
* @param {Number[]} array The array to pack into.
|
|
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
|
|
*
|
|
* @returns {Number[]} The array that was packed into
|
|
*/
|
|
EllipseGeometry.pack = function (value, array, startingIndex) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.defined("value", value);
|
|
RuntimeError.Check.defined("array", array);
|
|
//>>includeEnd('debug');
|
|
|
|
startingIndex = when.defaultValue(startingIndex, 0);
|
|
|
|
Matrix2.Cartesian3.pack(value._center, array, startingIndex);
|
|
startingIndex += Matrix2.Cartesian3.packedLength;
|
|
|
|
Matrix2.Ellipsoid.pack(value._ellipsoid, array, startingIndex);
|
|
startingIndex += Matrix2.Ellipsoid.packedLength;
|
|
|
|
VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex);
|
|
startingIndex += VertexFormat.VertexFormat.packedLength;
|
|
|
|
array[startingIndex++] = value._semiMajorAxis;
|
|
array[startingIndex++] = value._semiMinorAxis;
|
|
array[startingIndex++] = value._rotation;
|
|
array[startingIndex++] = value._stRotation;
|
|
array[startingIndex++] = value._height;
|
|
array[startingIndex++] = value._granularity;
|
|
array[startingIndex++] = value._extrudedHeight;
|
|
array[startingIndex++] = value._shadowVolume ? 1.0 : 0.0;
|
|
array[startingIndex] = when.defaultValue(value._offsetAttribute, -1);
|
|
|
|
return array;
|
|
};
|
|
|
|
const scratchCenter = new Matrix2.Cartesian3();
|
|
const scratchEllipsoid = new Matrix2.Ellipsoid();
|
|
const scratchVertexFormat = new VertexFormat.VertexFormat();
|
|
const scratchOptions = {
|
|
center: scratchCenter,
|
|
ellipsoid: scratchEllipsoid,
|
|
vertexFormat: scratchVertexFormat,
|
|
semiMajorAxis: undefined,
|
|
semiMinorAxis: undefined,
|
|
rotation: undefined,
|
|
stRotation: undefined,
|
|
height: undefined,
|
|
granularity: undefined,
|
|
extrudedHeight: undefined,
|
|
shadowVolume: undefined,
|
|
offsetAttribute: undefined,
|
|
};
|
|
|
|
/**
|
|
* Retrieves an instance from a packed array.
|
|
*
|
|
* @param {Number[]} array The packed array.
|
|
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
|
|
* @param {EllipseGeometry} [result] The object into which to store the result.
|
|
* @returns {EllipseGeometry} The modified result parameter or a new EllipseGeometry instance if one was not provided.
|
|
*/
|
|
EllipseGeometry.unpack = function (array, startingIndex, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.defined("array", array);
|
|
//>>includeEnd('debug');
|
|
|
|
startingIndex = when.defaultValue(startingIndex, 0);
|
|
|
|
const center = Matrix2.Cartesian3.unpack(array, startingIndex, scratchCenter);
|
|
startingIndex += Matrix2.Cartesian3.packedLength;
|
|
|
|
const ellipsoid = Matrix2.Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);
|
|
startingIndex += Matrix2.Ellipsoid.packedLength;
|
|
|
|
const vertexFormat = VertexFormat.VertexFormat.unpack(
|
|
array,
|
|
startingIndex,
|
|
scratchVertexFormat
|
|
);
|
|
startingIndex += VertexFormat.VertexFormat.packedLength;
|
|
|
|
const semiMajorAxis = array[startingIndex++];
|
|
const semiMinorAxis = array[startingIndex++];
|
|
const rotation = array[startingIndex++];
|
|
const stRotation = array[startingIndex++];
|
|
const height = array[startingIndex++];
|
|
const granularity = array[startingIndex++];
|
|
const extrudedHeight = array[startingIndex++];
|
|
const shadowVolume = array[startingIndex++] === 1.0;
|
|
const offsetAttribute = array[startingIndex];
|
|
|
|
if (!when.defined(result)) {
|
|
scratchOptions.height = height;
|
|
scratchOptions.extrudedHeight = extrudedHeight;
|
|
scratchOptions.granularity = granularity;
|
|
scratchOptions.stRotation = stRotation;
|
|
scratchOptions.rotation = rotation;
|
|
scratchOptions.semiMajorAxis = semiMajorAxis;
|
|
scratchOptions.semiMinorAxis = semiMinorAxis;
|
|
scratchOptions.shadowVolume = shadowVolume;
|
|
scratchOptions.offsetAttribute =
|
|
offsetAttribute === -1 ? undefined : offsetAttribute;
|
|
|
|
return new EllipseGeometry(scratchOptions);
|
|
}
|
|
|
|
result._center = Matrix2.Cartesian3.clone(center, result._center);
|
|
result._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid, result._ellipsoid);
|
|
result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat);
|
|
result._semiMajorAxis = semiMajorAxis;
|
|
result._semiMinorAxis = semiMinorAxis;
|
|
result._rotation = rotation;
|
|
result._stRotation = stRotation;
|
|
result._height = height;
|
|
result._granularity = granularity;
|
|
result._extrudedHeight = extrudedHeight;
|
|
result._shadowVolume = shadowVolume;
|
|
result._offsetAttribute =
|
|
offsetAttribute === -1 ? undefined : offsetAttribute;
|
|
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Computes the bounding rectangle based on the provided options
|
|
*
|
|
* @param {Object} options Object with the following properties:
|
|
* @param {Cartesian3} options.center The ellipse's center point in the fixed frame.
|
|
* @param {Number} options.semiMajorAxis The length of the ellipse's semi-major axis in meters.
|
|
* @param {Number} options.semiMinorAxis The length of the ellipse's semi-minor axis in meters.
|
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid the ellipse will be on.
|
|
* @param {Number} [options.rotation=0.0] The angle of rotation counter-clockwise from north.
|
|
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The angular distance between points on the ellipse in radians.
|
|
* @param {Rectangle} [result] An object in which to store the result
|
|
*
|
|
* @returns {Rectangle} The result rectangle
|
|
*/
|
|
EllipseGeometry.computeRectangle = function (options, result) {
|
|
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
|
|
|
|
const center = options.center;
|
|
const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84);
|
|
const semiMajorAxis = options.semiMajorAxis;
|
|
const semiMinorAxis = options.semiMinorAxis;
|
|
const granularity = when.defaultValue(
|
|
options.granularity,
|
|
ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE
|
|
);
|
|
const rotation = when.defaultValue(options.rotation, 0.0);
|
|
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.defined("options.center", center);
|
|
RuntimeError.Check.typeOf.number("options.semiMajorAxis", semiMajorAxis);
|
|
RuntimeError.Check.typeOf.number("options.semiMinorAxis", semiMinorAxis);
|
|
if (semiMajorAxis < semiMinorAxis) {
|
|
throw new RuntimeError.DeveloperError(
|
|
"semiMajorAxis must be greater than or equal to the semiMinorAxis."
|
|
);
|
|
}
|
|
if (granularity <= 0.0) {
|
|
throw new RuntimeError.DeveloperError("granularity must be greater than zero.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
return computeRectangle(
|
|
center,
|
|
semiMajorAxis,
|
|
semiMinorAxis,
|
|
rotation,
|
|
granularity,
|
|
ellipsoid,
|
|
result
|
|
);
|
|
};
|
|
|
|
/**
|
|
* Computes the geometric representation of a ellipse on an ellipsoid, including its vertices, indices, and a bounding sphere.
|
|
*
|
|
* @param {EllipseGeometry} ellipseGeometry A description of the ellipse.
|
|
* @returns {Geometry|undefined} The computed vertices and indices.
|
|
*/
|
|
EllipseGeometry.createGeometry = function (ellipseGeometry) {
|
|
if (
|
|
ellipseGeometry._semiMajorAxis <= 0.0 ||
|
|
ellipseGeometry._semiMinorAxis <= 0.0
|
|
) {
|
|
return;
|
|
}
|
|
|
|
const height = ellipseGeometry._height;
|
|
const extrudedHeight = ellipseGeometry._extrudedHeight;
|
|
const extrude = !ComponentDatatype.CesiumMath.equalsEpsilon(
|
|
height,
|
|
extrudedHeight,
|
|
0,
|
|
ComponentDatatype.CesiumMath.EPSILON2
|
|
);
|
|
|
|
ellipseGeometry._center = ellipseGeometry._ellipsoid.scaleToGeodeticSurface(
|
|
ellipseGeometry._center,
|
|
ellipseGeometry._center
|
|
);
|
|
const options = {
|
|
center: ellipseGeometry._center,
|
|
semiMajorAxis: ellipseGeometry._semiMajorAxis,
|
|
semiMinorAxis: ellipseGeometry._semiMinorAxis,
|
|
ellipsoid: ellipseGeometry._ellipsoid,
|
|
rotation: ellipseGeometry._rotation,
|
|
height: height,
|
|
granularity: ellipseGeometry._granularity,
|
|
vertexFormat: ellipseGeometry._vertexFormat,
|
|
stRotation: ellipseGeometry._stRotation,
|
|
};
|
|
let geometry;
|
|
if (extrude) {
|
|
options.extrudedHeight = extrudedHeight;
|
|
options.shadowVolume = ellipseGeometry._shadowVolume;
|
|
options.offsetAttribute = ellipseGeometry._offsetAttribute;
|
|
geometry = computeExtrudedEllipse(options);
|
|
} else {
|
|
geometry = computeEllipse(options);
|
|
|
|
if (when.defined(ellipseGeometry._offsetAttribute)) {
|
|
const length = geometry.attributes.position.values.length;
|
|
const applyOffset = new Uint8Array(length / 3);
|
|
const offsetValue =
|
|
ellipseGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE
|
|
? 0
|
|
: 1;
|
|
GeometryOffsetAttribute.arrayFill(applyOffset, offsetValue);
|
|
geometry.attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
|
|
componentsPerAttribute: 1,
|
|
values: applyOffset,
|
|
});
|
|
}
|
|
}
|
|
|
|
return new GeometryAttribute.Geometry({
|
|
attributes: geometry.attributes,
|
|
indices: geometry.indices,
|
|
primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
|
|
boundingSphere: geometry.boundingSphere,
|
|
offsetAttribute: ellipseGeometry._offsetAttribute,
|
|
});
|
|
};
|
|
|
|
/**
|
|
* @private
|
|
*/
|
|
EllipseGeometry.createShadowVolume = function (
|
|
ellipseGeometry,
|
|
minHeightFunc,
|
|
maxHeightFunc
|
|
) {
|
|
const granularity = ellipseGeometry._granularity;
|
|
const ellipsoid = ellipseGeometry._ellipsoid;
|
|
|
|
const minHeight = minHeightFunc(granularity, ellipsoid);
|
|
const maxHeight = maxHeightFunc(granularity, ellipsoid);
|
|
|
|
return new EllipseGeometry({
|
|
center: ellipseGeometry._center,
|
|
semiMajorAxis: ellipseGeometry._semiMajorAxis,
|
|
semiMinorAxis: ellipseGeometry._semiMinorAxis,
|
|
ellipsoid: ellipsoid,
|
|
rotation: ellipseGeometry._rotation,
|
|
stRotation: ellipseGeometry._stRotation,
|
|
granularity: granularity,
|
|
extrudedHeight: minHeight,
|
|
height: maxHeight,
|
|
vertexFormat: VertexFormat.VertexFormat.POSITION_ONLY,
|
|
shadowVolume: true,
|
|
});
|
|
};
|
|
|
|
function textureCoordinateRotationPoints(ellipseGeometry) {
|
|
const stRotation = -ellipseGeometry._stRotation;
|
|
if (stRotation === 0.0) {
|
|
return [0, 0, 0, 1, 1, 0];
|
|
}
|
|
|
|
const cep = EllipseGeometryLibrary.EllipseGeometryLibrary.computeEllipsePositions(
|
|
{
|
|
center: ellipseGeometry._center,
|
|
semiMajorAxis: ellipseGeometry._semiMajorAxis,
|
|
semiMinorAxis: ellipseGeometry._semiMinorAxis,
|
|
rotation: ellipseGeometry._rotation,
|
|
granularity: ellipseGeometry._granularity,
|
|
},
|
|
false,
|
|
true
|
|
);
|
|
const positionsFlat = cep.outerPositions;
|
|
const positionsCount = positionsFlat.length / 3;
|
|
const positions = new Array(positionsCount);
|
|
for (let i = 0; i < positionsCount; ++i) {
|
|
positions[i] = Matrix2.Cartesian3.fromArray(positionsFlat, i * 3);
|
|
}
|
|
|
|
const ellipsoid = ellipseGeometry._ellipsoid;
|
|
const boundingRectangle = ellipseGeometry.rectangle;
|
|
return GeometryAttribute.Geometry._textureCoordinateRotationPoints(
|
|
positions,
|
|
stRotation,
|
|
ellipsoid,
|
|
boundingRectangle
|
|
);
|
|
}
|
|
|
|
Object.defineProperties(EllipseGeometry.prototype, {
|
|
/**
|
|
* @private
|
|
*/
|
|
rectangle: {
|
|
get: function () {
|
|
if (!when.defined(this._rectangle)) {
|
|
this._rectangle = computeRectangle(
|
|
this._center,
|
|
this._semiMajorAxis,
|
|
this._semiMinorAxis,
|
|
this._rotation,
|
|
this._granularity,
|
|
this._ellipsoid
|
|
);
|
|
}
|
|
return this._rectangle;
|
|
},
|
|
},
|
|
/**
|
|
* For remapping texture coordinates when rendering EllipseGeometries as GroundPrimitives.
|
|
* @private
|
|
*/
|
|
textureCoordinateRotationPoints: {
|
|
get: function () {
|
|
if (!when.defined(this._textureCoordinateRotationPoints)) {
|
|
this._textureCoordinateRotationPoints = textureCoordinateRotationPoints(
|
|
this
|
|
);
|
|
}
|
|
return this._textureCoordinateRotationPoints;
|
|
},
|
|
},
|
|
});
|
|
|
|
exports.EllipseGeometry = EllipseGeometry;
|
|
|
|
}));
|
|
//# sourceMappingURL=EllipseGeometry-3ffe669c.js.map
|