qd-changjing/public/static/Build/CesiumUnminified/Workers/AttributeCompression-442278...

710 lines
23 KiB
JavaScript

/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['exports', './Matrix2-265d9610', './ComponentDatatype-aad54330', './RuntimeError-5b082e8f', './when-4bbc8319'], (function (exports, Matrix2, ComponentDatatype, RuntimeError, when) { 'use strict';
/**
* An enum describing the attribute type for glTF and 3D Tiles.
*
* @enum {String}
*
* @private
*/
const AttributeType = {
/**
* The attribute is a single component.
*
* @type {String}
* @constant
*/
SCALAR: "SCALAR",
/**
* The attribute is a two-component vector.
*
* @type {String}
* @constant
*/
VEC2: "VEC2",
/**
* The attribute is a three-component vector.
*
* @type {String}
* @constant
*/
VEC3: "VEC3",
/**
* The attribute is a four-component vector.
*
* @type {String}
* @constant
*/
VEC4: "VEC4",
/**
* The attribute is a 2x2 matrix.
*
* @type {String}
* @constant
*/
MAT2: "MAT2",
/**
* The attribute is a 3x3 matrix.
*
* @type {String}
* @constant
*/
MAT3: "MAT3",
/**
* The attribute is a 4x4 matrix.
*
* @type {String}
* @constant
*/
MAT4: "MAT4",
};
/**
* Gets the scalar, vector, or matrix type for the attribute type.
*
* @param {AttributeType} attributeType The attribute type.
* @returns {*} The math type.
*
* @private
*/
AttributeType.getMathType = function (attributeType) {
switch (attributeType) {
case AttributeType.SCALAR:
return Number;
case AttributeType.VEC2:
return Matrix2.Cartesian2;
case AttributeType.VEC3:
return Matrix2.Cartesian3;
case AttributeType.VEC4:
return Matrix2.Cartesian4;
case AttributeType.MAT2:
return Matrix2.Matrix2;
case AttributeType.MAT3:
return Matrix2.Matrix3;
case AttributeType.MAT4:
return Matrix2.Matrix4;
//>>includeStart('debug', pragmas.debug);
default:
throw new RuntimeError.DeveloperError("attributeType is not a valid value.");
//>>includeEnd('debug');
}
};
/**
* Gets the number of components per attribute.
*
* @param {AttributeType} attributeType The attribute type.
* @returns {Number} The number of components.
*
* @private
*/
AttributeType.getNumberOfComponents = function (attributeType) {
switch (attributeType) {
case AttributeType.SCALAR:
return 1;
case AttributeType.VEC2:
return 2;
case AttributeType.VEC3:
return 3;
case AttributeType.VEC4:
case AttributeType.MAT2:
return 4;
case AttributeType.MAT3:
return 9;
case AttributeType.MAT4:
return 16;
//>>includeStart('debug', pragmas.debug);
default:
throw new RuntimeError.DeveloperError("attributeType is not a valid value.");
//>>includeEnd('debug');
}
};
/**
* Gets the GLSL type for the attribute type.
*
* @param {AttributeType} attributeType The attribute type.
* @returns {String} The GLSL type for the attribute type.
*
* @private
*/
AttributeType.getGlslType = function (attributeType) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.string("attributeType", attributeType);
//>>includeEnd('debug');
switch (attributeType) {
case AttributeType.SCALAR:
return "float";
case AttributeType.VEC2:
return "vec2";
case AttributeType.VEC3:
return "vec3";
case AttributeType.VEC4:
return "vec4";
case AttributeType.MAT2:
return "mat2";
case AttributeType.MAT3:
return "mat3";
case AttributeType.MAT4:
return "mat4";
//>>includeStart('debug', pragmas.debug);
default:
throw new RuntimeError.DeveloperError("attributeType is not a valid value.");
//>>includeEnd('debug');
}
};
var AttributeType$1 = Object.freeze(AttributeType);
const RIGHT_SHIFT = 1.0 / 256.0;
const LEFT_SHIFT = 256.0;
/**
* Attribute compression and decompression functions.
*
* @namespace AttributeCompression
*
* @private
*/
const AttributeCompression = {};
/**
* Encodes a normalized vector into 2 SNORM values in the range of [0-rangeMax] following the 'oct' encoding.
*
* Oct encoding is a compact representation of unit length vectors.
* The 'oct' encoding is described in "A Survey of Efficient Representations of Independent Unit Vectors",
* Cigolle et al 2014: {@link http://jcgt.org/published/0003/02/01/}
*
* @param {Cartesian3} vector The normalized vector to be compressed into 2 component 'oct' encoding.
* @param {Cartesian2} result The 2 component oct-encoded unit length vector.
* @param {Number} rangeMax The maximum value of the SNORM range. The encoded vector is stored in log2(rangeMax+1) bits.
* @returns {Cartesian2} The 2 component oct-encoded unit length vector.
*
* @exception {DeveloperError} vector must be normalized.
*
* @see AttributeCompression.octDecodeInRange
*/
AttributeCompression.octEncodeInRange = function (vector, rangeMax, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("vector", vector);
RuntimeError.Check.defined("result", result);
const magSquared = Matrix2.Cartesian3.magnitudeSquared(vector);
if (Math.abs(magSquared - 1.0) > ComponentDatatype.CesiumMath.EPSILON6) {
throw new RuntimeError.DeveloperError("vector must be normalized.");
}
//>>includeEnd('debug');
result.x =
vector.x / (Math.abs(vector.x) + Math.abs(vector.y) + Math.abs(vector.z));
result.y =
vector.y / (Math.abs(vector.x) + Math.abs(vector.y) + Math.abs(vector.z));
if (vector.z < 0) {
const x = result.x;
const y = result.y;
result.x = (1.0 - Math.abs(y)) * ComponentDatatype.CesiumMath.signNotZero(x);
result.y = (1.0 - Math.abs(x)) * ComponentDatatype.CesiumMath.signNotZero(y);
}
result.x = ComponentDatatype.CesiumMath.toSNorm(result.x, rangeMax);
result.y = ComponentDatatype.CesiumMath.toSNorm(result.y, rangeMax);
return result;
};
/**
* Encodes a normalized vector into 2 SNORM values in the range of [0-255] following the 'oct' encoding.
*
* @param {Cartesian3} vector The normalized vector to be compressed into 2 byte 'oct' encoding.
* @param {Cartesian2} result The 2 byte oct-encoded unit length vector.
* @returns {Cartesian2} The 2 byte oct-encoded unit length vector.
*
* @exception {DeveloperError} vector must be normalized.
*
* @see AttributeCompression.octEncodeInRange
* @see AttributeCompression.octDecode
*/
AttributeCompression.octEncode = function (vector, result) {
return AttributeCompression.octEncodeInRange(vector, 255, result);
};
const octEncodeScratch = new Matrix2.Cartesian2();
const uint8ForceArray = new Uint8Array(1);
function forceUint8(value) {
uint8ForceArray[0] = value;
return uint8ForceArray[0];
}
/**
* @param {Cartesian3} vector The normalized vector to be compressed into 4 byte 'oct' encoding.
* @param {Cartesian4} result The 4 byte oct-encoded unit length vector.
* @returns {Cartesian4} The 4 byte oct-encoded unit length vector.
*
* @exception {DeveloperError} vector must be normalized.
*
* @see AttributeCompression.octEncodeInRange
* @see AttributeCompression.octDecodeFromCartesian4
*/
AttributeCompression.octEncodeToCartesian4 = function (vector, result) {
AttributeCompression.octEncodeInRange(vector, 65535, octEncodeScratch);
result.x = forceUint8(octEncodeScratch.x * RIGHT_SHIFT);
result.y = forceUint8(octEncodeScratch.x);
result.z = forceUint8(octEncodeScratch.y * RIGHT_SHIFT);
result.w = forceUint8(octEncodeScratch.y);
return result;
};
/**
* Decodes a unit-length vector in 'oct' encoding to a normalized 3-component vector.
*
* @param {Number} x The x component of the oct-encoded unit length vector.
* @param {Number} y The y component of the oct-encoded unit length vector.
* @param {Number} rangeMax The maximum value of the SNORM range. The encoded vector is stored in log2(rangeMax+1) bits.
* @param {Cartesian3} result The decoded and normalized vector
* @returns {Cartesian3} The decoded and normalized vector.
*
* @exception {DeveloperError} x and y must be unsigned normalized integers between 0 and rangeMax.
*
* @see AttributeCompression.octEncodeInRange
*/
AttributeCompression.octDecodeInRange = function (x, y, rangeMax, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("result", result);
if (x < 0 || x > rangeMax || y < 0 || y > rangeMax) {
throw new RuntimeError.DeveloperError(
`x and y must be unsigned normalized integers between 0 and ${rangeMax}`
);
}
//>>includeEnd('debug');
result.x = ComponentDatatype.CesiumMath.fromSNorm(x, rangeMax);
result.y = ComponentDatatype.CesiumMath.fromSNorm(y, rangeMax);
result.z = 1.0 - (Math.abs(result.x) + Math.abs(result.y));
if (result.z < 0.0) {
const oldVX = result.x;
result.x = (1.0 - Math.abs(result.y)) * ComponentDatatype.CesiumMath.signNotZero(oldVX);
result.y = (1.0 - Math.abs(oldVX)) * ComponentDatatype.CesiumMath.signNotZero(result.y);
}
return Matrix2.Cartesian3.normalize(result, result);
};
/**
* Decodes a unit-length vector in 2 byte 'oct' encoding to a normalized 3-component vector.
*
* @param {Number} x The x component of the oct-encoded unit length vector.
* @param {Number} y The y component of the oct-encoded unit length vector.
* @param {Cartesian3} result The decoded and normalized vector.
* @returns {Cartesian3} The decoded and normalized vector.
*
* @exception {DeveloperError} x and y must be an unsigned normalized integer between 0 and 255.
*
* @see AttributeCompression.octDecodeInRange
*/
AttributeCompression.octDecode = function (x, y, result) {
return AttributeCompression.octDecodeInRange(x, y, 255, result);
};
/**
* Decodes a unit-length vector in 4 byte 'oct' encoding to a normalized 3-component vector.
*
* @param {Cartesian4} encoded The oct-encoded unit length vector.
* @param {Cartesian3} result The decoded and normalized vector.
* @returns {Cartesian3} The decoded and normalized vector.
*
* @exception {DeveloperError} x, y, z, and w must be unsigned normalized integers between 0 and 255.
*
* @see AttributeCompression.octDecodeInRange
* @see AttributeCompression.octEncodeToCartesian4
*/
AttributeCompression.octDecodeFromCartesian4 = function (encoded, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("encoded", encoded);
RuntimeError.Check.typeOf.object("result", result);
//>>includeEnd('debug');
const x = encoded.x;
const y = encoded.y;
const z = encoded.z;
const w = encoded.w;
//>>includeStart('debug', pragmas.debug);
if (
x < 0 ||
x > 255 ||
y < 0 ||
y > 255 ||
z < 0 ||
z > 255 ||
w < 0 ||
w > 255
) {
throw new RuntimeError.DeveloperError(
"x, y, z, and w must be unsigned normalized integers between 0 and 255"
);
}
//>>includeEnd('debug');
const xOct16 = x * LEFT_SHIFT + y;
const yOct16 = z * LEFT_SHIFT + w;
return AttributeCompression.octDecodeInRange(xOct16, yOct16, 65535, result);
};
/**
* Packs an oct encoded vector into a single floating-point number.
*
* @param {Cartesian2} encoded The oct encoded vector.
* @returns {Number} The oct encoded vector packed into a single float.
*
*/
AttributeCompression.octPackFloat = function (encoded) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("encoded", encoded);
//>>includeEnd('debug');
return 256.0 * encoded.x + encoded.y;
};
const scratchEncodeCart2 = new Matrix2.Cartesian2();
/**
* Encodes a normalized vector into 2 SNORM values in the range of [0-255] following the 'oct' encoding and
* stores those values in a single float-point number.
*
* @param {Cartesian3} vector The normalized vector to be compressed into 2 byte 'oct' encoding.
* @returns {Number} The 2 byte oct-encoded unit length vector.
*
* @exception {DeveloperError} vector must be normalized.
*/
AttributeCompression.octEncodeFloat = function (vector) {
AttributeCompression.octEncode(vector, scratchEncodeCart2);
return AttributeCompression.octPackFloat(scratchEncodeCart2);
};
/**
* Decodes a unit-length vector in 'oct' encoding packed in a floating-point number to a normalized 3-component vector.
*
* @param {Number} value The oct-encoded unit length vector stored as a single floating-point number.
* @param {Cartesian3} result The decoded and normalized vector
* @returns {Cartesian3} The decoded and normalized vector.
*
*/
AttributeCompression.octDecodeFloat = function (value, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("value", value);
//>>includeEnd('debug');
const temp = value / 256.0;
const x = Math.floor(temp);
const y = (temp - x) * 256.0;
return AttributeCompression.octDecode(x, y, result);
};
/**
* Encodes three normalized vectors into 6 SNORM values in the range of [0-255] following the 'oct' encoding and
* packs those into two floating-point numbers.
*
* @param {Cartesian3} v1 A normalized vector to be compressed.
* @param {Cartesian3} v2 A normalized vector to be compressed.
* @param {Cartesian3} v3 A normalized vector to be compressed.
* @param {Cartesian2} result The 'oct' encoded vectors packed into two floating-point numbers.
* @returns {Cartesian2} The 'oct' encoded vectors packed into two floating-point numbers.
*
*/
AttributeCompression.octPack = function (v1, v2, v3, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("v1", v1);
RuntimeError.Check.defined("v2", v2);
RuntimeError.Check.defined("v3", v3);
RuntimeError.Check.defined("result", result);
//>>includeEnd('debug');
const encoded1 = AttributeCompression.octEncodeFloat(v1);
const encoded2 = AttributeCompression.octEncodeFloat(v2);
const encoded3 = AttributeCompression.octEncode(v3, scratchEncodeCart2);
result.x = 65536.0 * encoded3.x + encoded1;
result.y = 65536.0 * encoded3.y + encoded2;
return result;
};
/**
* Decodes three unit-length vectors in 'oct' encoding packed into a floating-point number to a normalized 3-component vector.
*
* @param {Cartesian2} packed The three oct-encoded unit length vectors stored as two floating-point number.
* @param {Cartesian3} v1 One decoded and normalized vector.
* @param {Cartesian3} v2 One decoded and normalized vector.
* @param {Cartesian3} v3 One decoded and normalized vector.
*/
AttributeCompression.octUnpack = function (packed, v1, v2, v3) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("packed", packed);
RuntimeError.Check.defined("v1", v1);
RuntimeError.Check.defined("v2", v2);
RuntimeError.Check.defined("v3", v3);
//>>includeEnd('debug');
let temp = packed.x / 65536.0;
const x = Math.floor(temp);
const encodedFloat1 = (temp - x) * 65536.0;
temp = packed.y / 65536.0;
const y = Math.floor(temp);
const encodedFloat2 = (temp - y) * 65536.0;
AttributeCompression.octDecodeFloat(encodedFloat1, v1);
AttributeCompression.octDecodeFloat(encodedFloat2, v2);
AttributeCompression.octDecode(x, y, v3);
};
/**
* Pack texture coordinates into a single float. The texture coordinates will only preserve 12 bits of precision.
*
* @param {Cartesian2} textureCoordinates The texture coordinates to compress. Both coordinates must be in the range 0.0-1.0.
* @returns {Number} The packed texture coordinates.
*
*/
AttributeCompression.compressTextureCoordinates = function (
textureCoordinates
) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("textureCoordinates", textureCoordinates);
//>>includeEnd('debug');
// Move x and y to the range 0-4095;
const x = (textureCoordinates.x * 4095.0) | 0;
const y = (textureCoordinates.y * 4095.0) | 0;
return 4096.0 * x + y;
};
/**
* Decompresses texture coordinates that were packed into a single float.
*
* @param {Number} compressed The compressed texture coordinates.
* @param {Cartesian2} result The decompressed texture coordinates.
* @returns {Cartesian2} The modified result parameter.
*
*/
AttributeCompression.decompressTextureCoordinates = function (
compressed,
result
) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("compressed", compressed);
RuntimeError.Check.defined("result", result);
//>>includeEnd('debug');
const temp = compressed / 4096.0;
const xZeroTo4095 = Math.floor(temp);
result.x = xZeroTo4095 / 4095.0;
result.y = (compressed - xZeroTo4095 * 4096) / 4095;
return result;
};
function zigZagDecode(value) {
return (value >> 1) ^ -(value & 1);
}
/**
* Decodes delta and ZigZag encoded vertices. This modifies the buffers in place.
*
* @param {Uint16Array} uBuffer The buffer view of u values.
* @param {Uint16Array} vBuffer The buffer view of v values.
* @param {Uint16Array} [heightBuffer] The buffer view of height values.
*
* @see {@link https://github.com/CesiumGS/quantized-mesh|quantized-mesh-1.0 terrain format}
*/
AttributeCompression.zigZagDeltaDecode = function (
uBuffer,
vBuffer,
heightBuffer
) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("uBuffer", uBuffer);
RuntimeError.Check.defined("vBuffer", vBuffer);
RuntimeError.Check.typeOf.number.equals(
"uBuffer.length",
"vBuffer.length",
uBuffer.length,
vBuffer.length
);
if (when.defined(heightBuffer)) {
RuntimeError.Check.typeOf.number.equals(
"uBuffer.length",
"heightBuffer.length",
uBuffer.length,
heightBuffer.length
);
}
//>>includeEnd('debug');
const count = uBuffer.length;
let u = 0;
let v = 0;
let height = 0;
for (let i = 0; i < count; ++i) {
u += zigZagDecode(uBuffer[i]);
v += zigZagDecode(vBuffer[i]);
uBuffer[i] = u;
vBuffer[i] = v;
if (when.defined(heightBuffer)) {
height += zigZagDecode(heightBuffer[i]);
heightBuffer[i] = height;
}
}
};
/**
* Dequantizes a quantized typed array into a floating point typed array.
*
* @see {@link https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization#encoding-quantized-data}
*
* @param {Int8Array|Uint8Array|Int16Array|Uint16Array|Int32Array|Uint32Array} typedArray The typed array for the quantized data.
* @param {ComponentDatatype} componentDatatype The component datatype of the quantized data.
* @param {AttributeType} type The attribute type of the quantized data.
* @param {Number} count The number of attributes referenced in the dequantized array.
*
* @returns {Float32Array} The dequantized array.
*/
AttributeCompression.dequantize = function (
typedArray,
componentDatatype,
type,
count
) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("typedArray", typedArray);
RuntimeError.Check.defined("componentDatatype", componentDatatype);
RuntimeError.Check.defined("type", type);
RuntimeError.Check.defined("count", count);
//>>includeEnd('debug');
const componentsPerAttribute = AttributeType$1.getNumberOfComponents(type);
let divisor;
switch (componentDatatype) {
case ComponentDatatype.ComponentDatatype.BYTE:
divisor = 127.0;
break;
case ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE:
divisor = 255.0;
break;
case ComponentDatatype.ComponentDatatype.SHORT:
divisor = 32767.0;
break;
case ComponentDatatype.ComponentDatatype.UNSIGNED_SHORT:
divisor = 65535.0;
break;
case ComponentDatatype.ComponentDatatype.INT:
divisor = 2147483647.0;
break;
case ComponentDatatype.ComponentDatatype.UNSIGNED_INT:
divisor = 4294967295.0;
break;
//>>includeStart('debug', pragmas.debug);
default:
throw new RuntimeError.DeveloperError(
`Cannot dequantize component datatype: ${componentDatatype}`
);
//>>includeEnd('debug');
}
const dequantizedTypedArray = new Float32Array(
count * componentsPerAttribute
);
for (let i = 0; i < count; i++) {
for (let j = 0; j < componentsPerAttribute; j++) {
const index = i * componentsPerAttribute + j;
dequantizedTypedArray[index] = Math.max(
typedArray[index] / divisor,
-1.0
);
}
}
return dequantizedTypedArray;
};
/**
* Decode RGB565-encoded colors into a floating point typed array containing
* normalized RGB values.
*
* @param {Uint16Array} typedArray Array of RGB565 values
* @param {Float32Array} [result] Array to store the normalized VEC3 result
*/
AttributeCompression.decodeRGB565 = function (typedArray, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("typedArray", typedArray);
const expectedLength = typedArray.length * 3;
if (when.defined(result)) {
RuntimeError.Check.typeOf.number.equals(
"result.length",
"typedArray.length * 3",
result.length,
expectedLength
);
}
//>>includeEnd('debug');
const count = typedArray.length;
if (!when.defined(result)) {
result = new Float32Array(count * 3);
}
const mask5 = (1 << 5) - 1;
const mask6 = (1 << 6) - 1;
const normalize5 = 1.0 / 31.0;
const normalize6 = 1.0 / 63.0;
for (let i = 0; i < count; i++) {
const value = typedArray[i];
const red = value >> 11;
const green = (value >> 5) & mask6;
const blue = value & mask5;
const offset = 3 * i;
result[offset] = red * normalize5;
result[offset + 1] = green * normalize6;
result[offset + 2] = blue * normalize5;
}
return result;
};
exports.AttributeCompression = AttributeCompression;
}));
//# sourceMappingURL=AttributeCompression-442278a0.js.map