qd-changjing/public/static/Build/CesiumUnminified/Workers/GeometryAttribute-4bcb785f.js

622 lines
23 KiB
JavaScript

/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['exports', './Matrix2-265d9610', './RuntimeError-5b082e8f', './when-4bbc8319', './WebGLConstants-508b9636', './Transforms-8b90e17c'], (function (exports, Matrix2, RuntimeError, when, WebGLConstants, Transforms) { 'use strict';
/**
* @private
*/
const GeometryType = {
NONE: 0,
TRIANGLES: 1,
LINES: 2,
POLYLINES: 3,
};
var GeometryType$1 = Object.freeze(GeometryType);
/**
* The type of a geometric primitive, i.e., points, lines, and triangles.
*
* @enum {Number}
*/
const PrimitiveType = {
/**
* Points primitive where each vertex (or index) is a separate point.
*
* @type {Number}
* @constant
*/
POINTS: WebGLConstants.WebGLConstants.POINTS,
/**
* Lines primitive where each two vertices (or indices) is a line segment. Line segments are not necessarily connected.
*
* @type {Number}
* @constant
*/
LINES: WebGLConstants.WebGLConstants.LINES,
/**
* Line loop primitive where each vertex (or index) after the first connects a line to
* the previous vertex, and the last vertex implicitly connects to the first.
*
* @type {Number}
* @constant
*/
LINE_LOOP: WebGLConstants.WebGLConstants.LINE_LOOP,
/**
* Line strip primitive where each vertex (or index) after the first connects a line to the previous vertex.
*
* @type {Number}
* @constant
*/
LINE_STRIP: WebGLConstants.WebGLConstants.LINE_STRIP,
/**
* Triangles primitive where each three vertices (or indices) is a triangle. Triangles do not necessarily share edges.
*
* @type {Number}
* @constant
*/
TRIANGLES: WebGLConstants.WebGLConstants.TRIANGLES,
/**
* Triangle strip primitive where each vertex (or index) after the first two connect to
* the previous two vertices forming a triangle. For example, this can be used to model a wall.
*
* @type {Number}
* @constant
*/
TRIANGLE_STRIP: WebGLConstants.WebGLConstants.TRIANGLE_STRIP,
/**
* Triangle fan primitive where each vertex (or index) after the first two connect to
* the previous vertex and the first vertex forming a triangle. For example, this can be used
* to model a cone or circle.
*
* @type {Number}
* @constant
*/
TRIANGLE_FAN: WebGLConstants.WebGLConstants.TRIANGLE_FAN,
};
/**
* @private
*/
PrimitiveType.validate = function (primitiveType) {
return (
primitiveType === PrimitiveType.POINTS ||
primitiveType === PrimitiveType.LINES ||
primitiveType === PrimitiveType.LINE_LOOP ||
primitiveType === PrimitiveType.LINE_STRIP ||
primitiveType === PrimitiveType.TRIANGLES ||
primitiveType === PrimitiveType.TRIANGLE_STRIP ||
primitiveType === PrimitiveType.TRIANGLE_FAN
);
};
var PrimitiveType$1 = Object.freeze(PrimitiveType);
/**
* A geometry representation with attributes forming vertices and optional index data
* defining primitives. Geometries and an {@link Appearance}, which describes the shading,
* can be assigned to a {@link Primitive} for visualization. A <code>Primitive</code> can
* be created from many heterogeneous - in many cases - geometries for performance.
* <p>
* Geometries can be transformed and optimized using functions in {@link GeometryPipeline}.
* </p>
*
* @alias Geometry
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {GeometryAttributes} options.attributes Attributes, which make up the geometry's vertices.
* @param {PrimitiveType} [options.primitiveType=PrimitiveType.TRIANGLES] The type of primitives in the geometry.
* @param {Uint16Array|Uint32Array} [options.indices] Optional index data that determines the primitives in the geometry.
* @param {BoundingSphere} [options.boundingSphere] An optional bounding sphere that fully enclosed the geometry.
*
* @see PolygonGeometry
* @see RectangleGeometry
* @see EllipseGeometry
* @see CircleGeometry
* @see WallGeometry
* @see SimplePolylineGeometry
* @see BoxGeometry
* @see EllipsoidGeometry
*
* @demo {@link https://sandcastle.cesium.com/index.html?src=Geometry%20and%20Appearances.html|Geometry and Appearances Demo}
*
* @example
* // Create geometry with a position attribute and indexed lines.
* const positions = new Float64Array([
* 0.0, 0.0, 0.0,
* 7500000.0, 0.0, 0.0,
* 0.0, 7500000.0, 0.0
* ]);
*
* const geometry = new Cesium.Geometry({
* attributes : {
* position : new Cesium.GeometryAttribute({
* componentDatatype : Cesium.ComponentDatatype.DOUBLE,
* componentsPerAttribute : 3,
* values : positions
* })
* },
* indices : new Uint16Array([0, 1, 1, 2, 2, 0]),
* primitiveType : Cesium.PrimitiveType.LINES,
* boundingSphere : Cesium.BoundingSphere.fromVertices(positions)
* });
*/
function Geometry(options) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("options.attributes", options.attributes);
//>>includeEnd('debug');
/**
* Attributes, which make up the geometry's vertices. Each property in this object corresponds to a
* {@link GeometryAttribute} containing the attribute's data.
* <p>
* Attributes are always stored non-interleaved in a Geometry.
* </p>
* <p>
* There are reserved attribute names with well-known semantics. The following attributes
* are created by a Geometry (depending on the provided {@link VertexFormat}.
* <ul>
* <li><code>position</code> - 3D vertex position. 64-bit floating-point (for precision). 3 components per attribute. See {@link VertexFormat#position}.</li>
* <li><code>normal</code> - Normal (normalized), commonly used for lighting. 32-bit floating-point. 3 components per attribute. See {@link VertexFormat#normal}.</li>
* <li><code>st</code> - 2D texture coordinate. 32-bit floating-point. 2 components per attribute. See {@link VertexFormat#st}.</li>
* <li><code>bitangent</code> - Bitangent (normalized), used for tangent-space effects like bump mapping. 32-bit floating-point. 3 components per attribute. See {@link VertexFormat#bitangent}.</li>
* <li><code>tangent</code> - Tangent (normalized), used for tangent-space effects like bump mapping. 32-bit floating-point. 3 components per attribute. See {@link VertexFormat#tangent}.</li>
* </ul>
* </p>
* <p>
* The following attribute names are generally not created by a Geometry, but are added
* to a Geometry by a {@link Primitive} or {@link GeometryPipeline} functions to prepare
* the geometry for rendering.
* <ul>
* <li><code>position3DHigh</code> - High 32 bits for encoded 64-bit position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
* <li><code>position3DLow</code> - Low 32 bits for encoded 64-bit position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
* <li><code>position3DHigh</code> - High 32 bits for encoded 64-bit 2D (Columbus view) position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
* <li><code>position2DLow</code> - Low 32 bits for encoded 64-bit 2D (Columbus view) position computed with {@link GeometryPipeline.encodeAttribute}. 32-bit floating-point. 4 components per attribute.</li>
* <li><code>color</code> - RGBA color (normalized) usually from {@link GeometryInstance#color}. 32-bit floating-point. 4 components per attribute.</li>
* <li><code>pickColor</code> - RGBA color used for picking. 32-bit floating-point. 4 components per attribute.</li>
* </ul>
* </p>
*
* @type GeometryAttributes
*
* @default undefined
*
*
* @example
* geometry.attributes.position = new Cesium.GeometryAttribute({
* componentDatatype : Cesium.ComponentDatatype.FLOAT,
* componentsPerAttribute : 3,
* values : new Float32Array(0)
* });
*
* @see GeometryAttribute
* @see VertexFormat
*/
this.attributes = options.attributes;
/**
* Optional index data that - along with {@link Geometry#primitiveType} -
* determines the primitives in the geometry.
*
* @type Array
*
* @default undefined
*/
this.indices = options.indices;
/**
* The type of primitives in the geometry. This is most often {@link PrimitiveType.TRIANGLES},
* but can varying based on the specific geometry.
*
* @type PrimitiveType
*
* @default undefined
*/
this.primitiveType = when.defaultValue(
options.primitiveType,
PrimitiveType$1.TRIANGLES
);
/**
* An optional bounding sphere that fully encloses the geometry. This is
* commonly used for culling.
*
* @type BoundingSphere
*
* @default undefined
*/
this.boundingSphere = options.boundingSphere;
/**
* @private
*/
this.geometryType = when.defaultValue(options.geometryType, GeometryType$1.NONE);
/**
* @private
*/
this.boundingSphereCV = options.boundingSphereCV;
/**
* Used for computing the bounding sphere for geometry using the applyOffset vertex attribute
* @private
*/
this.offsetAttribute = options.offsetAttribute;
}
/**
* Computes the number of vertices in a geometry. The runtime is linear with
* respect to the number of attributes in a vertex, not the number of vertices.
*
* @param {Geometry} geometry The geometry.
* @returns {Number} The number of vertices in the geometry.
*
* @example
* const numVertices = Cesium.Geometry.computeNumberOfVertices(geometry);
*/
Geometry.computeNumberOfVertices = function (geometry) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("geometry", geometry);
//>>includeEnd('debug');
let numberOfVertices = -1;
for (const property in geometry.attributes) {
if (
geometry.attributes.hasOwnProperty(property) &&
when.defined(geometry.attributes[property]) &&
when.defined(geometry.attributes[property].values)
) {
const attribute = geometry.attributes[property];
const num = attribute.values.length / attribute.componentsPerAttribute;
//>>includeStart('debug', pragmas.debug);
if (numberOfVertices !== num && numberOfVertices !== -1) {
throw new RuntimeError.DeveloperError(
"All attribute lists must have the same number of attributes."
);
}
//>>includeEnd('debug');
numberOfVertices = num;
}
}
return numberOfVertices;
};
const rectangleCenterScratch = new Matrix2.Cartographic();
const enuCenterScratch = new Matrix2.Cartesian3();
const fixedFrameToEnuScratch = new Matrix2.Matrix4();
const boundingRectanglePointsCartographicScratch = [
new Matrix2.Cartographic(),
new Matrix2.Cartographic(),
new Matrix2.Cartographic(),
];
const boundingRectanglePointsEnuScratch = [
new Matrix2.Cartesian2(),
new Matrix2.Cartesian2(),
new Matrix2.Cartesian2(),
];
const points2DScratch = [new Matrix2.Cartesian2(), new Matrix2.Cartesian2(), new Matrix2.Cartesian2()];
const pointEnuScratch = new Matrix2.Cartesian3();
const enuRotationScratch = new Transforms.Quaternion();
const enuRotationMatrixScratch = new Matrix2.Matrix4();
const rotation2DScratch = new Matrix2.Matrix2();
/**
* For remapping texture coordinates when rendering GroundPrimitives with materials.
* GroundPrimitive texture coordinates are computed to align with the cartographic coordinate system on the globe.
* However, EllipseGeometry, RectangleGeometry, and PolygonGeometry all bake rotations to per-vertex texture coordinates
* using different strategies.
*
* This method is used by EllipseGeometry and PolygonGeometry to approximate the same visual effect.
* We encapsulate rotation and scale by computing a "transformed" texture coordinate system and computing
* a set of reference points from which "cartographic" texture coordinates can be remapped to the "transformed"
* system using distances to lines in 2D.
*
* This approximation becomes less accurate as the covered area increases, especially for GroundPrimitives near the poles,
* but is generally reasonable for polygons and ellipses around the size of USA states.
*
* RectangleGeometry has its own version of this method that computes remapping coordinates using cartographic space
* as an intermediary instead of local ENU, which is more accurate for large-area rectangles.
*
* @param {Cartesian3[]} positions Array of positions outlining the geometry
* @param {Number} stRotation Texture coordinate rotation.
* @param {Ellipsoid} ellipsoid Ellipsoid for projecting and generating local vectors.
* @param {Rectangle} boundingRectangle Bounding rectangle around the positions.
* @returns {Number[]} An array of 6 numbers specifying [minimum point, u extent, v extent] as points in the "cartographic" system.
* @private
*/
Geometry._textureCoordinateRotationPoints = function (
positions,
stRotation,
ellipsoid,
boundingRectangle
) {
let i;
// Create a local east-north-up coordinate system centered on the polygon's bounding rectangle.
// Project the southwest, northwest, and southeast corners of the bounding rectangle into the plane of ENU as 2D points.
// These are the equivalents of (0,0), (0,1), and (1,0) in the texture coordiante system computed in ShadowVolumeAppearanceFS,
// aka "ENU texture space."
const rectangleCenter = Matrix2.Rectangle.center(
boundingRectangle,
rectangleCenterScratch
);
const enuCenter = Matrix2.Cartographic.toCartesian(
rectangleCenter,
ellipsoid,
enuCenterScratch
);
const enuToFixedFrame = Transforms.Transforms.eastNorthUpToFixedFrame(
enuCenter,
ellipsoid,
fixedFrameToEnuScratch
);
const fixedFrameToEnu = Matrix2.Matrix4.inverse(
enuToFixedFrame,
fixedFrameToEnuScratch
);
const boundingPointsEnu = boundingRectanglePointsEnuScratch;
const boundingPointsCarto = boundingRectanglePointsCartographicScratch;
boundingPointsCarto[0].longitude = boundingRectangle.west;
boundingPointsCarto[0].latitude = boundingRectangle.south;
boundingPointsCarto[1].longitude = boundingRectangle.west;
boundingPointsCarto[1].latitude = boundingRectangle.north;
boundingPointsCarto[2].longitude = boundingRectangle.east;
boundingPointsCarto[2].latitude = boundingRectangle.south;
let posEnu = pointEnuScratch;
for (i = 0; i < 3; i++) {
Matrix2.Cartographic.toCartesian(boundingPointsCarto[i], ellipsoid, posEnu);
posEnu = Matrix2.Matrix4.multiplyByPointAsVector(fixedFrameToEnu, posEnu, posEnu);
boundingPointsEnu[i].x = posEnu.x;
boundingPointsEnu[i].y = posEnu.y;
}
// Rotate each point in the polygon around the up vector in the ENU by -stRotation and project into ENU as 2D.
// Compute the bounding box of these rotated points in the 2D ENU plane.
// Rotate the corners back by stRotation, then compute their equivalents in the ENU texture space using the corners computed earlier.
const rotation = Transforms.Quaternion.fromAxisAngle(
Matrix2.Cartesian3.UNIT_Z,
-stRotation,
enuRotationScratch
);
const textureMatrix = Matrix2.Matrix3.fromQuaternion(
rotation,
enuRotationMatrixScratch
);
const positionsLength = positions.length;
let enuMinX = Number.POSITIVE_INFINITY;
let enuMinY = Number.POSITIVE_INFINITY;
let enuMaxX = Number.NEGATIVE_INFINITY;
let enuMaxY = Number.NEGATIVE_INFINITY;
for (i = 0; i < positionsLength; i++) {
posEnu = Matrix2.Matrix4.multiplyByPointAsVector(
fixedFrameToEnu,
positions[i],
posEnu
);
posEnu = Matrix2.Matrix3.multiplyByVector(textureMatrix, posEnu, posEnu);
enuMinX = Math.min(enuMinX, posEnu.x);
enuMinY = Math.min(enuMinY, posEnu.y);
enuMaxX = Math.max(enuMaxX, posEnu.x);
enuMaxY = Math.max(enuMaxY, posEnu.y);
}
const toDesiredInComputed = Matrix2.Matrix2.fromRotation(
stRotation,
rotation2DScratch
);
const points2D = points2DScratch;
points2D[0].x = enuMinX;
points2D[0].y = enuMinY;
points2D[1].x = enuMinX;
points2D[1].y = enuMaxY;
points2D[2].x = enuMaxX;
points2D[2].y = enuMinY;
const boundingEnuMin = boundingPointsEnu[0];
const boundingPointsWidth = boundingPointsEnu[2].x - boundingEnuMin.x;
const boundingPointsHeight = boundingPointsEnu[1].y - boundingEnuMin.y;
for (i = 0; i < 3; i++) {
const point2D = points2D[i];
// rotate back
Matrix2.Matrix2.multiplyByVector(toDesiredInComputed, point2D, point2D);
// Convert point into east-north texture coordinate space
point2D.x = (point2D.x - boundingEnuMin.x) / boundingPointsWidth;
point2D.y = (point2D.y - boundingEnuMin.y) / boundingPointsHeight;
}
const minXYCorner = points2D[0];
const maxYCorner = points2D[1];
const maxXCorner = points2D[2];
const result = new Array(6);
Matrix2.Cartesian2.pack(minXYCorner, result);
Matrix2.Cartesian2.pack(maxYCorner, result, 2);
Matrix2.Cartesian2.pack(maxXCorner, result, 4);
return result;
};
/**
* Values and type information for geometry attributes. A {@link Geometry}
* generally contains one or more attributes. All attributes together form
* the geometry's vertices.
*
* @alias GeometryAttribute
* @constructor
*
* @param {Object} [options] Object with the following properties:
* @param {ComponentDatatype} [options.componentDatatype] The datatype of each component in the attribute, e.g., individual elements in values.
* @param {Number} [options.componentsPerAttribute] A number between 1 and 4 that defines the number of components in an attributes.
* @param {Boolean} [options.normalize=false] When <code>true</code> and <code>componentDatatype</code> is an integer format, indicate that the components should be mapped to the range [0, 1] (unsigned) or [-1, 1] (signed) when they are accessed as floating-point for rendering.
* @param {number[]|Int8Array|Uint8Array|Int16Array|Uint16Array|Int32Array|Uint32Array|Float32Array|Float64Array} [options.values] The values for the attributes stored in a typed array.
*
* @exception {DeveloperError} options.componentsPerAttribute must be between 1 and 4.
*
*
* @example
* const geometry = new Cesium.Geometry({
* attributes : {
* position : new Cesium.GeometryAttribute({
* componentDatatype : Cesium.ComponentDatatype.FLOAT,
* componentsPerAttribute : 3,
* values : new Float32Array([
* 0.0, 0.0, 0.0,
* 7500000.0, 0.0, 0.0,
* 0.0, 7500000.0, 0.0
* ])
* })
* },
* primitiveType : Cesium.PrimitiveType.LINE_LOOP
* });
*
* @see Geometry
*/
function GeometryAttribute(options) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
//>>includeStart('debug', pragmas.debug);
if (!when.defined(options.componentDatatype)) {
throw new RuntimeError.DeveloperError("options.componentDatatype is required.");
}
if (!when.defined(options.componentsPerAttribute)) {
throw new RuntimeError.DeveloperError("options.componentsPerAttribute is required.");
}
if (
options.componentsPerAttribute < 1 ||
options.componentsPerAttribute > 4
) {
throw new RuntimeError.DeveloperError(
"options.componentsPerAttribute must be between 1 and 4."
);
}
if (!when.defined(options.values)) {
throw new RuntimeError.DeveloperError("options.values is required.");
}
//>>includeEnd('debug');
/**
* The datatype of each component in the attribute, e.g., individual elements in
* {@link GeometryAttribute#values}.
*
* @type ComponentDatatype
*
* @default undefined
*/
this.componentDatatype = options.componentDatatype;
/**
* A number between 1 and 4 that defines the number of components in an attributes.
* For example, a position attribute with x, y, and z components would have 3 as
* shown in the code example.
*
* @type Number
*
* @default undefined
*
* @example
* attribute.componentDatatype = Cesium.ComponentDatatype.FLOAT;
* attribute.componentsPerAttribute = 3;
* attribute.values = new Float32Array([
* 0.0, 0.0, 0.0,
* 7500000.0, 0.0, 0.0,
* 0.0, 7500000.0, 0.0
* ]);
*/
this.componentsPerAttribute = options.componentsPerAttribute;
/**
* When <code>true</code> and <code>componentDatatype</code> is an integer format,
* indicate that the components should be mapped to the range [0, 1] (unsigned)
* or [-1, 1] (signed) when they are accessed as floating-point for rendering.
* <p>
* This is commonly used when storing colors using {@link ComponentDatatype.UNSIGNED_BYTE}.
* </p>
*
* @type Boolean
*
* @default false
*
* @example
* attribute.componentDatatype = Cesium.ComponentDatatype.UNSIGNED_BYTE;
* attribute.componentsPerAttribute = 4;
* attribute.normalize = true;
* attribute.values = new Uint8Array([
* Cesium.Color.floatToByte(color.red),
* Cesium.Color.floatToByte(color.green),
* Cesium.Color.floatToByte(color.blue),
* Cesium.Color.floatToByte(color.alpha)
* ]);
*/
this.normalize = when.defaultValue(options.normalize, false);
/**
* The values for the attributes stored in a typed array. In the code example,
* every three elements in <code>values</code> defines one attributes since
* <code>componentsPerAttribute</code> is 3.
*
* @type {number[]|Int8Array|Uint8Array|Int16Array|Uint16Array|Int32Array|Uint32Array|Float32Array|Float64Array}
*
* @default undefined
*
* @example
* attribute.componentDatatype = Cesium.ComponentDatatype.FLOAT;
* attribute.componentsPerAttribute = 3;
* attribute.values = new Float32Array([
* 0.0, 0.0, 0.0,
* 7500000.0, 0.0, 0.0,
* 0.0, 7500000.0, 0.0
* ]);
*/
this.values = options.values;
}
exports.Geometry = Geometry;
exports.GeometryAttribute = GeometryAttribute;
exports.GeometryType = GeometryType$1;
exports.PrimitiveType = PrimitiveType$1;
}));
//# sourceMappingURL=GeometryAttribute-4bcb785f.js.map