qd-changjing/public/static/Build/CesiumUnminified/Workers/createSimplePolylineGeometr...

483 lines
18 KiB
JavaScript

/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['./when-4bbc8319', './Matrix2-265d9610', './ArcType-fc72c06c', './Transforms-8b90e17c', './Color-cc989747', './ComponentDatatype-aad54330', './RuntimeError-5b082e8f', './GeometryAttribute-4bcb785f', './GeometryAttributes-7827a6c2', './IndexDatatype-6739e544', './PolylinePipeline-b9913663', './combine-e9466e32', './WebGLConstants-508b9636', './EllipsoidGeodesic-ed024f16', './EllipsoidRhumbLine-d09d563f', './IntersectionTests-596e31ec', './Plane-616c9c0a'], (function (when, Matrix2, ArcType, Transforms, Color, ComponentDatatype, RuntimeError, GeometryAttribute, GeometryAttributes, IndexDatatype, PolylinePipeline, combine, WebGLConstants, EllipsoidGeodesic, EllipsoidRhumbLine, IntersectionTests, Plane) { 'use strict';
function interpolateColors(p0, p1, color0, color1, minDistance, array, offset) {
const numPoints = PolylinePipeline.PolylinePipeline.numberOfPoints(p0, p1, minDistance);
let i;
const r0 = color0.red;
const g0 = color0.green;
const b0 = color0.blue;
const a0 = color0.alpha;
const r1 = color1.red;
const g1 = color1.green;
const b1 = color1.blue;
const a1 = color1.alpha;
if (Color.Color.equals(color0, color1)) {
for (i = 0; i < numPoints; i++) {
array[offset++] = Color.Color.floatToByte(r0);
array[offset++] = Color.Color.floatToByte(g0);
array[offset++] = Color.Color.floatToByte(b0);
array[offset++] = Color.Color.floatToByte(a0);
}
return offset;
}
const redPerVertex = (r1 - r0) / numPoints;
const greenPerVertex = (g1 - g0) / numPoints;
const bluePerVertex = (b1 - b0) / numPoints;
const alphaPerVertex = (a1 - a0) / numPoints;
let index = offset;
for (i = 0; i < numPoints; i++) {
array[index++] = Color.Color.floatToByte(r0 + i * redPerVertex);
array[index++] = Color.Color.floatToByte(g0 + i * greenPerVertex);
array[index++] = Color.Color.floatToByte(b0 + i * bluePerVertex);
array[index++] = Color.Color.floatToByte(a0 + i * alphaPerVertex);
}
return index;
}
/**
* A description of a polyline modeled as a line strip; the first two positions define a line segment,
* and each additional position defines a line segment from the previous position.
*
* @alias SimplePolylineGeometry
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {Cartesian3[]} options.positions An array of {@link Cartesian3} defining the positions in the polyline as a line strip.
* @param {Color[]} [options.colors] An Array of {@link Color} defining the per vertex or per segment colors.
* @param {Boolean} [options.colorsPerVertex=false] A boolean that determines whether the colors will be flat across each segment of the line or interpolated across the vertices.
* @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polyline segments must follow.
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude if options.arcType is not ArcType.NONE. Determines the number of positions in the buffer.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference.
*
* @exception {DeveloperError} At least two positions are required.
* @exception {DeveloperError} colors has an invalid length.
*
* @see SimplePolylineGeometry#createGeometry
*
* @example
* // A polyline with two connected line segments
* const polyline = new Cesium.SimplePolylineGeometry({
* positions : Cesium.Cartesian3.fromDegreesArray([
* 0.0, 0.0,
* 5.0, 0.0,
* 5.0, 5.0
* ])
* });
* const geometry = Cesium.SimplePolylineGeometry.createGeometry(polyline);
*/
function SimplePolylineGeometry(options) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
const positions = options.positions;
const colors = options.colors;
const colorsPerVertex = when.defaultValue(options.colorsPerVertex, false);
//>>includeStart('debug', pragmas.debug);
if (!when.defined(positions) || positions.length < 2) {
throw new RuntimeError.DeveloperError("At least two positions are required.");
}
if (
when.defined(colors) &&
((colorsPerVertex && colors.length < positions.length) ||
(!colorsPerVertex && colors.length < positions.length - 1))
) {
throw new RuntimeError.DeveloperError("colors has an invalid length.");
}
//>>includeEnd('debug');
this._positions = positions;
this._colors = colors;
this._colorsPerVertex = colorsPerVertex;
this._arcType = when.defaultValue(options.arcType, ArcType.ArcType.GEODESIC);
this._granularity = when.defaultValue(
options.granularity,
ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE
);
this._ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84);
this._workerName = "createSimplePolylineGeometry";
let numComponents = 1 + positions.length * Matrix2.Cartesian3.packedLength;
numComponents += when.defined(colors) ? 1 + colors.length * Color.Color.packedLength : 1;
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
this.packedLength = numComponents + Matrix2.Ellipsoid.packedLength + 3;
}
/**
* Stores the provided instance into the provided array.
*
* @param {SimplePolylineGeometry} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
SimplePolylineGeometry.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(value)) {
throw new RuntimeError.DeveloperError("value is required");
}
if (!when.defined(array)) {
throw new RuntimeError.DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
let i;
const positions = value._positions;
let length = positions.length;
array[startingIndex++] = length;
for (i = 0; i < length; ++i, startingIndex += Matrix2.Cartesian3.packedLength) {
Matrix2.Cartesian3.pack(positions[i], array, startingIndex);
}
const colors = value._colors;
length = when.defined(colors) ? colors.length : 0.0;
array[startingIndex++] = length;
for (i = 0; i < length; ++i, startingIndex += Color.Color.packedLength) {
Color.Color.pack(colors[i], array, startingIndex);
}
Matrix2.Ellipsoid.pack(value._ellipsoid, array, startingIndex);
startingIndex += Matrix2.Ellipsoid.packedLength;
array[startingIndex++] = value._colorsPerVertex ? 1.0 : 0.0;
array[startingIndex++] = value._arcType;
array[startingIndex] = value._granularity;
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {SimplePolylineGeometry} [result] The object into which to store the result.
* @returns {SimplePolylineGeometry} The modified result parameter or a new SimplePolylineGeometry instance if one was not provided.
*/
SimplePolylineGeometry.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(array)) {
throw new RuntimeError.DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
let i;
let length = array[startingIndex++];
const positions = new Array(length);
for (i = 0; i < length; ++i, startingIndex += Matrix2.Cartesian3.packedLength) {
positions[i] = Matrix2.Cartesian3.unpack(array, startingIndex);
}
length = array[startingIndex++];
const colors = length > 0 ? new Array(length) : undefined;
for (i = 0; i < length; ++i, startingIndex += Color.Color.packedLength) {
colors[i] = Color.Color.unpack(array, startingIndex);
}
const ellipsoid = Matrix2.Ellipsoid.unpack(array, startingIndex);
startingIndex += Matrix2.Ellipsoid.packedLength;
const colorsPerVertex = array[startingIndex++] === 1.0;
const arcType = array[startingIndex++];
const granularity = array[startingIndex];
if (!when.defined(result)) {
return new SimplePolylineGeometry({
positions: positions,
colors: colors,
ellipsoid: ellipsoid,
colorsPerVertex: colorsPerVertex,
arcType: arcType,
granularity: granularity,
});
}
result._positions = positions;
result._colors = colors;
result._ellipsoid = ellipsoid;
result._colorsPerVertex = colorsPerVertex;
result._arcType = arcType;
result._granularity = granularity;
return result;
};
const scratchArray1 = new Array(2);
const scratchArray2 = new Array(2);
const generateArcOptionsScratch = {
positions: scratchArray1,
height: scratchArray2,
ellipsoid: undefined,
minDistance: undefined,
granularity: undefined,
};
/**
* Computes the geometric representation of a simple polyline, including its vertices, indices, and a bounding sphere.
*
* @param {SimplePolylineGeometry} simplePolylineGeometry A description of the polyline.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
SimplePolylineGeometry.createGeometry = function (simplePolylineGeometry) {
const positions = simplePolylineGeometry._positions;
const colors = simplePolylineGeometry._colors;
const colorsPerVertex = simplePolylineGeometry._colorsPerVertex;
const arcType = simplePolylineGeometry._arcType;
const granularity = simplePolylineGeometry._granularity;
const ellipsoid = simplePolylineGeometry._ellipsoid;
const minDistance = ComponentDatatype.CesiumMath.chordLength(
granularity,
ellipsoid.maximumRadius
);
const perSegmentColors = when.defined(colors) && !colorsPerVertex;
let i;
const length = positions.length;
let positionValues;
let numberOfPositions;
let colorValues;
let color;
let offset = 0;
if (arcType === ArcType.ArcType.GEODESIC || arcType === ArcType.ArcType.RHUMB) {
let subdivisionSize;
let numberOfPointsFunction;
let generateArcFunction;
if (arcType === ArcType.ArcType.GEODESIC) {
subdivisionSize = ComponentDatatype.CesiumMath.chordLength(
granularity,
ellipsoid.maximumRadius
);
numberOfPointsFunction = PolylinePipeline.PolylinePipeline.numberOfPoints;
generateArcFunction = PolylinePipeline.PolylinePipeline.generateArc;
} else {
subdivisionSize = granularity;
numberOfPointsFunction = PolylinePipeline.PolylinePipeline.numberOfPointsRhumbLine;
generateArcFunction = PolylinePipeline.PolylinePipeline.generateRhumbArc;
}
const heights = PolylinePipeline.PolylinePipeline.extractHeights(positions, ellipsoid);
const generateArcOptions = generateArcOptionsScratch;
if (arcType === ArcType.ArcType.GEODESIC) {
generateArcOptions.minDistance = minDistance;
} else {
generateArcOptions.granularity = granularity;
}
generateArcOptions.ellipsoid = ellipsoid;
if (perSegmentColors) {
let positionCount = 0;
for (i = 0; i < length - 1; i++) {
positionCount +=
numberOfPointsFunction(
positions[i],
positions[i + 1],
subdivisionSize
) + 1;
}
positionValues = new Float64Array(positionCount * 3);
colorValues = new Uint8Array(positionCount * 4);
generateArcOptions.positions = scratchArray1;
generateArcOptions.height = scratchArray2;
let ci = 0;
for (i = 0; i < length - 1; ++i) {
scratchArray1[0] = positions[i];
scratchArray1[1] = positions[i + 1];
scratchArray2[0] = heights[i];
scratchArray2[1] = heights[i + 1];
const pos = generateArcFunction(generateArcOptions);
if (when.defined(colors)) {
const segLen = pos.length / 3;
color = colors[i];
for (let k = 0; k < segLen; ++k) {
colorValues[ci++] = Color.Color.floatToByte(color.red);
colorValues[ci++] = Color.Color.floatToByte(color.green);
colorValues[ci++] = Color.Color.floatToByte(color.blue);
colorValues[ci++] = Color.Color.floatToByte(color.alpha);
}
}
positionValues.set(pos, offset);
offset += pos.length;
}
} else {
generateArcOptions.positions = positions;
generateArcOptions.height = heights;
positionValues = new Float64Array(
generateArcFunction(generateArcOptions)
);
if (when.defined(colors)) {
colorValues = new Uint8Array((positionValues.length / 3) * 4);
for (i = 0; i < length - 1; ++i) {
const p0 = positions[i];
const p1 = positions[i + 1];
const c0 = colors[i];
const c1 = colors[i + 1];
offset = interpolateColors(
p0,
p1,
c0,
c1,
minDistance,
colorValues,
offset
);
}
const lastColor = colors[length - 1];
colorValues[offset++] = Color.Color.floatToByte(lastColor.red);
colorValues[offset++] = Color.Color.floatToByte(lastColor.green);
colorValues[offset++] = Color.Color.floatToByte(lastColor.blue);
colorValues[offset++] = Color.Color.floatToByte(lastColor.alpha);
}
}
} else {
numberOfPositions = perSegmentColors ? length * 2 - 2 : length;
positionValues = new Float64Array(numberOfPositions * 3);
colorValues = when.defined(colors)
? new Uint8Array(numberOfPositions * 4)
: undefined;
let positionIndex = 0;
let colorIndex = 0;
for (i = 0; i < length; ++i) {
const p = positions[i];
if (perSegmentColors && i > 0) {
Matrix2.Cartesian3.pack(p, positionValues, positionIndex);
positionIndex += 3;
color = colors[i - 1];
colorValues[colorIndex++] = Color.Color.floatToByte(color.red);
colorValues[colorIndex++] = Color.Color.floatToByte(color.green);
colorValues[colorIndex++] = Color.Color.floatToByte(color.blue);
colorValues[colorIndex++] = Color.Color.floatToByte(color.alpha);
}
if (perSegmentColors && i === length - 1) {
break;
}
Matrix2.Cartesian3.pack(p, positionValues, positionIndex);
positionIndex += 3;
if (when.defined(colors)) {
color = colors[i];
colorValues[colorIndex++] = Color.Color.floatToByte(color.red);
colorValues[colorIndex++] = Color.Color.floatToByte(color.green);
colorValues[colorIndex++] = Color.Color.floatToByte(color.blue);
colorValues[colorIndex++] = Color.Color.floatToByte(color.alpha);
}
}
}
const attributes = new GeometryAttributes.GeometryAttributes();
attributes.position = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: positionValues,
});
if (when.defined(colors)) {
attributes.color = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 4,
values: colorValues,
normalize: true,
});
}
numberOfPositions = positionValues.length / 3;
const numberOfIndices = (numberOfPositions - 1) * 2;
const indices = IndexDatatype.IndexDatatype.createTypedArray(
numberOfPositions,
numberOfIndices
);
let index = 0;
for (i = 0; i < numberOfPositions - 1; ++i) {
indices[index++] = i;
indices[index++] = i + 1;
}
return new GeometryAttribute.Geometry({
attributes: attributes,
indices: indices,
primitiveType: GeometryAttribute.PrimitiveType.LINES,
boundingSphere: Transforms.BoundingSphere.fromPoints(positions),
});
};
function createSimplePolylineGeometry(simplePolylineGeometry, offset) {
if (when.defined(offset)) {
simplePolylineGeometry = SimplePolylineGeometry.unpack(
simplePolylineGeometry,
offset
);
}
simplePolylineGeometry._ellipsoid = Matrix2.Ellipsoid.clone(
simplePolylineGeometry._ellipsoid
);
return SimplePolylineGeometry.createGeometry(simplePolylineGeometry);
}
return createSimplePolylineGeometry;
}));
//# sourceMappingURL=createSimplePolylineGeometry.js.map