1502 lines
52 KiB
JavaScript
1502 lines
52 KiB
JavaScript
/**
|
|
* Cesium - https://github.com/CesiumGS/cesium
|
|
*
|
|
* Copyright 2011-2020 Cesium Contributors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* Columbus View (Pat. Pend.)
|
|
*
|
|
* Portions licensed separately.
|
|
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
|
|
*/
|
|
|
|
define(['./when-4bbc8319', './Matrix2-265d9610', './GeometryOffsetAttribute-7e016332', './Transforms-8b90e17c', './RuntimeError-5b082e8f', './ComponentDatatype-aad54330', './GeometryAttribute-4bcb785f', './GeometryAttributes-7827a6c2', './GeometryInstance-d57564f8', './GeometryPipeline-e93f6439', './IndexDatatype-6739e544', './PolygonPipeline-5fd67ae2', './RectangleGeometryLibrary-80323cc0', './VertexFormat-07539138', './combine-e9466e32', './WebGLConstants-508b9636', './AttributeCompression-442278a0', './EncodedCartesian3-da8f96bc', './IntersectionTests-596e31ec', './Plane-616c9c0a', './EllipsoidRhumbLine-d09d563f'], (function (when, Matrix2, GeometryOffsetAttribute, Transforms, RuntimeError, ComponentDatatype, GeometryAttribute, GeometryAttributes, GeometryInstance, GeometryPipeline, IndexDatatype, PolygonPipeline, RectangleGeometryLibrary, VertexFormat, combine, WebGLConstants, AttributeCompression, EncodedCartesian3, IntersectionTests, Plane, EllipsoidRhumbLine) { 'use strict';
|
|
|
|
const positionScratch = new Matrix2.Cartesian3();
|
|
const normalScratch = new Matrix2.Cartesian3();
|
|
const tangentScratch = new Matrix2.Cartesian3();
|
|
const bitangentScratch = new Matrix2.Cartesian3();
|
|
const rectangleScratch = new Matrix2.Rectangle();
|
|
const stScratch = new Matrix2.Cartesian2();
|
|
const bottomBoundingSphere = new Transforms.BoundingSphere();
|
|
const topBoundingSphere = new Transforms.BoundingSphere();
|
|
|
|
function createAttributes(vertexFormat, attributes) {
|
|
const geo = new GeometryAttribute.Geometry({
|
|
attributes: new GeometryAttributes.GeometryAttributes(),
|
|
primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
|
|
});
|
|
|
|
geo.attributes.position = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
|
|
componentsPerAttribute: 3,
|
|
values: attributes.positions,
|
|
});
|
|
if (vertexFormat.normal) {
|
|
geo.attributes.normal = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: attributes.normals,
|
|
});
|
|
}
|
|
if (vertexFormat.tangent) {
|
|
geo.attributes.tangent = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: attributes.tangents,
|
|
});
|
|
}
|
|
if (vertexFormat.bitangent) {
|
|
geo.attributes.bitangent = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: attributes.bitangents,
|
|
});
|
|
}
|
|
return geo;
|
|
}
|
|
|
|
function calculateAttributes(
|
|
positions,
|
|
vertexFormat,
|
|
ellipsoid,
|
|
tangentRotationMatrix
|
|
) {
|
|
const length = positions.length;
|
|
|
|
const normals = vertexFormat.normal ? new Float32Array(length) : undefined;
|
|
const tangents = vertexFormat.tangent ? new Float32Array(length) : undefined;
|
|
const bitangents = vertexFormat.bitangent
|
|
? new Float32Array(length)
|
|
: undefined;
|
|
|
|
let attrIndex = 0;
|
|
const bitangent = bitangentScratch;
|
|
const tangent = tangentScratch;
|
|
let normal = normalScratch;
|
|
if (vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) {
|
|
for (let i = 0; i < length; i += 3) {
|
|
const p = Matrix2.Cartesian3.fromArray(positions, i, positionScratch);
|
|
const attrIndex1 = attrIndex + 1;
|
|
const attrIndex2 = attrIndex + 2;
|
|
|
|
normal = ellipsoid.geodeticSurfaceNormal(p, normal);
|
|
if (vertexFormat.tangent || vertexFormat.bitangent) {
|
|
Matrix2.Cartesian3.cross(Matrix2.Cartesian3.UNIT_Z, normal, tangent);
|
|
Matrix2.Matrix3.multiplyByVector(tangentRotationMatrix, tangent, tangent);
|
|
Matrix2.Cartesian3.normalize(tangent, tangent);
|
|
|
|
if (vertexFormat.bitangent) {
|
|
Matrix2.Cartesian3.normalize(
|
|
Matrix2.Cartesian3.cross(normal, tangent, bitangent),
|
|
bitangent
|
|
);
|
|
}
|
|
}
|
|
|
|
if (vertexFormat.normal) {
|
|
normals[attrIndex] = normal.x;
|
|
normals[attrIndex1] = normal.y;
|
|
normals[attrIndex2] = normal.z;
|
|
}
|
|
if (vertexFormat.tangent) {
|
|
tangents[attrIndex] = tangent.x;
|
|
tangents[attrIndex1] = tangent.y;
|
|
tangents[attrIndex2] = tangent.z;
|
|
}
|
|
if (vertexFormat.bitangent) {
|
|
bitangents[attrIndex] = bitangent.x;
|
|
bitangents[attrIndex1] = bitangent.y;
|
|
bitangents[attrIndex2] = bitangent.z;
|
|
}
|
|
attrIndex += 3;
|
|
}
|
|
}
|
|
return createAttributes(vertexFormat, {
|
|
positions: positions,
|
|
normals: normals,
|
|
tangents: tangents,
|
|
bitangents: bitangents,
|
|
});
|
|
}
|
|
|
|
const v1Scratch = new Matrix2.Cartesian3();
|
|
const v2Scratch = new Matrix2.Cartesian3();
|
|
|
|
function calculateAttributesWall(positions, vertexFormat, ellipsoid) {
|
|
const length = positions.length;
|
|
|
|
const normals = vertexFormat.normal ? new Float32Array(length) : undefined;
|
|
const tangents = vertexFormat.tangent ? new Float32Array(length) : undefined;
|
|
const bitangents = vertexFormat.bitangent
|
|
? new Float32Array(length)
|
|
: undefined;
|
|
|
|
let normalIndex = 0;
|
|
let tangentIndex = 0;
|
|
let bitangentIndex = 0;
|
|
let recomputeNormal = true;
|
|
|
|
let bitangent = bitangentScratch;
|
|
let tangent = tangentScratch;
|
|
let normal = normalScratch;
|
|
if (vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) {
|
|
for (let i = 0; i < length; i += 6) {
|
|
const p = Matrix2.Cartesian3.fromArray(positions, i, positionScratch);
|
|
const p1 = Matrix2.Cartesian3.fromArray(positions, (i + 6) % length, v1Scratch);
|
|
if (recomputeNormal) {
|
|
const p2 = Matrix2.Cartesian3.fromArray(positions, (i + 3) % length, v2Scratch);
|
|
Matrix2.Cartesian3.subtract(p1, p, p1);
|
|
Matrix2.Cartesian3.subtract(p2, p, p2);
|
|
normal = Matrix2.Cartesian3.normalize(Matrix2.Cartesian3.cross(p2, p1, normal), normal);
|
|
recomputeNormal = false;
|
|
}
|
|
|
|
if (Matrix2.Cartesian3.equalsEpsilon(p1, p, ComponentDatatype.CesiumMath.EPSILON10)) {
|
|
// if we've reached a corner
|
|
recomputeNormal = true;
|
|
}
|
|
|
|
if (vertexFormat.tangent || vertexFormat.bitangent) {
|
|
bitangent = ellipsoid.geodeticSurfaceNormal(p, bitangent);
|
|
if (vertexFormat.tangent) {
|
|
tangent = Matrix2.Cartesian3.normalize(
|
|
Matrix2.Cartesian3.cross(bitangent, normal, tangent),
|
|
tangent
|
|
);
|
|
}
|
|
}
|
|
|
|
if (vertexFormat.normal) {
|
|
normals[normalIndex++] = normal.x;
|
|
normals[normalIndex++] = normal.y;
|
|
normals[normalIndex++] = normal.z;
|
|
normals[normalIndex++] = normal.x;
|
|
normals[normalIndex++] = normal.y;
|
|
normals[normalIndex++] = normal.z;
|
|
}
|
|
|
|
if (vertexFormat.tangent) {
|
|
tangents[tangentIndex++] = tangent.x;
|
|
tangents[tangentIndex++] = tangent.y;
|
|
tangents[tangentIndex++] = tangent.z;
|
|
tangents[tangentIndex++] = tangent.x;
|
|
tangents[tangentIndex++] = tangent.y;
|
|
tangents[tangentIndex++] = tangent.z;
|
|
}
|
|
|
|
if (vertexFormat.bitangent) {
|
|
bitangents[bitangentIndex++] = bitangent.x;
|
|
bitangents[bitangentIndex++] = bitangent.y;
|
|
bitangents[bitangentIndex++] = bitangent.z;
|
|
bitangents[bitangentIndex++] = bitangent.x;
|
|
bitangents[bitangentIndex++] = bitangent.y;
|
|
bitangents[bitangentIndex++] = bitangent.z;
|
|
}
|
|
}
|
|
}
|
|
|
|
return createAttributes(vertexFormat, {
|
|
positions: positions,
|
|
normals: normals,
|
|
tangents: tangents,
|
|
bitangents: bitangents,
|
|
});
|
|
}
|
|
|
|
function constructRectangle(rectangleGeometry, computedOptions) {
|
|
const vertexFormat = rectangleGeometry._vertexFormat;
|
|
const ellipsoid = rectangleGeometry._ellipsoid;
|
|
const height = computedOptions.height;
|
|
const width = computedOptions.width;
|
|
const northCap = computedOptions.northCap;
|
|
const southCap = computedOptions.southCap;
|
|
|
|
let rowStart = 0;
|
|
let rowEnd = height;
|
|
let rowHeight = height;
|
|
let size = 0;
|
|
if (northCap) {
|
|
rowStart = 1;
|
|
rowHeight -= 1;
|
|
size += 1;
|
|
}
|
|
if (southCap) {
|
|
rowEnd -= 1;
|
|
rowHeight -= 1;
|
|
size += 1;
|
|
}
|
|
size += width * rowHeight;
|
|
|
|
const positions = vertexFormat.position
|
|
? new Float64Array(size * 3)
|
|
: undefined;
|
|
const textureCoordinates = vertexFormat.st
|
|
? new Float32Array(size * 2)
|
|
: undefined;
|
|
|
|
let posIndex = 0;
|
|
let stIndex = 0;
|
|
|
|
const position = positionScratch;
|
|
const st = stScratch;
|
|
|
|
let minX = Number.MAX_VALUE;
|
|
let minY = Number.MAX_VALUE;
|
|
let maxX = -Number.MAX_VALUE;
|
|
let maxY = -Number.MAX_VALUE;
|
|
|
|
for (let row = rowStart; row < rowEnd; ++row) {
|
|
for (let col = 0; col < width; ++col) {
|
|
RectangleGeometryLibrary.RectangleGeometryLibrary.computePosition(
|
|
computedOptions,
|
|
ellipsoid,
|
|
vertexFormat.st,
|
|
row,
|
|
col,
|
|
position,
|
|
st
|
|
);
|
|
|
|
positions[posIndex++] = position.x;
|
|
positions[posIndex++] = position.y;
|
|
positions[posIndex++] = position.z;
|
|
|
|
if (vertexFormat.st) {
|
|
textureCoordinates[stIndex++] = st.x;
|
|
textureCoordinates[stIndex++] = st.y;
|
|
|
|
minX = Math.min(minX, st.x);
|
|
minY = Math.min(minY, st.y);
|
|
maxX = Math.max(maxX, st.x);
|
|
maxY = Math.max(maxY, st.y);
|
|
}
|
|
}
|
|
}
|
|
if (northCap) {
|
|
RectangleGeometryLibrary.RectangleGeometryLibrary.computePosition(
|
|
computedOptions,
|
|
ellipsoid,
|
|
vertexFormat.st,
|
|
0,
|
|
0,
|
|
position,
|
|
st
|
|
);
|
|
|
|
positions[posIndex++] = position.x;
|
|
positions[posIndex++] = position.y;
|
|
positions[posIndex++] = position.z;
|
|
|
|
if (vertexFormat.st) {
|
|
textureCoordinates[stIndex++] = st.x;
|
|
textureCoordinates[stIndex++] = st.y;
|
|
|
|
minX = st.x;
|
|
minY = st.y;
|
|
maxX = st.x;
|
|
maxY = st.y;
|
|
}
|
|
}
|
|
if (southCap) {
|
|
RectangleGeometryLibrary.RectangleGeometryLibrary.computePosition(
|
|
computedOptions,
|
|
ellipsoid,
|
|
vertexFormat.st,
|
|
height - 1,
|
|
0,
|
|
position,
|
|
st
|
|
);
|
|
|
|
positions[posIndex++] = position.x;
|
|
positions[posIndex++] = position.y;
|
|
positions[posIndex] = position.z;
|
|
|
|
if (vertexFormat.st) {
|
|
textureCoordinates[stIndex++] = st.x;
|
|
textureCoordinates[stIndex] = st.y;
|
|
|
|
minX = Math.min(minX, st.x);
|
|
minY = Math.min(minY, st.y);
|
|
maxX = Math.max(maxX, st.x);
|
|
maxY = Math.max(maxY, st.y);
|
|
}
|
|
}
|
|
|
|
if (
|
|
vertexFormat.st &&
|
|
(minX < 0.0 || minY < 0.0 || maxX > 1.0 || maxY > 1.0)
|
|
) {
|
|
for (let k = 0; k < textureCoordinates.length; k += 2) {
|
|
textureCoordinates[k] = (textureCoordinates[k] - minX) / (maxX - minX);
|
|
textureCoordinates[k + 1] =
|
|
(textureCoordinates[k + 1] - minY) / (maxY - minY);
|
|
}
|
|
}
|
|
|
|
const geo = calculateAttributes(
|
|
positions,
|
|
vertexFormat,
|
|
ellipsoid,
|
|
computedOptions.tangentRotationMatrix
|
|
);
|
|
|
|
let indicesSize = 6 * (width - 1) * (rowHeight - 1);
|
|
if (northCap) {
|
|
indicesSize += 3 * (width - 1);
|
|
}
|
|
if (southCap) {
|
|
indicesSize += 3 * (width - 1);
|
|
}
|
|
const indices = IndexDatatype.IndexDatatype.createTypedArray(size, indicesSize);
|
|
let index = 0;
|
|
let indicesIndex = 0;
|
|
let i;
|
|
for (i = 0; i < rowHeight - 1; ++i) {
|
|
for (let j = 0; j < width - 1; ++j) {
|
|
const upperLeft = index;
|
|
const lowerLeft = upperLeft + width;
|
|
const lowerRight = lowerLeft + 1;
|
|
const upperRight = upperLeft + 1;
|
|
indices[indicesIndex++] = upperLeft;
|
|
indices[indicesIndex++] = lowerLeft;
|
|
indices[indicesIndex++] = upperRight;
|
|
indices[indicesIndex++] = upperRight;
|
|
indices[indicesIndex++] = lowerLeft;
|
|
indices[indicesIndex++] = lowerRight;
|
|
++index;
|
|
}
|
|
++index;
|
|
}
|
|
if (northCap || southCap) {
|
|
let northIndex = size - 1;
|
|
const southIndex = size - 1;
|
|
if (northCap && southCap) {
|
|
northIndex = size - 2;
|
|
}
|
|
|
|
let p1;
|
|
let p2;
|
|
index = 0;
|
|
|
|
if (northCap) {
|
|
for (i = 0; i < width - 1; i++) {
|
|
p1 = index;
|
|
p2 = p1 + 1;
|
|
indices[indicesIndex++] = northIndex;
|
|
indices[indicesIndex++] = p1;
|
|
indices[indicesIndex++] = p2;
|
|
++index;
|
|
}
|
|
}
|
|
if (southCap) {
|
|
index = (rowHeight - 1) * width;
|
|
for (i = 0; i < width - 1; i++) {
|
|
p1 = index;
|
|
p2 = p1 + 1;
|
|
indices[indicesIndex++] = p1;
|
|
indices[indicesIndex++] = southIndex;
|
|
indices[indicesIndex++] = p2;
|
|
++index;
|
|
}
|
|
}
|
|
}
|
|
|
|
geo.indices = indices;
|
|
if (vertexFormat.st) {
|
|
geo.attributes.st = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 2,
|
|
values: textureCoordinates,
|
|
});
|
|
}
|
|
|
|
return geo;
|
|
}
|
|
|
|
function addWallPositions(
|
|
wallPositions,
|
|
posIndex,
|
|
i,
|
|
topPositions,
|
|
bottomPositions
|
|
) {
|
|
wallPositions[posIndex++] = topPositions[i];
|
|
wallPositions[posIndex++] = topPositions[i + 1];
|
|
wallPositions[posIndex++] = topPositions[i + 2];
|
|
wallPositions[posIndex++] = bottomPositions[i];
|
|
wallPositions[posIndex++] = bottomPositions[i + 1];
|
|
wallPositions[posIndex] = bottomPositions[i + 2];
|
|
return wallPositions;
|
|
}
|
|
|
|
function addWallTextureCoordinates(wallTextures, stIndex, i, st) {
|
|
wallTextures[stIndex++] = st[i];
|
|
wallTextures[stIndex++] = st[i + 1];
|
|
wallTextures[stIndex++] = st[i];
|
|
wallTextures[stIndex] = st[i + 1];
|
|
return wallTextures;
|
|
}
|
|
|
|
const scratchVertexFormat = new VertexFormat.VertexFormat();
|
|
|
|
function constructExtrudedRectangle(rectangleGeometry, computedOptions) {
|
|
const shadowVolume = rectangleGeometry._shadowVolume;
|
|
const offsetAttributeValue = rectangleGeometry._offsetAttribute;
|
|
const vertexFormat = rectangleGeometry._vertexFormat;
|
|
const minHeight = rectangleGeometry._extrudedHeight;
|
|
const maxHeight = rectangleGeometry._surfaceHeight;
|
|
const ellipsoid = rectangleGeometry._ellipsoid;
|
|
|
|
const height = computedOptions.height;
|
|
const width = computedOptions.width;
|
|
|
|
let i;
|
|
|
|
if (shadowVolume) {
|
|
const newVertexFormat = VertexFormat.VertexFormat.clone(
|
|
vertexFormat,
|
|
scratchVertexFormat
|
|
);
|
|
newVertexFormat.normal = true;
|
|
rectangleGeometry._vertexFormat = newVertexFormat;
|
|
}
|
|
|
|
const topBottomGeo = constructRectangle(rectangleGeometry, computedOptions);
|
|
|
|
if (shadowVolume) {
|
|
rectangleGeometry._vertexFormat = vertexFormat;
|
|
}
|
|
|
|
let topPositions = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight(
|
|
topBottomGeo.attributes.position.values,
|
|
maxHeight,
|
|
ellipsoid,
|
|
false
|
|
);
|
|
topPositions = new Float64Array(topPositions);
|
|
let length = topPositions.length;
|
|
const newLength = length * 2;
|
|
const positions = new Float64Array(newLength);
|
|
positions.set(topPositions);
|
|
const bottomPositions = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight(
|
|
topBottomGeo.attributes.position.values,
|
|
minHeight,
|
|
ellipsoid
|
|
);
|
|
positions.set(bottomPositions, length);
|
|
topBottomGeo.attributes.position.values = positions;
|
|
|
|
const normals = vertexFormat.normal ? new Float32Array(newLength) : undefined;
|
|
const tangents = vertexFormat.tangent
|
|
? new Float32Array(newLength)
|
|
: undefined;
|
|
const bitangents = vertexFormat.bitangent
|
|
? new Float32Array(newLength)
|
|
: undefined;
|
|
const textures = vertexFormat.st
|
|
? new Float32Array((newLength / 3) * 2)
|
|
: undefined;
|
|
let topSt;
|
|
let topNormals;
|
|
if (vertexFormat.normal) {
|
|
topNormals = topBottomGeo.attributes.normal.values;
|
|
normals.set(topNormals);
|
|
for (i = 0; i < length; i++) {
|
|
topNormals[i] = -topNormals[i];
|
|
}
|
|
normals.set(topNormals, length);
|
|
topBottomGeo.attributes.normal.values = normals;
|
|
}
|
|
if (shadowVolume) {
|
|
topNormals = topBottomGeo.attributes.normal.values;
|
|
if (!vertexFormat.normal) {
|
|
topBottomGeo.attributes.normal = undefined;
|
|
}
|
|
const extrudeNormals = new Float32Array(newLength);
|
|
for (i = 0; i < length; i++) {
|
|
topNormals[i] = -topNormals[i];
|
|
}
|
|
extrudeNormals.set(topNormals, length); //only get normals for bottom layer that's going to be pushed down
|
|
topBottomGeo.attributes.extrudeDirection = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: extrudeNormals,
|
|
});
|
|
}
|
|
|
|
let offsetValue;
|
|
const hasOffsets = when.defined(offsetAttributeValue);
|
|
if (hasOffsets) {
|
|
const size = (length / 3) * 2;
|
|
let offsetAttribute = new Uint8Array(size);
|
|
if (offsetAttributeValue === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP) {
|
|
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, 1, 0, size / 2);
|
|
} else {
|
|
offsetValue =
|
|
offsetAttributeValue === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1;
|
|
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, offsetValue);
|
|
}
|
|
|
|
topBottomGeo.attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
|
|
componentsPerAttribute: 1,
|
|
values: offsetAttribute,
|
|
});
|
|
}
|
|
|
|
if (vertexFormat.tangent) {
|
|
const topTangents = topBottomGeo.attributes.tangent.values;
|
|
tangents.set(topTangents);
|
|
for (i = 0; i < length; i++) {
|
|
topTangents[i] = -topTangents[i];
|
|
}
|
|
tangents.set(topTangents, length);
|
|
topBottomGeo.attributes.tangent.values = tangents;
|
|
}
|
|
if (vertexFormat.bitangent) {
|
|
const topBitangents = topBottomGeo.attributes.bitangent.values;
|
|
bitangents.set(topBitangents);
|
|
bitangents.set(topBitangents, length);
|
|
topBottomGeo.attributes.bitangent.values = bitangents;
|
|
}
|
|
if (vertexFormat.st) {
|
|
topSt = topBottomGeo.attributes.st.values;
|
|
textures.set(topSt);
|
|
textures.set(topSt, (length / 3) * 2);
|
|
topBottomGeo.attributes.st.values = textures;
|
|
}
|
|
|
|
const indices = topBottomGeo.indices;
|
|
const indicesLength = indices.length;
|
|
const posLength = length / 3;
|
|
const newIndices = IndexDatatype.IndexDatatype.createTypedArray(
|
|
newLength / 3,
|
|
indicesLength * 2
|
|
);
|
|
newIndices.set(indices);
|
|
for (i = 0; i < indicesLength; i += 3) {
|
|
newIndices[i + indicesLength] = indices[i + 2] + posLength;
|
|
newIndices[i + 1 + indicesLength] = indices[i + 1] + posLength;
|
|
newIndices[i + 2 + indicesLength] = indices[i] + posLength;
|
|
}
|
|
topBottomGeo.indices = newIndices;
|
|
|
|
const northCap = computedOptions.northCap;
|
|
const southCap = computedOptions.southCap;
|
|
|
|
let rowHeight = height;
|
|
let widthMultiplier = 2;
|
|
let perimeterPositions = 0;
|
|
let corners = 4;
|
|
let dupliateCorners = 4;
|
|
if (northCap) {
|
|
widthMultiplier -= 1;
|
|
rowHeight -= 1;
|
|
perimeterPositions += 1;
|
|
corners -= 2;
|
|
dupliateCorners -= 1;
|
|
}
|
|
if (southCap) {
|
|
widthMultiplier -= 1;
|
|
rowHeight -= 1;
|
|
perimeterPositions += 1;
|
|
corners -= 2;
|
|
dupliateCorners -= 1;
|
|
}
|
|
perimeterPositions += widthMultiplier * width + 2 * rowHeight - corners;
|
|
|
|
const wallCount = (perimeterPositions + dupliateCorners) * 2;
|
|
|
|
let wallPositions = new Float64Array(wallCount * 3);
|
|
const wallExtrudeNormals = shadowVolume
|
|
? new Float32Array(wallCount * 3)
|
|
: undefined;
|
|
let wallOffsetAttribute = hasOffsets ? new Uint8Array(wallCount) : undefined;
|
|
let wallTextures = vertexFormat.st
|
|
? new Float32Array(wallCount * 2)
|
|
: undefined;
|
|
|
|
const computeTopOffsets =
|
|
offsetAttributeValue === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP;
|
|
if (hasOffsets && !computeTopOffsets) {
|
|
offsetValue = offsetAttributeValue === GeometryOffsetAttribute.GeometryOffsetAttribute.ALL ? 1 : 0;
|
|
wallOffsetAttribute = GeometryOffsetAttribute.arrayFill(wallOffsetAttribute, offsetValue);
|
|
}
|
|
|
|
let posIndex = 0;
|
|
let stIndex = 0;
|
|
let extrudeNormalIndex = 0;
|
|
let wallOffsetIndex = 0;
|
|
const area = width * rowHeight;
|
|
let threeI;
|
|
for (i = 0; i < area; i += width) {
|
|
threeI = i * 3;
|
|
wallPositions = addWallPositions(
|
|
wallPositions,
|
|
posIndex,
|
|
threeI,
|
|
topPositions,
|
|
bottomPositions
|
|
);
|
|
posIndex += 6;
|
|
if (vertexFormat.st) {
|
|
wallTextures = addWallTextureCoordinates(
|
|
wallTextures,
|
|
stIndex,
|
|
i * 2,
|
|
topSt
|
|
);
|
|
stIndex += 4;
|
|
}
|
|
if (shadowVolume) {
|
|
extrudeNormalIndex += 3;
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
|
|
}
|
|
if (computeTopOffsets) {
|
|
wallOffsetAttribute[wallOffsetIndex++] = 1;
|
|
wallOffsetIndex += 1;
|
|
}
|
|
}
|
|
|
|
if (!southCap) {
|
|
for (i = area - width; i < area; i++) {
|
|
threeI = i * 3;
|
|
wallPositions = addWallPositions(
|
|
wallPositions,
|
|
posIndex,
|
|
threeI,
|
|
topPositions,
|
|
bottomPositions
|
|
);
|
|
posIndex += 6;
|
|
if (vertexFormat.st) {
|
|
wallTextures = addWallTextureCoordinates(
|
|
wallTextures,
|
|
stIndex,
|
|
i * 2,
|
|
topSt
|
|
);
|
|
stIndex += 4;
|
|
}
|
|
if (shadowVolume) {
|
|
extrudeNormalIndex += 3;
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
|
|
}
|
|
if (computeTopOffsets) {
|
|
wallOffsetAttribute[wallOffsetIndex++] = 1;
|
|
wallOffsetIndex += 1;
|
|
}
|
|
}
|
|
} else {
|
|
const southIndex = northCap ? area + 1 : area;
|
|
threeI = southIndex * 3;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
// duplicate corner points
|
|
wallPositions = addWallPositions(
|
|
wallPositions,
|
|
posIndex,
|
|
threeI,
|
|
topPositions,
|
|
bottomPositions
|
|
);
|
|
posIndex += 6;
|
|
if (vertexFormat.st) {
|
|
wallTextures = addWallTextureCoordinates(
|
|
wallTextures,
|
|
stIndex,
|
|
southIndex * 2,
|
|
topSt
|
|
);
|
|
stIndex += 4;
|
|
}
|
|
if (shadowVolume) {
|
|
extrudeNormalIndex += 3;
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
|
|
}
|
|
if (computeTopOffsets) {
|
|
wallOffsetAttribute[wallOffsetIndex++] = 1;
|
|
wallOffsetIndex += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = area - 1; i > 0; i -= width) {
|
|
threeI = i * 3;
|
|
wallPositions = addWallPositions(
|
|
wallPositions,
|
|
posIndex,
|
|
threeI,
|
|
topPositions,
|
|
bottomPositions
|
|
);
|
|
posIndex += 6;
|
|
if (vertexFormat.st) {
|
|
wallTextures = addWallTextureCoordinates(
|
|
wallTextures,
|
|
stIndex,
|
|
i * 2,
|
|
topSt
|
|
);
|
|
stIndex += 4;
|
|
}
|
|
if (shadowVolume) {
|
|
extrudeNormalIndex += 3;
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
|
|
}
|
|
if (computeTopOffsets) {
|
|
wallOffsetAttribute[wallOffsetIndex++] = 1;
|
|
wallOffsetIndex += 1;
|
|
}
|
|
}
|
|
|
|
if (!northCap) {
|
|
for (i = width - 1; i >= 0; i--) {
|
|
threeI = i * 3;
|
|
wallPositions = addWallPositions(
|
|
wallPositions,
|
|
posIndex,
|
|
threeI,
|
|
topPositions,
|
|
bottomPositions
|
|
);
|
|
posIndex += 6;
|
|
if (vertexFormat.st) {
|
|
wallTextures = addWallTextureCoordinates(
|
|
wallTextures,
|
|
stIndex,
|
|
i * 2,
|
|
topSt
|
|
);
|
|
stIndex += 4;
|
|
}
|
|
if (shadowVolume) {
|
|
extrudeNormalIndex += 3;
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
|
|
}
|
|
if (computeTopOffsets) {
|
|
wallOffsetAttribute[wallOffsetIndex++] = 1;
|
|
wallOffsetIndex += 1;
|
|
}
|
|
}
|
|
} else {
|
|
const northIndex = area;
|
|
threeI = northIndex * 3;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
// duplicate corner points
|
|
wallPositions = addWallPositions(
|
|
wallPositions,
|
|
posIndex,
|
|
threeI,
|
|
topPositions,
|
|
bottomPositions
|
|
);
|
|
posIndex += 6;
|
|
if (vertexFormat.st) {
|
|
wallTextures = addWallTextureCoordinates(
|
|
wallTextures,
|
|
stIndex,
|
|
northIndex * 2,
|
|
topSt
|
|
);
|
|
stIndex += 4;
|
|
}
|
|
if (shadowVolume) {
|
|
extrudeNormalIndex += 3;
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
|
|
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
|
|
}
|
|
if (computeTopOffsets) {
|
|
wallOffsetAttribute[wallOffsetIndex++] = 1;
|
|
wallOffsetIndex += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
let geo = calculateAttributesWall(wallPositions, vertexFormat, ellipsoid);
|
|
|
|
if (vertexFormat.st) {
|
|
geo.attributes.st = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 2,
|
|
values: wallTextures,
|
|
});
|
|
}
|
|
if (shadowVolume) {
|
|
geo.attributes.extrudeDirection = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: wallExtrudeNormals,
|
|
});
|
|
}
|
|
if (hasOffsets) {
|
|
geo.attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
|
|
componentsPerAttribute: 1,
|
|
values: wallOffsetAttribute,
|
|
});
|
|
}
|
|
|
|
const wallIndices = IndexDatatype.IndexDatatype.createTypedArray(
|
|
wallCount,
|
|
perimeterPositions * 6
|
|
);
|
|
|
|
let upperLeft;
|
|
let lowerLeft;
|
|
let lowerRight;
|
|
let upperRight;
|
|
length = wallPositions.length / 3;
|
|
let index = 0;
|
|
for (i = 0; i < length - 1; i += 2) {
|
|
upperLeft = i;
|
|
upperRight = (upperLeft + 2) % length;
|
|
const p1 = Matrix2.Cartesian3.fromArray(wallPositions, upperLeft * 3, v1Scratch);
|
|
const p2 = Matrix2.Cartesian3.fromArray(wallPositions, upperRight * 3, v2Scratch);
|
|
if (Matrix2.Cartesian3.equalsEpsilon(p1, p2, ComponentDatatype.CesiumMath.EPSILON10)) {
|
|
continue;
|
|
}
|
|
lowerLeft = (upperLeft + 1) % length;
|
|
lowerRight = (lowerLeft + 2) % length;
|
|
wallIndices[index++] = upperLeft;
|
|
wallIndices[index++] = lowerLeft;
|
|
wallIndices[index++] = upperRight;
|
|
wallIndices[index++] = upperRight;
|
|
wallIndices[index++] = lowerLeft;
|
|
wallIndices[index++] = lowerRight;
|
|
}
|
|
|
|
geo.indices = wallIndices;
|
|
|
|
geo = GeometryPipeline.GeometryPipeline.combineInstances([
|
|
new GeometryInstance.GeometryInstance({
|
|
geometry: topBottomGeo,
|
|
}),
|
|
new GeometryInstance.GeometryInstance({
|
|
geometry: geo,
|
|
}),
|
|
]);
|
|
|
|
return geo[0];
|
|
}
|
|
|
|
const scratchRectanglePoints = [
|
|
new Matrix2.Cartesian3(),
|
|
new Matrix2.Cartesian3(),
|
|
new Matrix2.Cartesian3(),
|
|
new Matrix2.Cartesian3(),
|
|
];
|
|
const nwScratch = new Matrix2.Cartographic();
|
|
const stNwScratch = new Matrix2.Cartographic();
|
|
function computeRectangle(rectangle, granularity, rotation, ellipsoid, result) {
|
|
if (rotation === 0.0) {
|
|
return Matrix2.Rectangle.clone(rectangle, result);
|
|
}
|
|
|
|
const computedOptions = RectangleGeometryLibrary.RectangleGeometryLibrary.computeOptions(
|
|
rectangle,
|
|
granularity,
|
|
rotation,
|
|
0,
|
|
rectangleScratch,
|
|
nwScratch
|
|
);
|
|
|
|
const height = computedOptions.height;
|
|
const width = computedOptions.width;
|
|
|
|
const positions = scratchRectanglePoints;
|
|
RectangleGeometryLibrary.RectangleGeometryLibrary.computePosition(
|
|
computedOptions,
|
|
ellipsoid,
|
|
false,
|
|
0,
|
|
0,
|
|
positions[0]
|
|
);
|
|
RectangleGeometryLibrary.RectangleGeometryLibrary.computePosition(
|
|
computedOptions,
|
|
ellipsoid,
|
|
false,
|
|
0,
|
|
width - 1,
|
|
positions[1]
|
|
);
|
|
RectangleGeometryLibrary.RectangleGeometryLibrary.computePosition(
|
|
computedOptions,
|
|
ellipsoid,
|
|
false,
|
|
height - 1,
|
|
0,
|
|
positions[2]
|
|
);
|
|
RectangleGeometryLibrary.RectangleGeometryLibrary.computePosition(
|
|
computedOptions,
|
|
ellipsoid,
|
|
false,
|
|
height - 1,
|
|
width - 1,
|
|
positions[3]
|
|
);
|
|
|
|
return Matrix2.Rectangle.fromCartesianArray(positions, ellipsoid, result);
|
|
}
|
|
|
|
/**
|
|
* A description of a cartographic rectangle on an ellipsoid centered at the origin. Rectangle geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}.
|
|
*
|
|
* @alias RectangleGeometry
|
|
* @constructor
|
|
*
|
|
* @param {Object} options Object with the following properties:
|
|
* @param {Rectangle} options.rectangle A cartographic rectangle with north, south, east and west properties in radians.
|
|
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
|
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the rectangle lies.
|
|
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
|
|
* @param {Number} [options.height=0.0] The distance in meters between the rectangle and the ellipsoid surface.
|
|
* @param {Number} [options.rotation=0.0] The rotation of the rectangle, in radians. A positive rotation is counter-clockwise.
|
|
* @param {Number} [options.stRotation=0.0] The rotation of the texture coordinates, in radians. A positive rotation is counter-clockwise.
|
|
* @param {Number} [options.extrudedHeight] The distance in meters between the rectangle's extruded face and the ellipsoid surface.
|
|
*
|
|
* @exception {DeveloperError} <code>options.rectangle.north</code> must be in the interval [<code>-Pi/2</code>, <code>Pi/2</code>].
|
|
* @exception {DeveloperError} <code>options.rectangle.south</code> must be in the interval [<code>-Pi/2</code>, <code>Pi/2</code>].
|
|
* @exception {DeveloperError} <code>options.rectangle.east</code> must be in the interval [<code>-Pi</code>, <code>Pi</code>].
|
|
* @exception {DeveloperError} <code>options.rectangle.west</code> must be in the interval [<code>-Pi</code>, <code>Pi</code>].
|
|
* @exception {DeveloperError} <code>options.rectangle.north</code> must be greater than <code>options.rectangle.south</code>.
|
|
*
|
|
* @see RectangleGeometry#createGeometry
|
|
*
|
|
* @demo {@link https://sandcastle.cesium.com/index.html?src=Rectangle.html|Cesium Sandcastle Rectangle Demo}
|
|
*
|
|
* @example
|
|
* // 1. create a rectangle
|
|
* const rectangle = new Cesium.RectangleGeometry({
|
|
* ellipsoid : Cesium.Ellipsoid.WGS84,
|
|
* rectangle : Cesium.Rectangle.fromDegrees(-80.0, 39.0, -74.0, 42.0),
|
|
* height : 10000.0
|
|
* });
|
|
* const geometry = Cesium.RectangleGeometry.createGeometry(rectangle);
|
|
*
|
|
* // 2. create an extruded rectangle without a top
|
|
* const rectangle = new Cesium.RectangleGeometry({
|
|
* ellipsoid : Cesium.Ellipsoid.WGS84,
|
|
* rectangle : Cesium.Rectangle.fromDegrees(-80.0, 39.0, -74.0, 42.0),
|
|
* height : 10000.0,
|
|
* extrudedHeight: 300000
|
|
* });
|
|
* const geometry = Cesium.RectangleGeometry.createGeometry(rectangle);
|
|
*/
|
|
function RectangleGeometry(options) {
|
|
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
|
|
|
|
const rectangle = options.rectangle;
|
|
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.typeOf.object("rectangle", rectangle);
|
|
Matrix2.Rectangle.validate(rectangle);
|
|
if (rectangle.north < rectangle.south) {
|
|
throw new RuntimeError.DeveloperError(
|
|
"options.rectangle.north must be greater than or equal to options.rectangle.south"
|
|
);
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
const height = when.defaultValue(options.height, 0.0);
|
|
const extrudedHeight = when.defaultValue(options.extrudedHeight, height);
|
|
|
|
this._rectangle = Matrix2.Rectangle.clone(rectangle);
|
|
this._granularity = when.defaultValue(
|
|
options.granularity,
|
|
ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE
|
|
);
|
|
this._ellipsoid = Matrix2.Ellipsoid.clone(
|
|
when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84)
|
|
);
|
|
this._surfaceHeight = Math.max(height, extrudedHeight);
|
|
this._rotation = when.defaultValue(options.rotation, 0.0);
|
|
this._stRotation = when.defaultValue(options.stRotation, 0.0);
|
|
this._vertexFormat = VertexFormat.VertexFormat.clone(
|
|
when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT)
|
|
);
|
|
this._extrudedHeight = Math.min(height, extrudedHeight);
|
|
this._shadowVolume = when.defaultValue(options.shadowVolume, false);
|
|
this._workerName = "createRectangleGeometry";
|
|
this._offsetAttribute = options.offsetAttribute;
|
|
this._rotatedRectangle = undefined;
|
|
|
|
this._textureCoordinateRotationPoints = undefined;
|
|
}
|
|
|
|
/**
|
|
* The number of elements used to pack the object into an array.
|
|
* @type {Number}
|
|
*/
|
|
RectangleGeometry.packedLength =
|
|
Matrix2.Rectangle.packedLength +
|
|
Matrix2.Ellipsoid.packedLength +
|
|
VertexFormat.VertexFormat.packedLength +
|
|
7;
|
|
|
|
/**
|
|
* Stores the provided instance into the provided array.
|
|
*
|
|
* @param {RectangleGeometry} value The value to pack.
|
|
* @param {Number[]} array The array to pack into.
|
|
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
|
|
*
|
|
* @returns {Number[]} The array that was packed into
|
|
*/
|
|
RectangleGeometry.pack = function (value, array, startingIndex) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.typeOf.object("value", value);
|
|
RuntimeError.Check.defined("array", array);
|
|
//>>includeEnd('debug');
|
|
|
|
startingIndex = when.defaultValue(startingIndex, 0);
|
|
|
|
Matrix2.Rectangle.pack(value._rectangle, array, startingIndex);
|
|
startingIndex += Matrix2.Rectangle.packedLength;
|
|
|
|
Matrix2.Ellipsoid.pack(value._ellipsoid, array, startingIndex);
|
|
startingIndex += Matrix2.Ellipsoid.packedLength;
|
|
|
|
VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex);
|
|
startingIndex += VertexFormat.VertexFormat.packedLength;
|
|
|
|
array[startingIndex++] = value._granularity;
|
|
array[startingIndex++] = value._surfaceHeight;
|
|
array[startingIndex++] = value._rotation;
|
|
array[startingIndex++] = value._stRotation;
|
|
array[startingIndex++] = value._extrudedHeight;
|
|
array[startingIndex++] = value._shadowVolume ? 1.0 : 0.0;
|
|
array[startingIndex] = when.defaultValue(value._offsetAttribute, -1);
|
|
|
|
return array;
|
|
};
|
|
|
|
const scratchRectangle = new Matrix2.Rectangle();
|
|
const scratchEllipsoid = Matrix2.Ellipsoid.clone(Matrix2.Ellipsoid.UNIT_SPHERE);
|
|
const scratchOptions = {
|
|
rectangle: scratchRectangle,
|
|
ellipsoid: scratchEllipsoid,
|
|
vertexFormat: scratchVertexFormat,
|
|
granularity: undefined,
|
|
height: undefined,
|
|
rotation: undefined,
|
|
stRotation: undefined,
|
|
extrudedHeight: undefined,
|
|
shadowVolume: undefined,
|
|
offsetAttribute: undefined,
|
|
};
|
|
|
|
/**
|
|
* Retrieves an instance from a packed array.
|
|
*
|
|
* @param {Number[]} array The packed array.
|
|
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
|
|
* @param {RectangleGeometry} [result] The object into which to store the result.
|
|
* @returns {RectangleGeometry} The modified result parameter or a new RectangleGeometry instance if one was not provided.
|
|
*/
|
|
RectangleGeometry.unpack = function (array, startingIndex, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.defined("array", array);
|
|
//>>includeEnd('debug');
|
|
|
|
startingIndex = when.defaultValue(startingIndex, 0);
|
|
|
|
const rectangle = Matrix2.Rectangle.unpack(array, startingIndex, scratchRectangle);
|
|
startingIndex += Matrix2.Rectangle.packedLength;
|
|
|
|
const ellipsoid = Matrix2.Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);
|
|
startingIndex += Matrix2.Ellipsoid.packedLength;
|
|
|
|
const vertexFormat = VertexFormat.VertexFormat.unpack(
|
|
array,
|
|
startingIndex,
|
|
scratchVertexFormat
|
|
);
|
|
startingIndex += VertexFormat.VertexFormat.packedLength;
|
|
|
|
const granularity = array[startingIndex++];
|
|
const surfaceHeight = array[startingIndex++];
|
|
const rotation = array[startingIndex++];
|
|
const stRotation = array[startingIndex++];
|
|
const extrudedHeight = array[startingIndex++];
|
|
const shadowVolume = array[startingIndex++] === 1.0;
|
|
const offsetAttribute = array[startingIndex];
|
|
|
|
if (!when.defined(result)) {
|
|
scratchOptions.granularity = granularity;
|
|
scratchOptions.height = surfaceHeight;
|
|
scratchOptions.rotation = rotation;
|
|
scratchOptions.stRotation = stRotation;
|
|
scratchOptions.extrudedHeight = extrudedHeight;
|
|
scratchOptions.shadowVolume = shadowVolume;
|
|
scratchOptions.offsetAttribute =
|
|
offsetAttribute === -1 ? undefined : offsetAttribute;
|
|
|
|
return new RectangleGeometry(scratchOptions);
|
|
}
|
|
|
|
result._rectangle = Matrix2.Rectangle.clone(rectangle, result._rectangle);
|
|
result._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid, result._ellipsoid);
|
|
result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat);
|
|
result._granularity = granularity;
|
|
result._surfaceHeight = surfaceHeight;
|
|
result._rotation = rotation;
|
|
result._stRotation = stRotation;
|
|
result._extrudedHeight = extrudedHeight;
|
|
result._shadowVolume = shadowVolume;
|
|
result._offsetAttribute =
|
|
offsetAttribute === -1 ? undefined : offsetAttribute;
|
|
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Computes the bounding rectangle based on the provided options
|
|
*
|
|
* @param {Object} options Object with the following properties:
|
|
* @param {Rectangle} options.rectangle A cartographic rectangle with north, south, east and west properties in radians.
|
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the rectangle lies.
|
|
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
|
|
* @param {Number} [options.rotation=0.0] The rotation of the rectangle, in radians. A positive rotation is counter-clockwise.
|
|
* @param {Rectangle} [result] An object in which to store the result.
|
|
*
|
|
* @returns {Rectangle} The result rectangle
|
|
*/
|
|
RectangleGeometry.computeRectangle = function (options, result) {
|
|
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
|
|
|
|
const rectangle = options.rectangle;
|
|
|
|
//>>includeStart('debug', pragmas.debug);
|
|
RuntimeError.Check.typeOf.object("rectangle", rectangle);
|
|
Matrix2.Rectangle.validate(rectangle);
|
|
if (rectangle.north < rectangle.south) {
|
|
throw new RuntimeError.DeveloperError(
|
|
"options.rectangle.north must be greater than or equal to options.rectangle.south"
|
|
);
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
const granularity = when.defaultValue(
|
|
options.granularity,
|
|
ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE
|
|
);
|
|
const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84);
|
|
const rotation = when.defaultValue(options.rotation, 0.0);
|
|
|
|
return computeRectangle(rectangle, granularity, rotation, ellipsoid, result);
|
|
};
|
|
|
|
const tangentRotationMatrixScratch = new Matrix2.Matrix3();
|
|
const quaternionScratch = new Transforms.Quaternion();
|
|
const centerScratch = new Matrix2.Cartographic();
|
|
/**
|
|
* Computes the geometric representation of a rectangle, including its vertices, indices, and a bounding sphere.
|
|
*
|
|
* @param {RectangleGeometry} rectangleGeometry A description of the rectangle.
|
|
* @returns {Geometry|undefined} The computed vertices and indices.
|
|
*
|
|
* @exception {DeveloperError} Rotated rectangle is invalid.
|
|
*/
|
|
RectangleGeometry.createGeometry = function (rectangleGeometry) {
|
|
if (
|
|
ComponentDatatype.CesiumMath.equalsEpsilon(
|
|
rectangleGeometry._rectangle.north,
|
|
rectangleGeometry._rectangle.south,
|
|
ComponentDatatype.CesiumMath.EPSILON10
|
|
) ||
|
|
ComponentDatatype.CesiumMath.equalsEpsilon(
|
|
rectangleGeometry._rectangle.east,
|
|
rectangleGeometry._rectangle.west,
|
|
ComponentDatatype.CesiumMath.EPSILON10
|
|
)
|
|
) {
|
|
return undefined;
|
|
}
|
|
|
|
let rectangle = rectangleGeometry._rectangle;
|
|
const ellipsoid = rectangleGeometry._ellipsoid;
|
|
const rotation = rectangleGeometry._rotation;
|
|
const stRotation = rectangleGeometry._stRotation;
|
|
const vertexFormat = rectangleGeometry._vertexFormat;
|
|
|
|
const computedOptions = RectangleGeometryLibrary.RectangleGeometryLibrary.computeOptions(
|
|
rectangle,
|
|
rectangleGeometry._granularity,
|
|
rotation,
|
|
stRotation,
|
|
rectangleScratch,
|
|
nwScratch,
|
|
stNwScratch
|
|
);
|
|
|
|
const tangentRotationMatrix = tangentRotationMatrixScratch;
|
|
if (stRotation !== 0 || rotation !== 0) {
|
|
const center = Matrix2.Rectangle.center(rectangle, centerScratch);
|
|
const axis = ellipsoid.geodeticSurfaceNormalCartographic(center, v1Scratch);
|
|
Transforms.Quaternion.fromAxisAngle(axis, -stRotation, quaternionScratch);
|
|
Matrix2.Matrix3.fromQuaternion(quaternionScratch, tangentRotationMatrix);
|
|
} else {
|
|
Matrix2.Matrix3.clone(Matrix2.Matrix3.IDENTITY, tangentRotationMatrix);
|
|
}
|
|
|
|
const surfaceHeight = rectangleGeometry._surfaceHeight;
|
|
const extrudedHeight = rectangleGeometry._extrudedHeight;
|
|
const extrude = !ComponentDatatype.CesiumMath.equalsEpsilon(
|
|
surfaceHeight,
|
|
extrudedHeight,
|
|
0,
|
|
ComponentDatatype.CesiumMath.EPSILON2
|
|
);
|
|
|
|
computedOptions.lonScalar = 1.0 / rectangleGeometry._rectangle.width;
|
|
computedOptions.latScalar = 1.0 / rectangleGeometry._rectangle.height;
|
|
computedOptions.tangentRotationMatrix = tangentRotationMatrix;
|
|
|
|
let geometry;
|
|
let boundingSphere;
|
|
rectangle = rectangleGeometry._rectangle;
|
|
if (extrude) {
|
|
geometry = constructExtrudedRectangle(rectangleGeometry, computedOptions);
|
|
const topBS = Transforms.BoundingSphere.fromRectangle3D(
|
|
rectangle,
|
|
ellipsoid,
|
|
surfaceHeight,
|
|
topBoundingSphere
|
|
);
|
|
const bottomBS = Transforms.BoundingSphere.fromRectangle3D(
|
|
rectangle,
|
|
ellipsoid,
|
|
extrudedHeight,
|
|
bottomBoundingSphere
|
|
);
|
|
boundingSphere = Transforms.BoundingSphere.union(topBS, bottomBS);
|
|
} else {
|
|
geometry = constructRectangle(rectangleGeometry, computedOptions);
|
|
geometry.attributes.position.values = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight(
|
|
geometry.attributes.position.values,
|
|
surfaceHeight,
|
|
ellipsoid,
|
|
false
|
|
);
|
|
|
|
if (when.defined(rectangleGeometry._offsetAttribute)) {
|
|
const length = geometry.attributes.position.values.length;
|
|
const applyOffset = new Uint8Array(length / 3);
|
|
const offsetValue =
|
|
rectangleGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE
|
|
? 0
|
|
: 1;
|
|
GeometryOffsetAttribute.arrayFill(applyOffset, offsetValue);
|
|
geometry.attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
|
|
componentsPerAttribute: 1,
|
|
values: applyOffset,
|
|
});
|
|
}
|
|
|
|
boundingSphere = Transforms.BoundingSphere.fromRectangle3D(
|
|
rectangle,
|
|
ellipsoid,
|
|
surfaceHeight
|
|
);
|
|
}
|
|
|
|
if (!vertexFormat.position) {
|
|
delete geometry.attributes.position;
|
|
}
|
|
|
|
return new GeometryAttribute.Geometry({
|
|
attributes: geometry.attributes,
|
|
indices: geometry.indices,
|
|
primitiveType: geometry.primitiveType,
|
|
boundingSphere: boundingSphere,
|
|
offsetAttribute: rectangleGeometry._offsetAttribute,
|
|
});
|
|
};
|
|
|
|
/**
|
|
* @private
|
|
*/
|
|
RectangleGeometry.createShadowVolume = function (
|
|
rectangleGeometry,
|
|
minHeightFunc,
|
|
maxHeightFunc
|
|
) {
|
|
const granularity = rectangleGeometry._granularity;
|
|
const ellipsoid = rectangleGeometry._ellipsoid;
|
|
|
|
const minHeight = minHeightFunc(granularity, ellipsoid);
|
|
const maxHeight = maxHeightFunc(granularity, ellipsoid);
|
|
|
|
return new RectangleGeometry({
|
|
rectangle: rectangleGeometry._rectangle,
|
|
rotation: rectangleGeometry._rotation,
|
|
ellipsoid: ellipsoid,
|
|
stRotation: rectangleGeometry._stRotation,
|
|
granularity: granularity,
|
|
extrudedHeight: maxHeight,
|
|
height: minHeight,
|
|
vertexFormat: VertexFormat.VertexFormat.POSITION_ONLY,
|
|
shadowVolume: true,
|
|
});
|
|
};
|
|
|
|
const unrotatedTextureRectangleScratch = new Matrix2.Rectangle();
|
|
const points2DScratch = [new Matrix2.Cartesian2(), new Matrix2.Cartesian2(), new Matrix2.Cartesian2()];
|
|
const rotation2DScratch = new Matrix2.Matrix2();
|
|
const rectangleCenterScratch = new Matrix2.Cartographic();
|
|
|
|
function textureCoordinateRotationPoints(rectangleGeometry) {
|
|
if (rectangleGeometry._stRotation === 0.0) {
|
|
return [0, 0, 0, 1, 1, 0];
|
|
}
|
|
|
|
const rectangle = Matrix2.Rectangle.clone(
|
|
rectangleGeometry._rectangle,
|
|
unrotatedTextureRectangleScratch
|
|
);
|
|
const granularity = rectangleGeometry._granularity;
|
|
const ellipsoid = rectangleGeometry._ellipsoid;
|
|
|
|
// Rotate to align the texture coordinates with ENU
|
|
const rotation = rectangleGeometry._rotation - rectangleGeometry._stRotation;
|
|
|
|
const unrotatedTextureRectangle = computeRectangle(
|
|
rectangle,
|
|
granularity,
|
|
rotation,
|
|
ellipsoid,
|
|
unrotatedTextureRectangleScratch
|
|
);
|
|
|
|
// Assume a computed "east-north" texture coordinate system based on spherical or planar tricks, bounded by `boundingRectangle`.
|
|
// The "desired" texture coordinate system forms an oriented rectangle (un-oriented computed) around the geometry that completely and tightly bounds it.
|
|
// We want to map from the "east-north" texture coordinate system into the "desired" system using a pair of lines (analagous planes in 2D)
|
|
// Compute 3 corners of the "desired" texture coordinate system in "east-north" texture space by the following in cartographic space:
|
|
// - rotate 3 of the corners in unrotatedTextureRectangle by stRotation around the center of the bounding rectangle
|
|
// - apply the "east-north" system's normalization formula to the rotated cartographics, even though this is likely to produce values outside [0-1].
|
|
// This gives us a set of points in the "east-north" texture coordinate system that can be used to map "east-north" texture coordinates to "desired."
|
|
|
|
const points2D = points2DScratch;
|
|
points2D[0].x = unrotatedTextureRectangle.west;
|
|
points2D[0].y = unrotatedTextureRectangle.south;
|
|
|
|
points2D[1].x = unrotatedTextureRectangle.west;
|
|
points2D[1].y = unrotatedTextureRectangle.north;
|
|
|
|
points2D[2].x = unrotatedTextureRectangle.east;
|
|
points2D[2].y = unrotatedTextureRectangle.south;
|
|
|
|
const boundingRectangle = rectangleGeometry.rectangle;
|
|
const toDesiredInComputed = Matrix2.Matrix2.fromRotation(
|
|
rectangleGeometry._stRotation,
|
|
rotation2DScratch
|
|
);
|
|
const boundingRectangleCenter = Matrix2.Rectangle.center(
|
|
boundingRectangle,
|
|
rectangleCenterScratch
|
|
);
|
|
|
|
for (let i = 0; i < 3; ++i) {
|
|
const point2D = points2D[i];
|
|
point2D.x -= boundingRectangleCenter.longitude;
|
|
point2D.y -= boundingRectangleCenter.latitude;
|
|
Matrix2.Matrix2.multiplyByVector(toDesiredInComputed, point2D, point2D);
|
|
point2D.x += boundingRectangleCenter.longitude;
|
|
point2D.y += boundingRectangleCenter.latitude;
|
|
|
|
// Convert point into east-north texture coordinate space
|
|
point2D.x = (point2D.x - boundingRectangle.west) / boundingRectangle.width;
|
|
point2D.y =
|
|
(point2D.y - boundingRectangle.south) / boundingRectangle.height;
|
|
}
|
|
|
|
const minXYCorner = points2D[0];
|
|
const maxYCorner = points2D[1];
|
|
const maxXCorner = points2D[2];
|
|
const result = new Array(6);
|
|
Matrix2.Cartesian2.pack(minXYCorner, result);
|
|
Matrix2.Cartesian2.pack(maxYCorner, result, 2);
|
|
Matrix2.Cartesian2.pack(maxXCorner, result, 4);
|
|
return result;
|
|
}
|
|
|
|
Object.defineProperties(RectangleGeometry.prototype, {
|
|
/**
|
|
* @private
|
|
*/
|
|
rectangle: {
|
|
get: function () {
|
|
if (!when.defined(this._rotatedRectangle)) {
|
|
this._rotatedRectangle = computeRectangle(
|
|
this._rectangle,
|
|
this._granularity,
|
|
this._rotation,
|
|
this._ellipsoid
|
|
);
|
|
}
|
|
return this._rotatedRectangle;
|
|
},
|
|
},
|
|
/**
|
|
* For remapping texture coordinates when rendering RectangleGeometries as GroundPrimitives.
|
|
* This version permits skew in textures by computing offsets directly in cartographic space and
|
|
* more accurately approximates rendering RectangleGeometries with height as standard Primitives.
|
|
* @see Geometry#_textureCoordinateRotationPoints
|
|
* @private
|
|
*/
|
|
textureCoordinateRotationPoints: {
|
|
get: function () {
|
|
if (!when.defined(this._textureCoordinateRotationPoints)) {
|
|
this._textureCoordinateRotationPoints = textureCoordinateRotationPoints(
|
|
this
|
|
);
|
|
}
|
|
return this._textureCoordinateRotationPoints;
|
|
},
|
|
},
|
|
});
|
|
|
|
function createRectangleGeometry(rectangleGeometry, offset) {
|
|
if (when.defined(offset)) {
|
|
rectangleGeometry = RectangleGeometry.unpack(rectangleGeometry, offset);
|
|
}
|
|
rectangleGeometry._ellipsoid = Matrix2.Ellipsoid.clone(rectangleGeometry._ellipsoid);
|
|
rectangleGeometry._rectangle = Matrix2.Rectangle.clone(rectangleGeometry._rectangle);
|
|
return RectangleGeometry.createGeometry(rectangleGeometry);
|
|
}
|
|
|
|
return createRectangleGeometry;
|
|
|
|
}));
|
|
//# sourceMappingURL=createRectangleGeometry.js.map
|