qd-changjing/public/static/Build/CesiumUnminified/Workers/createRectangleGeometry.js

1502 lines
52 KiB
JavaScript

/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['./when-4bbc8319', './Matrix2-265d9610', './GeometryOffsetAttribute-7e016332', './Transforms-8b90e17c', './RuntimeError-5b082e8f', './ComponentDatatype-aad54330', './GeometryAttribute-4bcb785f', './GeometryAttributes-7827a6c2', './GeometryInstance-d57564f8', './GeometryPipeline-e93f6439', './IndexDatatype-6739e544', './PolygonPipeline-5fd67ae2', './RectangleGeometryLibrary-80323cc0', './VertexFormat-07539138', './combine-e9466e32', './WebGLConstants-508b9636', './AttributeCompression-442278a0', './EncodedCartesian3-da8f96bc', './IntersectionTests-596e31ec', './Plane-616c9c0a', './EllipsoidRhumbLine-d09d563f'], (function (when, Matrix2, GeometryOffsetAttribute, Transforms, RuntimeError, ComponentDatatype, GeometryAttribute, GeometryAttributes, GeometryInstance, GeometryPipeline, IndexDatatype, PolygonPipeline, RectangleGeometryLibrary, VertexFormat, combine, WebGLConstants, AttributeCompression, EncodedCartesian3, IntersectionTests, Plane, EllipsoidRhumbLine) { 'use strict';
const positionScratch = new Matrix2.Cartesian3();
const normalScratch = new Matrix2.Cartesian3();
const tangentScratch = new Matrix2.Cartesian3();
const bitangentScratch = new Matrix2.Cartesian3();
const rectangleScratch = new Matrix2.Rectangle();
const stScratch = new Matrix2.Cartesian2();
const bottomBoundingSphere = new Transforms.BoundingSphere();
const topBoundingSphere = new Transforms.BoundingSphere();
function createAttributes(vertexFormat, attributes) {
const geo = new GeometryAttribute.Geometry({
attributes: new GeometryAttributes.GeometryAttributes(),
primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
});
geo.attributes.position = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: attributes.positions,
});
if (vertexFormat.normal) {
geo.attributes.normal = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: attributes.normals,
});
}
if (vertexFormat.tangent) {
geo.attributes.tangent = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: attributes.tangents,
});
}
if (vertexFormat.bitangent) {
geo.attributes.bitangent = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: attributes.bitangents,
});
}
return geo;
}
function calculateAttributes(
positions,
vertexFormat,
ellipsoid,
tangentRotationMatrix
) {
const length = positions.length;
const normals = vertexFormat.normal ? new Float32Array(length) : undefined;
const tangents = vertexFormat.tangent ? new Float32Array(length) : undefined;
const bitangents = vertexFormat.bitangent
? new Float32Array(length)
: undefined;
let attrIndex = 0;
const bitangent = bitangentScratch;
const tangent = tangentScratch;
let normal = normalScratch;
if (vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) {
for (let i = 0; i < length; i += 3) {
const p = Matrix2.Cartesian3.fromArray(positions, i, positionScratch);
const attrIndex1 = attrIndex + 1;
const attrIndex2 = attrIndex + 2;
normal = ellipsoid.geodeticSurfaceNormal(p, normal);
if (vertexFormat.tangent || vertexFormat.bitangent) {
Matrix2.Cartesian3.cross(Matrix2.Cartesian3.UNIT_Z, normal, tangent);
Matrix2.Matrix3.multiplyByVector(tangentRotationMatrix, tangent, tangent);
Matrix2.Cartesian3.normalize(tangent, tangent);
if (vertexFormat.bitangent) {
Matrix2.Cartesian3.normalize(
Matrix2.Cartesian3.cross(normal, tangent, bitangent),
bitangent
);
}
}
if (vertexFormat.normal) {
normals[attrIndex] = normal.x;
normals[attrIndex1] = normal.y;
normals[attrIndex2] = normal.z;
}
if (vertexFormat.tangent) {
tangents[attrIndex] = tangent.x;
tangents[attrIndex1] = tangent.y;
tangents[attrIndex2] = tangent.z;
}
if (vertexFormat.bitangent) {
bitangents[attrIndex] = bitangent.x;
bitangents[attrIndex1] = bitangent.y;
bitangents[attrIndex2] = bitangent.z;
}
attrIndex += 3;
}
}
return createAttributes(vertexFormat, {
positions: positions,
normals: normals,
tangents: tangents,
bitangents: bitangents,
});
}
const v1Scratch = new Matrix2.Cartesian3();
const v2Scratch = new Matrix2.Cartesian3();
function calculateAttributesWall(positions, vertexFormat, ellipsoid) {
const length = positions.length;
const normals = vertexFormat.normal ? new Float32Array(length) : undefined;
const tangents = vertexFormat.tangent ? new Float32Array(length) : undefined;
const bitangents = vertexFormat.bitangent
? new Float32Array(length)
: undefined;
let normalIndex = 0;
let tangentIndex = 0;
let bitangentIndex = 0;
let recomputeNormal = true;
let bitangent = bitangentScratch;
let tangent = tangentScratch;
let normal = normalScratch;
if (vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) {
for (let i = 0; i < length; i += 6) {
const p = Matrix2.Cartesian3.fromArray(positions, i, positionScratch);
const p1 = Matrix2.Cartesian3.fromArray(positions, (i + 6) % length, v1Scratch);
if (recomputeNormal) {
const p2 = Matrix2.Cartesian3.fromArray(positions, (i + 3) % length, v2Scratch);
Matrix2.Cartesian3.subtract(p1, p, p1);
Matrix2.Cartesian3.subtract(p2, p, p2);
normal = Matrix2.Cartesian3.normalize(Matrix2.Cartesian3.cross(p2, p1, normal), normal);
recomputeNormal = false;
}
if (Matrix2.Cartesian3.equalsEpsilon(p1, p, ComponentDatatype.CesiumMath.EPSILON10)) {
// if we've reached a corner
recomputeNormal = true;
}
if (vertexFormat.tangent || vertexFormat.bitangent) {
bitangent = ellipsoid.geodeticSurfaceNormal(p, bitangent);
if (vertexFormat.tangent) {
tangent = Matrix2.Cartesian3.normalize(
Matrix2.Cartesian3.cross(bitangent, normal, tangent),
tangent
);
}
}
if (vertexFormat.normal) {
normals[normalIndex++] = normal.x;
normals[normalIndex++] = normal.y;
normals[normalIndex++] = normal.z;
normals[normalIndex++] = normal.x;
normals[normalIndex++] = normal.y;
normals[normalIndex++] = normal.z;
}
if (vertexFormat.tangent) {
tangents[tangentIndex++] = tangent.x;
tangents[tangentIndex++] = tangent.y;
tangents[tangentIndex++] = tangent.z;
tangents[tangentIndex++] = tangent.x;
tangents[tangentIndex++] = tangent.y;
tangents[tangentIndex++] = tangent.z;
}
if (vertexFormat.bitangent) {
bitangents[bitangentIndex++] = bitangent.x;
bitangents[bitangentIndex++] = bitangent.y;
bitangents[bitangentIndex++] = bitangent.z;
bitangents[bitangentIndex++] = bitangent.x;
bitangents[bitangentIndex++] = bitangent.y;
bitangents[bitangentIndex++] = bitangent.z;
}
}
}
return createAttributes(vertexFormat, {
positions: positions,
normals: normals,
tangents: tangents,
bitangents: bitangents,
});
}
function constructRectangle(rectangleGeometry, computedOptions) {
const vertexFormat = rectangleGeometry._vertexFormat;
const ellipsoid = rectangleGeometry._ellipsoid;
const height = computedOptions.height;
const width = computedOptions.width;
const northCap = computedOptions.northCap;
const southCap = computedOptions.southCap;
let rowStart = 0;
let rowEnd = height;
let rowHeight = height;
let size = 0;
if (northCap) {
rowStart = 1;
rowHeight -= 1;
size += 1;
}
if (southCap) {
rowEnd -= 1;
rowHeight -= 1;
size += 1;
}
size += width * rowHeight;
const positions = vertexFormat.position
? new Float64Array(size * 3)
: undefined;
const textureCoordinates = vertexFormat.st
? new Float32Array(size * 2)
: undefined;
let posIndex = 0;
let stIndex = 0;
const position = positionScratch;
const st = stScratch;
let minX = Number.MAX_VALUE;
let minY = Number.MAX_VALUE;
let maxX = -Number.MAX_VALUE;
let maxY = -Number.MAX_VALUE;
for (let row = rowStart; row < rowEnd; ++row) {
for (let col = 0; col < width; ++col) {
RectangleGeometryLibrary.RectangleGeometryLibrary.computePosition(
computedOptions,
ellipsoid,
vertexFormat.st,
row,
col,
position,
st
);
positions[posIndex++] = position.x;
positions[posIndex++] = position.y;
positions[posIndex++] = position.z;
if (vertexFormat.st) {
textureCoordinates[stIndex++] = st.x;
textureCoordinates[stIndex++] = st.y;
minX = Math.min(minX, st.x);
minY = Math.min(minY, st.y);
maxX = Math.max(maxX, st.x);
maxY = Math.max(maxY, st.y);
}
}
}
if (northCap) {
RectangleGeometryLibrary.RectangleGeometryLibrary.computePosition(
computedOptions,
ellipsoid,
vertexFormat.st,
0,
0,
position,
st
);
positions[posIndex++] = position.x;
positions[posIndex++] = position.y;
positions[posIndex++] = position.z;
if (vertexFormat.st) {
textureCoordinates[stIndex++] = st.x;
textureCoordinates[stIndex++] = st.y;
minX = st.x;
minY = st.y;
maxX = st.x;
maxY = st.y;
}
}
if (southCap) {
RectangleGeometryLibrary.RectangleGeometryLibrary.computePosition(
computedOptions,
ellipsoid,
vertexFormat.st,
height - 1,
0,
position,
st
);
positions[posIndex++] = position.x;
positions[posIndex++] = position.y;
positions[posIndex] = position.z;
if (vertexFormat.st) {
textureCoordinates[stIndex++] = st.x;
textureCoordinates[stIndex] = st.y;
minX = Math.min(minX, st.x);
minY = Math.min(minY, st.y);
maxX = Math.max(maxX, st.x);
maxY = Math.max(maxY, st.y);
}
}
if (
vertexFormat.st &&
(minX < 0.0 || minY < 0.0 || maxX > 1.0 || maxY > 1.0)
) {
for (let k = 0; k < textureCoordinates.length; k += 2) {
textureCoordinates[k] = (textureCoordinates[k] - minX) / (maxX - minX);
textureCoordinates[k + 1] =
(textureCoordinates[k + 1] - minY) / (maxY - minY);
}
}
const geo = calculateAttributes(
positions,
vertexFormat,
ellipsoid,
computedOptions.tangentRotationMatrix
);
let indicesSize = 6 * (width - 1) * (rowHeight - 1);
if (northCap) {
indicesSize += 3 * (width - 1);
}
if (southCap) {
indicesSize += 3 * (width - 1);
}
const indices = IndexDatatype.IndexDatatype.createTypedArray(size, indicesSize);
let index = 0;
let indicesIndex = 0;
let i;
for (i = 0; i < rowHeight - 1; ++i) {
for (let j = 0; j < width - 1; ++j) {
const upperLeft = index;
const lowerLeft = upperLeft + width;
const lowerRight = lowerLeft + 1;
const upperRight = upperLeft + 1;
indices[indicesIndex++] = upperLeft;
indices[indicesIndex++] = lowerLeft;
indices[indicesIndex++] = upperRight;
indices[indicesIndex++] = upperRight;
indices[indicesIndex++] = lowerLeft;
indices[indicesIndex++] = lowerRight;
++index;
}
++index;
}
if (northCap || southCap) {
let northIndex = size - 1;
const southIndex = size - 1;
if (northCap && southCap) {
northIndex = size - 2;
}
let p1;
let p2;
index = 0;
if (northCap) {
for (i = 0; i < width - 1; i++) {
p1 = index;
p2 = p1 + 1;
indices[indicesIndex++] = northIndex;
indices[indicesIndex++] = p1;
indices[indicesIndex++] = p2;
++index;
}
}
if (southCap) {
index = (rowHeight - 1) * width;
for (i = 0; i < width - 1; i++) {
p1 = index;
p2 = p1 + 1;
indices[indicesIndex++] = p1;
indices[indicesIndex++] = southIndex;
indices[indicesIndex++] = p2;
++index;
}
}
}
geo.indices = indices;
if (vertexFormat.st) {
geo.attributes.st = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: textureCoordinates,
});
}
return geo;
}
function addWallPositions(
wallPositions,
posIndex,
i,
topPositions,
bottomPositions
) {
wallPositions[posIndex++] = topPositions[i];
wallPositions[posIndex++] = topPositions[i + 1];
wallPositions[posIndex++] = topPositions[i + 2];
wallPositions[posIndex++] = bottomPositions[i];
wallPositions[posIndex++] = bottomPositions[i + 1];
wallPositions[posIndex] = bottomPositions[i + 2];
return wallPositions;
}
function addWallTextureCoordinates(wallTextures, stIndex, i, st) {
wallTextures[stIndex++] = st[i];
wallTextures[stIndex++] = st[i + 1];
wallTextures[stIndex++] = st[i];
wallTextures[stIndex] = st[i + 1];
return wallTextures;
}
const scratchVertexFormat = new VertexFormat.VertexFormat();
function constructExtrudedRectangle(rectangleGeometry, computedOptions) {
const shadowVolume = rectangleGeometry._shadowVolume;
const offsetAttributeValue = rectangleGeometry._offsetAttribute;
const vertexFormat = rectangleGeometry._vertexFormat;
const minHeight = rectangleGeometry._extrudedHeight;
const maxHeight = rectangleGeometry._surfaceHeight;
const ellipsoid = rectangleGeometry._ellipsoid;
const height = computedOptions.height;
const width = computedOptions.width;
let i;
if (shadowVolume) {
const newVertexFormat = VertexFormat.VertexFormat.clone(
vertexFormat,
scratchVertexFormat
);
newVertexFormat.normal = true;
rectangleGeometry._vertexFormat = newVertexFormat;
}
const topBottomGeo = constructRectangle(rectangleGeometry, computedOptions);
if (shadowVolume) {
rectangleGeometry._vertexFormat = vertexFormat;
}
let topPositions = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight(
topBottomGeo.attributes.position.values,
maxHeight,
ellipsoid,
false
);
topPositions = new Float64Array(topPositions);
let length = topPositions.length;
const newLength = length * 2;
const positions = new Float64Array(newLength);
positions.set(topPositions);
const bottomPositions = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight(
topBottomGeo.attributes.position.values,
minHeight,
ellipsoid
);
positions.set(bottomPositions, length);
topBottomGeo.attributes.position.values = positions;
const normals = vertexFormat.normal ? new Float32Array(newLength) : undefined;
const tangents = vertexFormat.tangent
? new Float32Array(newLength)
: undefined;
const bitangents = vertexFormat.bitangent
? new Float32Array(newLength)
: undefined;
const textures = vertexFormat.st
? new Float32Array((newLength / 3) * 2)
: undefined;
let topSt;
let topNormals;
if (vertexFormat.normal) {
topNormals = topBottomGeo.attributes.normal.values;
normals.set(topNormals);
for (i = 0; i < length; i++) {
topNormals[i] = -topNormals[i];
}
normals.set(topNormals, length);
topBottomGeo.attributes.normal.values = normals;
}
if (shadowVolume) {
topNormals = topBottomGeo.attributes.normal.values;
if (!vertexFormat.normal) {
topBottomGeo.attributes.normal = undefined;
}
const extrudeNormals = new Float32Array(newLength);
for (i = 0; i < length; i++) {
topNormals[i] = -topNormals[i];
}
extrudeNormals.set(topNormals, length); //only get normals for bottom layer that's going to be pushed down
topBottomGeo.attributes.extrudeDirection = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: extrudeNormals,
});
}
let offsetValue;
const hasOffsets = when.defined(offsetAttributeValue);
if (hasOffsets) {
const size = (length / 3) * 2;
let offsetAttribute = new Uint8Array(size);
if (offsetAttributeValue === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP) {
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, 1, 0, size / 2);
} else {
offsetValue =
offsetAttributeValue === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1;
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, offsetValue);
}
topBottomGeo.attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: offsetAttribute,
});
}
if (vertexFormat.tangent) {
const topTangents = topBottomGeo.attributes.tangent.values;
tangents.set(topTangents);
for (i = 0; i < length; i++) {
topTangents[i] = -topTangents[i];
}
tangents.set(topTangents, length);
topBottomGeo.attributes.tangent.values = tangents;
}
if (vertexFormat.bitangent) {
const topBitangents = topBottomGeo.attributes.bitangent.values;
bitangents.set(topBitangents);
bitangents.set(topBitangents, length);
topBottomGeo.attributes.bitangent.values = bitangents;
}
if (vertexFormat.st) {
topSt = topBottomGeo.attributes.st.values;
textures.set(topSt);
textures.set(topSt, (length / 3) * 2);
topBottomGeo.attributes.st.values = textures;
}
const indices = topBottomGeo.indices;
const indicesLength = indices.length;
const posLength = length / 3;
const newIndices = IndexDatatype.IndexDatatype.createTypedArray(
newLength / 3,
indicesLength * 2
);
newIndices.set(indices);
for (i = 0; i < indicesLength; i += 3) {
newIndices[i + indicesLength] = indices[i + 2] + posLength;
newIndices[i + 1 + indicesLength] = indices[i + 1] + posLength;
newIndices[i + 2 + indicesLength] = indices[i] + posLength;
}
topBottomGeo.indices = newIndices;
const northCap = computedOptions.northCap;
const southCap = computedOptions.southCap;
let rowHeight = height;
let widthMultiplier = 2;
let perimeterPositions = 0;
let corners = 4;
let dupliateCorners = 4;
if (northCap) {
widthMultiplier -= 1;
rowHeight -= 1;
perimeterPositions += 1;
corners -= 2;
dupliateCorners -= 1;
}
if (southCap) {
widthMultiplier -= 1;
rowHeight -= 1;
perimeterPositions += 1;
corners -= 2;
dupliateCorners -= 1;
}
perimeterPositions += widthMultiplier * width + 2 * rowHeight - corners;
const wallCount = (perimeterPositions + dupliateCorners) * 2;
let wallPositions = new Float64Array(wallCount * 3);
const wallExtrudeNormals = shadowVolume
? new Float32Array(wallCount * 3)
: undefined;
let wallOffsetAttribute = hasOffsets ? new Uint8Array(wallCount) : undefined;
let wallTextures = vertexFormat.st
? new Float32Array(wallCount * 2)
: undefined;
const computeTopOffsets =
offsetAttributeValue === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP;
if (hasOffsets && !computeTopOffsets) {
offsetValue = offsetAttributeValue === GeometryOffsetAttribute.GeometryOffsetAttribute.ALL ? 1 : 0;
wallOffsetAttribute = GeometryOffsetAttribute.arrayFill(wallOffsetAttribute, offsetValue);
}
let posIndex = 0;
let stIndex = 0;
let extrudeNormalIndex = 0;
let wallOffsetIndex = 0;
const area = width * rowHeight;
let threeI;
for (i = 0; i < area; i += width) {
threeI = i * 3;
wallPositions = addWallPositions(
wallPositions,
posIndex,
threeI,
topPositions,
bottomPositions
);
posIndex += 6;
if (vertexFormat.st) {
wallTextures = addWallTextureCoordinates(
wallTextures,
stIndex,
i * 2,
topSt
);
stIndex += 4;
}
if (shadowVolume) {
extrudeNormalIndex += 3;
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
}
if (computeTopOffsets) {
wallOffsetAttribute[wallOffsetIndex++] = 1;
wallOffsetIndex += 1;
}
}
if (!southCap) {
for (i = area - width; i < area; i++) {
threeI = i * 3;
wallPositions = addWallPositions(
wallPositions,
posIndex,
threeI,
topPositions,
bottomPositions
);
posIndex += 6;
if (vertexFormat.st) {
wallTextures = addWallTextureCoordinates(
wallTextures,
stIndex,
i * 2,
topSt
);
stIndex += 4;
}
if (shadowVolume) {
extrudeNormalIndex += 3;
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
}
if (computeTopOffsets) {
wallOffsetAttribute[wallOffsetIndex++] = 1;
wallOffsetIndex += 1;
}
}
} else {
const southIndex = northCap ? area + 1 : area;
threeI = southIndex * 3;
for (i = 0; i < 2; i++) {
// duplicate corner points
wallPositions = addWallPositions(
wallPositions,
posIndex,
threeI,
topPositions,
bottomPositions
);
posIndex += 6;
if (vertexFormat.st) {
wallTextures = addWallTextureCoordinates(
wallTextures,
stIndex,
southIndex * 2,
topSt
);
stIndex += 4;
}
if (shadowVolume) {
extrudeNormalIndex += 3;
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
}
if (computeTopOffsets) {
wallOffsetAttribute[wallOffsetIndex++] = 1;
wallOffsetIndex += 1;
}
}
}
for (i = area - 1; i > 0; i -= width) {
threeI = i * 3;
wallPositions = addWallPositions(
wallPositions,
posIndex,
threeI,
topPositions,
bottomPositions
);
posIndex += 6;
if (vertexFormat.st) {
wallTextures = addWallTextureCoordinates(
wallTextures,
stIndex,
i * 2,
topSt
);
stIndex += 4;
}
if (shadowVolume) {
extrudeNormalIndex += 3;
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
}
if (computeTopOffsets) {
wallOffsetAttribute[wallOffsetIndex++] = 1;
wallOffsetIndex += 1;
}
}
if (!northCap) {
for (i = width - 1; i >= 0; i--) {
threeI = i * 3;
wallPositions = addWallPositions(
wallPositions,
posIndex,
threeI,
topPositions,
bottomPositions
);
posIndex += 6;
if (vertexFormat.st) {
wallTextures = addWallTextureCoordinates(
wallTextures,
stIndex,
i * 2,
topSt
);
stIndex += 4;
}
if (shadowVolume) {
extrudeNormalIndex += 3;
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
}
if (computeTopOffsets) {
wallOffsetAttribute[wallOffsetIndex++] = 1;
wallOffsetIndex += 1;
}
}
} else {
const northIndex = area;
threeI = northIndex * 3;
for (i = 0; i < 2; i++) {
// duplicate corner points
wallPositions = addWallPositions(
wallPositions,
posIndex,
threeI,
topPositions,
bottomPositions
);
posIndex += 6;
if (vertexFormat.st) {
wallTextures = addWallTextureCoordinates(
wallTextures,
stIndex,
northIndex * 2,
topSt
);
stIndex += 4;
}
if (shadowVolume) {
extrudeNormalIndex += 3;
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI];
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 1];
wallExtrudeNormals[extrudeNormalIndex++] = topNormals[threeI + 2];
}
if (computeTopOffsets) {
wallOffsetAttribute[wallOffsetIndex++] = 1;
wallOffsetIndex += 1;
}
}
}
let geo = calculateAttributesWall(wallPositions, vertexFormat, ellipsoid);
if (vertexFormat.st) {
geo.attributes.st = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: wallTextures,
});
}
if (shadowVolume) {
geo.attributes.extrudeDirection = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: wallExtrudeNormals,
});
}
if (hasOffsets) {
geo.attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: wallOffsetAttribute,
});
}
const wallIndices = IndexDatatype.IndexDatatype.createTypedArray(
wallCount,
perimeterPositions * 6
);
let upperLeft;
let lowerLeft;
let lowerRight;
let upperRight;
length = wallPositions.length / 3;
let index = 0;
for (i = 0; i < length - 1; i += 2) {
upperLeft = i;
upperRight = (upperLeft + 2) % length;
const p1 = Matrix2.Cartesian3.fromArray(wallPositions, upperLeft * 3, v1Scratch);
const p2 = Matrix2.Cartesian3.fromArray(wallPositions, upperRight * 3, v2Scratch);
if (Matrix2.Cartesian3.equalsEpsilon(p1, p2, ComponentDatatype.CesiumMath.EPSILON10)) {
continue;
}
lowerLeft = (upperLeft + 1) % length;
lowerRight = (lowerLeft + 2) % length;
wallIndices[index++] = upperLeft;
wallIndices[index++] = lowerLeft;
wallIndices[index++] = upperRight;
wallIndices[index++] = upperRight;
wallIndices[index++] = lowerLeft;
wallIndices[index++] = lowerRight;
}
geo.indices = wallIndices;
geo = GeometryPipeline.GeometryPipeline.combineInstances([
new GeometryInstance.GeometryInstance({
geometry: topBottomGeo,
}),
new GeometryInstance.GeometryInstance({
geometry: geo,
}),
]);
return geo[0];
}
const scratchRectanglePoints = [
new Matrix2.Cartesian3(),
new Matrix2.Cartesian3(),
new Matrix2.Cartesian3(),
new Matrix2.Cartesian3(),
];
const nwScratch = new Matrix2.Cartographic();
const stNwScratch = new Matrix2.Cartographic();
function computeRectangle(rectangle, granularity, rotation, ellipsoid, result) {
if (rotation === 0.0) {
return Matrix2.Rectangle.clone(rectangle, result);
}
const computedOptions = RectangleGeometryLibrary.RectangleGeometryLibrary.computeOptions(
rectangle,
granularity,
rotation,
0,
rectangleScratch,
nwScratch
);
const height = computedOptions.height;
const width = computedOptions.width;
const positions = scratchRectanglePoints;
RectangleGeometryLibrary.RectangleGeometryLibrary.computePosition(
computedOptions,
ellipsoid,
false,
0,
0,
positions[0]
);
RectangleGeometryLibrary.RectangleGeometryLibrary.computePosition(
computedOptions,
ellipsoid,
false,
0,
width - 1,
positions[1]
);
RectangleGeometryLibrary.RectangleGeometryLibrary.computePosition(
computedOptions,
ellipsoid,
false,
height - 1,
0,
positions[2]
);
RectangleGeometryLibrary.RectangleGeometryLibrary.computePosition(
computedOptions,
ellipsoid,
false,
height - 1,
width - 1,
positions[3]
);
return Matrix2.Rectangle.fromCartesianArray(positions, ellipsoid, result);
}
/**
* A description of a cartographic rectangle on an ellipsoid centered at the origin. Rectangle geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}.
*
* @alias RectangleGeometry
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {Rectangle} options.rectangle A cartographic rectangle with north, south, east and west properties in radians.
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the rectangle lies.
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
* @param {Number} [options.height=0.0] The distance in meters between the rectangle and the ellipsoid surface.
* @param {Number} [options.rotation=0.0] The rotation of the rectangle, in radians. A positive rotation is counter-clockwise.
* @param {Number} [options.stRotation=0.0] The rotation of the texture coordinates, in radians. A positive rotation is counter-clockwise.
* @param {Number} [options.extrudedHeight] The distance in meters between the rectangle's extruded face and the ellipsoid surface.
*
* @exception {DeveloperError} <code>options.rectangle.north</code> must be in the interval [<code>-Pi/2</code>, <code>Pi/2</code>].
* @exception {DeveloperError} <code>options.rectangle.south</code> must be in the interval [<code>-Pi/2</code>, <code>Pi/2</code>].
* @exception {DeveloperError} <code>options.rectangle.east</code> must be in the interval [<code>-Pi</code>, <code>Pi</code>].
* @exception {DeveloperError} <code>options.rectangle.west</code> must be in the interval [<code>-Pi</code>, <code>Pi</code>].
* @exception {DeveloperError} <code>options.rectangle.north</code> must be greater than <code>options.rectangle.south</code>.
*
* @see RectangleGeometry#createGeometry
*
* @demo {@link https://sandcastle.cesium.com/index.html?src=Rectangle.html|Cesium Sandcastle Rectangle Demo}
*
* @example
* // 1. create a rectangle
* const rectangle = new Cesium.RectangleGeometry({
* ellipsoid : Cesium.Ellipsoid.WGS84,
* rectangle : Cesium.Rectangle.fromDegrees(-80.0, 39.0, -74.0, 42.0),
* height : 10000.0
* });
* const geometry = Cesium.RectangleGeometry.createGeometry(rectangle);
*
* // 2. create an extruded rectangle without a top
* const rectangle = new Cesium.RectangleGeometry({
* ellipsoid : Cesium.Ellipsoid.WGS84,
* rectangle : Cesium.Rectangle.fromDegrees(-80.0, 39.0, -74.0, 42.0),
* height : 10000.0,
* extrudedHeight: 300000
* });
* const geometry = Cesium.RectangleGeometry.createGeometry(rectangle);
*/
function RectangleGeometry(options) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
const rectangle = options.rectangle;
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("rectangle", rectangle);
Matrix2.Rectangle.validate(rectangle);
if (rectangle.north < rectangle.south) {
throw new RuntimeError.DeveloperError(
"options.rectangle.north must be greater than or equal to options.rectangle.south"
);
}
//>>includeEnd('debug');
const height = when.defaultValue(options.height, 0.0);
const extrudedHeight = when.defaultValue(options.extrudedHeight, height);
this._rectangle = Matrix2.Rectangle.clone(rectangle);
this._granularity = when.defaultValue(
options.granularity,
ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE
);
this._ellipsoid = Matrix2.Ellipsoid.clone(
when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84)
);
this._surfaceHeight = Math.max(height, extrudedHeight);
this._rotation = when.defaultValue(options.rotation, 0.0);
this._stRotation = when.defaultValue(options.stRotation, 0.0);
this._vertexFormat = VertexFormat.VertexFormat.clone(
when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT)
);
this._extrudedHeight = Math.min(height, extrudedHeight);
this._shadowVolume = when.defaultValue(options.shadowVolume, false);
this._workerName = "createRectangleGeometry";
this._offsetAttribute = options.offsetAttribute;
this._rotatedRectangle = undefined;
this._textureCoordinateRotationPoints = undefined;
}
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
RectangleGeometry.packedLength =
Matrix2.Rectangle.packedLength +
Matrix2.Ellipsoid.packedLength +
VertexFormat.VertexFormat.packedLength +
7;
/**
* Stores the provided instance into the provided array.
*
* @param {RectangleGeometry} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
RectangleGeometry.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("value", value);
RuntimeError.Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
Matrix2.Rectangle.pack(value._rectangle, array, startingIndex);
startingIndex += Matrix2.Rectangle.packedLength;
Matrix2.Ellipsoid.pack(value._ellipsoid, array, startingIndex);
startingIndex += Matrix2.Ellipsoid.packedLength;
VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat.VertexFormat.packedLength;
array[startingIndex++] = value._granularity;
array[startingIndex++] = value._surfaceHeight;
array[startingIndex++] = value._rotation;
array[startingIndex++] = value._stRotation;
array[startingIndex++] = value._extrudedHeight;
array[startingIndex++] = value._shadowVolume ? 1.0 : 0.0;
array[startingIndex] = when.defaultValue(value._offsetAttribute, -1);
return array;
};
const scratchRectangle = new Matrix2.Rectangle();
const scratchEllipsoid = Matrix2.Ellipsoid.clone(Matrix2.Ellipsoid.UNIT_SPHERE);
const scratchOptions = {
rectangle: scratchRectangle,
ellipsoid: scratchEllipsoid,
vertexFormat: scratchVertexFormat,
granularity: undefined,
height: undefined,
rotation: undefined,
stRotation: undefined,
extrudedHeight: undefined,
shadowVolume: undefined,
offsetAttribute: undefined,
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {RectangleGeometry} [result] The object into which to store the result.
* @returns {RectangleGeometry} The modified result parameter or a new RectangleGeometry instance if one was not provided.
*/
RectangleGeometry.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
const rectangle = Matrix2.Rectangle.unpack(array, startingIndex, scratchRectangle);
startingIndex += Matrix2.Rectangle.packedLength;
const ellipsoid = Matrix2.Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);
startingIndex += Matrix2.Ellipsoid.packedLength;
const vertexFormat = VertexFormat.VertexFormat.unpack(
array,
startingIndex,
scratchVertexFormat
);
startingIndex += VertexFormat.VertexFormat.packedLength;
const granularity = array[startingIndex++];
const surfaceHeight = array[startingIndex++];
const rotation = array[startingIndex++];
const stRotation = array[startingIndex++];
const extrudedHeight = array[startingIndex++];
const shadowVolume = array[startingIndex++] === 1.0;
const offsetAttribute = array[startingIndex];
if (!when.defined(result)) {
scratchOptions.granularity = granularity;
scratchOptions.height = surfaceHeight;
scratchOptions.rotation = rotation;
scratchOptions.stRotation = stRotation;
scratchOptions.extrudedHeight = extrudedHeight;
scratchOptions.shadowVolume = shadowVolume;
scratchOptions.offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
return new RectangleGeometry(scratchOptions);
}
result._rectangle = Matrix2.Rectangle.clone(rectangle, result._rectangle);
result._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid, result._ellipsoid);
result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat);
result._granularity = granularity;
result._surfaceHeight = surfaceHeight;
result._rotation = rotation;
result._stRotation = stRotation;
result._extrudedHeight = extrudedHeight;
result._shadowVolume = shadowVolume;
result._offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
return result;
};
/**
* Computes the bounding rectangle based on the provided options
*
* @param {Object} options Object with the following properties:
* @param {Rectangle} options.rectangle A cartographic rectangle with north, south, east and west properties in radians.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the rectangle lies.
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
* @param {Number} [options.rotation=0.0] The rotation of the rectangle, in radians. A positive rotation is counter-clockwise.
* @param {Rectangle} [result] An object in which to store the result.
*
* @returns {Rectangle} The result rectangle
*/
RectangleGeometry.computeRectangle = function (options, result) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
const rectangle = options.rectangle;
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("rectangle", rectangle);
Matrix2.Rectangle.validate(rectangle);
if (rectangle.north < rectangle.south) {
throw new RuntimeError.DeveloperError(
"options.rectangle.north must be greater than or equal to options.rectangle.south"
);
}
//>>includeEnd('debug');
const granularity = when.defaultValue(
options.granularity,
ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE
);
const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84);
const rotation = when.defaultValue(options.rotation, 0.0);
return computeRectangle(rectangle, granularity, rotation, ellipsoid, result);
};
const tangentRotationMatrixScratch = new Matrix2.Matrix3();
const quaternionScratch = new Transforms.Quaternion();
const centerScratch = new Matrix2.Cartographic();
/**
* Computes the geometric representation of a rectangle, including its vertices, indices, and a bounding sphere.
*
* @param {RectangleGeometry} rectangleGeometry A description of the rectangle.
* @returns {Geometry|undefined} The computed vertices and indices.
*
* @exception {DeveloperError} Rotated rectangle is invalid.
*/
RectangleGeometry.createGeometry = function (rectangleGeometry) {
if (
ComponentDatatype.CesiumMath.equalsEpsilon(
rectangleGeometry._rectangle.north,
rectangleGeometry._rectangle.south,
ComponentDatatype.CesiumMath.EPSILON10
) ||
ComponentDatatype.CesiumMath.equalsEpsilon(
rectangleGeometry._rectangle.east,
rectangleGeometry._rectangle.west,
ComponentDatatype.CesiumMath.EPSILON10
)
) {
return undefined;
}
let rectangle = rectangleGeometry._rectangle;
const ellipsoid = rectangleGeometry._ellipsoid;
const rotation = rectangleGeometry._rotation;
const stRotation = rectangleGeometry._stRotation;
const vertexFormat = rectangleGeometry._vertexFormat;
const computedOptions = RectangleGeometryLibrary.RectangleGeometryLibrary.computeOptions(
rectangle,
rectangleGeometry._granularity,
rotation,
stRotation,
rectangleScratch,
nwScratch,
stNwScratch
);
const tangentRotationMatrix = tangentRotationMatrixScratch;
if (stRotation !== 0 || rotation !== 0) {
const center = Matrix2.Rectangle.center(rectangle, centerScratch);
const axis = ellipsoid.geodeticSurfaceNormalCartographic(center, v1Scratch);
Transforms.Quaternion.fromAxisAngle(axis, -stRotation, quaternionScratch);
Matrix2.Matrix3.fromQuaternion(quaternionScratch, tangentRotationMatrix);
} else {
Matrix2.Matrix3.clone(Matrix2.Matrix3.IDENTITY, tangentRotationMatrix);
}
const surfaceHeight = rectangleGeometry._surfaceHeight;
const extrudedHeight = rectangleGeometry._extrudedHeight;
const extrude = !ComponentDatatype.CesiumMath.equalsEpsilon(
surfaceHeight,
extrudedHeight,
0,
ComponentDatatype.CesiumMath.EPSILON2
);
computedOptions.lonScalar = 1.0 / rectangleGeometry._rectangle.width;
computedOptions.latScalar = 1.0 / rectangleGeometry._rectangle.height;
computedOptions.tangentRotationMatrix = tangentRotationMatrix;
let geometry;
let boundingSphere;
rectangle = rectangleGeometry._rectangle;
if (extrude) {
geometry = constructExtrudedRectangle(rectangleGeometry, computedOptions);
const topBS = Transforms.BoundingSphere.fromRectangle3D(
rectangle,
ellipsoid,
surfaceHeight,
topBoundingSphere
);
const bottomBS = Transforms.BoundingSphere.fromRectangle3D(
rectangle,
ellipsoid,
extrudedHeight,
bottomBoundingSphere
);
boundingSphere = Transforms.BoundingSphere.union(topBS, bottomBS);
} else {
geometry = constructRectangle(rectangleGeometry, computedOptions);
geometry.attributes.position.values = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight(
geometry.attributes.position.values,
surfaceHeight,
ellipsoid,
false
);
if (when.defined(rectangleGeometry._offsetAttribute)) {
const length = geometry.attributes.position.values.length;
const applyOffset = new Uint8Array(length / 3);
const offsetValue =
rectangleGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE
? 0
: 1;
GeometryOffsetAttribute.arrayFill(applyOffset, offsetValue);
geometry.attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: applyOffset,
});
}
boundingSphere = Transforms.BoundingSphere.fromRectangle3D(
rectangle,
ellipsoid,
surfaceHeight
);
}
if (!vertexFormat.position) {
delete geometry.attributes.position;
}
return new GeometryAttribute.Geometry({
attributes: geometry.attributes,
indices: geometry.indices,
primitiveType: geometry.primitiveType,
boundingSphere: boundingSphere,
offsetAttribute: rectangleGeometry._offsetAttribute,
});
};
/**
* @private
*/
RectangleGeometry.createShadowVolume = function (
rectangleGeometry,
minHeightFunc,
maxHeightFunc
) {
const granularity = rectangleGeometry._granularity;
const ellipsoid = rectangleGeometry._ellipsoid;
const minHeight = minHeightFunc(granularity, ellipsoid);
const maxHeight = maxHeightFunc(granularity, ellipsoid);
return new RectangleGeometry({
rectangle: rectangleGeometry._rectangle,
rotation: rectangleGeometry._rotation,
ellipsoid: ellipsoid,
stRotation: rectangleGeometry._stRotation,
granularity: granularity,
extrudedHeight: maxHeight,
height: minHeight,
vertexFormat: VertexFormat.VertexFormat.POSITION_ONLY,
shadowVolume: true,
});
};
const unrotatedTextureRectangleScratch = new Matrix2.Rectangle();
const points2DScratch = [new Matrix2.Cartesian2(), new Matrix2.Cartesian2(), new Matrix2.Cartesian2()];
const rotation2DScratch = new Matrix2.Matrix2();
const rectangleCenterScratch = new Matrix2.Cartographic();
function textureCoordinateRotationPoints(rectangleGeometry) {
if (rectangleGeometry._stRotation === 0.0) {
return [0, 0, 0, 1, 1, 0];
}
const rectangle = Matrix2.Rectangle.clone(
rectangleGeometry._rectangle,
unrotatedTextureRectangleScratch
);
const granularity = rectangleGeometry._granularity;
const ellipsoid = rectangleGeometry._ellipsoid;
// Rotate to align the texture coordinates with ENU
const rotation = rectangleGeometry._rotation - rectangleGeometry._stRotation;
const unrotatedTextureRectangle = computeRectangle(
rectangle,
granularity,
rotation,
ellipsoid,
unrotatedTextureRectangleScratch
);
// Assume a computed "east-north" texture coordinate system based on spherical or planar tricks, bounded by `boundingRectangle`.
// The "desired" texture coordinate system forms an oriented rectangle (un-oriented computed) around the geometry that completely and tightly bounds it.
// We want to map from the "east-north" texture coordinate system into the "desired" system using a pair of lines (analagous planes in 2D)
// Compute 3 corners of the "desired" texture coordinate system in "east-north" texture space by the following in cartographic space:
// - rotate 3 of the corners in unrotatedTextureRectangle by stRotation around the center of the bounding rectangle
// - apply the "east-north" system's normalization formula to the rotated cartographics, even though this is likely to produce values outside [0-1].
// This gives us a set of points in the "east-north" texture coordinate system that can be used to map "east-north" texture coordinates to "desired."
const points2D = points2DScratch;
points2D[0].x = unrotatedTextureRectangle.west;
points2D[0].y = unrotatedTextureRectangle.south;
points2D[1].x = unrotatedTextureRectangle.west;
points2D[1].y = unrotatedTextureRectangle.north;
points2D[2].x = unrotatedTextureRectangle.east;
points2D[2].y = unrotatedTextureRectangle.south;
const boundingRectangle = rectangleGeometry.rectangle;
const toDesiredInComputed = Matrix2.Matrix2.fromRotation(
rectangleGeometry._stRotation,
rotation2DScratch
);
const boundingRectangleCenter = Matrix2.Rectangle.center(
boundingRectangle,
rectangleCenterScratch
);
for (let i = 0; i < 3; ++i) {
const point2D = points2D[i];
point2D.x -= boundingRectangleCenter.longitude;
point2D.y -= boundingRectangleCenter.latitude;
Matrix2.Matrix2.multiplyByVector(toDesiredInComputed, point2D, point2D);
point2D.x += boundingRectangleCenter.longitude;
point2D.y += boundingRectangleCenter.latitude;
// Convert point into east-north texture coordinate space
point2D.x = (point2D.x - boundingRectangle.west) / boundingRectangle.width;
point2D.y =
(point2D.y - boundingRectangle.south) / boundingRectangle.height;
}
const minXYCorner = points2D[0];
const maxYCorner = points2D[1];
const maxXCorner = points2D[2];
const result = new Array(6);
Matrix2.Cartesian2.pack(minXYCorner, result);
Matrix2.Cartesian2.pack(maxYCorner, result, 2);
Matrix2.Cartesian2.pack(maxXCorner, result, 4);
return result;
}
Object.defineProperties(RectangleGeometry.prototype, {
/**
* @private
*/
rectangle: {
get: function () {
if (!when.defined(this._rotatedRectangle)) {
this._rotatedRectangle = computeRectangle(
this._rectangle,
this._granularity,
this._rotation,
this._ellipsoid
);
}
return this._rotatedRectangle;
},
},
/**
* For remapping texture coordinates when rendering RectangleGeometries as GroundPrimitives.
* This version permits skew in textures by computing offsets directly in cartographic space and
* more accurately approximates rendering RectangleGeometries with height as standard Primitives.
* @see Geometry#_textureCoordinateRotationPoints
* @private
*/
textureCoordinateRotationPoints: {
get: function () {
if (!when.defined(this._textureCoordinateRotationPoints)) {
this._textureCoordinateRotationPoints = textureCoordinateRotationPoints(
this
);
}
return this._textureCoordinateRotationPoints;
},
},
});
function createRectangleGeometry(rectangleGeometry, offset) {
if (when.defined(offset)) {
rectangleGeometry = RectangleGeometry.unpack(rectangleGeometry, offset);
}
rectangleGeometry._ellipsoid = Matrix2.Ellipsoid.clone(rectangleGeometry._ellipsoid);
rectangleGeometry._rectangle = Matrix2.Rectangle.clone(rectangleGeometry._rectangle);
return RectangleGeometry.createGeometry(rectangleGeometry);
}
return createRectangleGeometry;
}));
//# sourceMappingURL=createRectangleGeometry.js.map