597 lines
21 KiB
JavaScript
597 lines
21 KiB
JavaScript
/**
|
|
* Cesium - https://github.com/CesiumGS/cesium
|
|
*
|
|
* Copyright 2011-2020 Cesium Contributors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* Columbus View (Pat. Pend.)
|
|
*
|
|
* Portions licensed separately.
|
|
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
|
|
*/
|
|
|
|
define(['exports', './Matrix2-265d9610', './when-4bbc8319', './RuntimeError-5b082e8f', './EllipsoidGeodesic-ed024f16', './EllipsoidRhumbLine-d09d563f', './IntersectionTests-596e31ec', './ComponentDatatype-aad54330', './Plane-616c9c0a'], (function (exports, Matrix2, when, RuntimeError, EllipsoidGeodesic, EllipsoidRhumbLine, IntersectionTests, ComponentDatatype, Plane) { 'use strict';
|
|
|
|
/**
|
|
* @private
|
|
*/
|
|
const PolylinePipeline = {};
|
|
|
|
PolylinePipeline.numberOfPoints = function (p0, p1, minDistance) {
|
|
const distance = Matrix2.Cartesian3.distance(p0, p1);
|
|
return Math.ceil(distance / minDistance);
|
|
};
|
|
|
|
PolylinePipeline.numberOfPointsRhumbLine = function (p0, p1, granularity) {
|
|
const radiansDistanceSquared =
|
|
Math.pow(p0.longitude - p1.longitude, 2) +
|
|
Math.pow(p0.latitude - p1.latitude, 2);
|
|
|
|
return Math.max(
|
|
1,
|
|
Math.ceil(Math.sqrt(radiansDistanceSquared / (granularity * granularity)))
|
|
);
|
|
};
|
|
|
|
const cartoScratch = new Matrix2.Cartographic();
|
|
PolylinePipeline.extractHeights = function (positions, ellipsoid) {
|
|
const length = positions.length;
|
|
const heights = new Array(length);
|
|
for (let i = 0; i < length; i++) {
|
|
const p = positions[i];
|
|
heights[i] = ellipsoid.cartesianToCartographic(p, cartoScratch).height;
|
|
}
|
|
return heights;
|
|
};
|
|
|
|
const wrapLongitudeInversMatrix = new Matrix2.Matrix4();
|
|
const wrapLongitudeOrigin = new Matrix2.Cartesian3();
|
|
const wrapLongitudeXZNormal = new Matrix2.Cartesian3();
|
|
const wrapLongitudeXZPlane = new Plane.Plane(Matrix2.Cartesian3.UNIT_X, 0.0);
|
|
const wrapLongitudeYZNormal = new Matrix2.Cartesian3();
|
|
const wrapLongitudeYZPlane = new Plane.Plane(Matrix2.Cartesian3.UNIT_X, 0.0);
|
|
const wrapLongitudeIntersection = new Matrix2.Cartesian3();
|
|
const wrapLongitudeOffset = new Matrix2.Cartesian3();
|
|
|
|
const subdivideHeightsScratchArray = [];
|
|
|
|
function subdivideHeights(numPoints, h0, h1) {
|
|
const heights = subdivideHeightsScratchArray;
|
|
heights.length = numPoints;
|
|
|
|
let i;
|
|
if (h0 === h1) {
|
|
for (i = 0; i < numPoints; i++) {
|
|
heights[i] = h0;
|
|
}
|
|
return heights;
|
|
}
|
|
|
|
const dHeight = h1 - h0;
|
|
const heightPerVertex = dHeight / numPoints;
|
|
|
|
for (i = 0; i < numPoints; i++) {
|
|
const h = h0 + i * heightPerVertex;
|
|
heights[i] = h;
|
|
}
|
|
|
|
return heights;
|
|
}
|
|
|
|
const carto1 = new Matrix2.Cartographic();
|
|
const carto2 = new Matrix2.Cartographic();
|
|
const cartesian = new Matrix2.Cartesian3();
|
|
const scaleFirst = new Matrix2.Cartesian3();
|
|
const scaleLast = new Matrix2.Cartesian3();
|
|
const ellipsoidGeodesic = new EllipsoidGeodesic.EllipsoidGeodesic();
|
|
let ellipsoidRhumb = new EllipsoidRhumbLine.EllipsoidRhumbLine();
|
|
|
|
//Returns subdivided line scaled to ellipsoid surface starting at p1 and ending at p2.
|
|
//Result includes p1, but not include p2. This function is called for a sequence of line segments,
|
|
//and this prevents duplication of end point.
|
|
function generateCartesianArc(
|
|
p0,
|
|
p1,
|
|
minDistance,
|
|
ellipsoid,
|
|
h0,
|
|
h1,
|
|
array,
|
|
offset
|
|
) {
|
|
const first = ellipsoid.scaleToGeodeticSurface(p0, scaleFirst);
|
|
const last = ellipsoid.scaleToGeodeticSurface(p1, scaleLast);
|
|
const numPoints = PolylinePipeline.numberOfPoints(p0, p1, minDistance);
|
|
const start = ellipsoid.cartesianToCartographic(first, carto1);
|
|
const end = ellipsoid.cartesianToCartographic(last, carto2);
|
|
const heights = subdivideHeights(numPoints, h0, h1);
|
|
|
|
ellipsoidGeodesic.setEndPoints(start, end);
|
|
const surfaceDistanceBetweenPoints =
|
|
ellipsoidGeodesic.surfaceDistance / numPoints;
|
|
|
|
let index = offset;
|
|
start.height = h0;
|
|
let cart = ellipsoid.cartographicToCartesian(start, cartesian);
|
|
Matrix2.Cartesian3.pack(cart, array, index);
|
|
index += 3;
|
|
|
|
for (let i = 1; i < numPoints; i++) {
|
|
const carto = ellipsoidGeodesic.interpolateUsingSurfaceDistance(
|
|
i * surfaceDistanceBetweenPoints,
|
|
carto2
|
|
);
|
|
carto.height = heights[i];
|
|
cart = ellipsoid.cartographicToCartesian(carto, cartesian);
|
|
Matrix2.Cartesian3.pack(cart, array, index);
|
|
index += 3;
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
//Returns subdivided line scaled to ellipsoid surface starting at p1 and ending at p2.
|
|
//Result includes p1, but not include p2. This function is called for a sequence of line segments,
|
|
//and this prevents duplication of end point.
|
|
function generateCartesianRhumbArc(
|
|
p0,
|
|
p1,
|
|
granularity,
|
|
ellipsoid,
|
|
h0,
|
|
h1,
|
|
array,
|
|
offset
|
|
) {
|
|
const start = ellipsoid.cartesianToCartographic(p0, carto1);
|
|
const end = ellipsoid.cartesianToCartographic(p1, carto2);
|
|
const numPoints = PolylinePipeline.numberOfPointsRhumbLine(
|
|
start,
|
|
end,
|
|
granularity
|
|
);
|
|
start.height = 0.0;
|
|
end.height = 0.0;
|
|
const heights = subdivideHeights(numPoints, h0, h1);
|
|
|
|
if (!ellipsoidRhumb.ellipsoid.equals(ellipsoid)) {
|
|
ellipsoidRhumb = new EllipsoidRhumbLine.EllipsoidRhumbLine(undefined, undefined, ellipsoid);
|
|
}
|
|
ellipsoidRhumb.setEndPoints(start, end);
|
|
const surfaceDistanceBetweenPoints =
|
|
ellipsoidRhumb.surfaceDistance / numPoints;
|
|
|
|
let index = offset;
|
|
start.height = h0;
|
|
let cart = ellipsoid.cartographicToCartesian(start, cartesian);
|
|
Matrix2.Cartesian3.pack(cart, array, index);
|
|
index += 3;
|
|
|
|
for (let i = 1; i < numPoints; i++) {
|
|
const carto = ellipsoidRhumb.interpolateUsingSurfaceDistance(
|
|
i * surfaceDistanceBetweenPoints,
|
|
carto2
|
|
);
|
|
carto.height = heights[i];
|
|
cart = ellipsoid.cartographicToCartesian(carto, cartesian);
|
|
Matrix2.Cartesian3.pack(cart, array, index);
|
|
index += 3;
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
/**
|
|
* Breaks a {@link Polyline} into segments such that it does not cross the ±180 degree meridian of an ellipsoid.
|
|
*
|
|
* @param {Cartesian3[]} positions The polyline's Cartesian positions.
|
|
* @param {Matrix4} [modelMatrix=Matrix4.IDENTITY] The polyline's model matrix. Assumed to be an affine
|
|
* transformation matrix, where the upper left 3x3 elements are a rotation matrix, and
|
|
* the upper three elements in the fourth column are the translation. The bottom row is assumed to be [0, 0, 0, 1].
|
|
* The matrix is not verified to be in the proper form.
|
|
* @returns {Object} An object with a <code>positions</code> property that is an array of positions and a
|
|
* <code>segments</code> property.
|
|
*
|
|
*
|
|
* @example
|
|
* const polylines = new Cesium.PolylineCollection();
|
|
* const polyline = polylines.add(...);
|
|
* const positions = polyline.positions;
|
|
* const modelMatrix = polylines.modelMatrix;
|
|
* const segments = Cesium.PolylinePipeline.wrapLongitude(positions, modelMatrix);
|
|
*
|
|
* @see PolygonPipeline.wrapLongitude
|
|
* @see Polyline
|
|
* @see PolylineCollection
|
|
*/
|
|
PolylinePipeline.wrapLongitude = function (positions, modelMatrix) {
|
|
const cartesians = [];
|
|
const segments = [];
|
|
|
|
if (when.defined(positions) && positions.length > 0) {
|
|
modelMatrix = when.defaultValue(modelMatrix, Matrix2.Matrix4.IDENTITY);
|
|
const inverseModelMatrix = Matrix2.Matrix4.inverseTransformation(
|
|
modelMatrix,
|
|
wrapLongitudeInversMatrix
|
|
);
|
|
|
|
const origin = Matrix2.Matrix4.multiplyByPoint(
|
|
inverseModelMatrix,
|
|
Matrix2.Cartesian3.ZERO,
|
|
wrapLongitudeOrigin
|
|
);
|
|
const xzNormal = Matrix2.Cartesian3.normalize(
|
|
Matrix2.Matrix4.multiplyByPointAsVector(
|
|
inverseModelMatrix,
|
|
Matrix2.Cartesian3.UNIT_Y,
|
|
wrapLongitudeXZNormal
|
|
),
|
|
wrapLongitudeXZNormal
|
|
);
|
|
const xzPlane = Plane.Plane.fromPointNormal(
|
|
origin,
|
|
xzNormal,
|
|
wrapLongitudeXZPlane
|
|
);
|
|
const yzNormal = Matrix2.Cartesian3.normalize(
|
|
Matrix2.Matrix4.multiplyByPointAsVector(
|
|
inverseModelMatrix,
|
|
Matrix2.Cartesian3.UNIT_X,
|
|
wrapLongitudeYZNormal
|
|
),
|
|
wrapLongitudeYZNormal
|
|
);
|
|
const yzPlane = Plane.Plane.fromPointNormal(
|
|
origin,
|
|
yzNormal,
|
|
wrapLongitudeYZPlane
|
|
);
|
|
|
|
let count = 1;
|
|
cartesians.push(Matrix2.Cartesian3.clone(positions[0]));
|
|
let prev = cartesians[0];
|
|
|
|
const length = positions.length;
|
|
for (let i = 1; i < length; ++i) {
|
|
const cur = positions[i];
|
|
|
|
// intersects the IDL if either endpoint is on the negative side of the yz-plane
|
|
if (
|
|
Plane.Plane.getPointDistance(yzPlane, prev) < 0.0 ||
|
|
Plane.Plane.getPointDistance(yzPlane, cur) < 0.0
|
|
) {
|
|
// and intersects the xz-plane
|
|
const intersection = IntersectionTests.IntersectionTests.lineSegmentPlane(
|
|
prev,
|
|
cur,
|
|
xzPlane,
|
|
wrapLongitudeIntersection
|
|
);
|
|
if (when.defined(intersection)) {
|
|
// move point on the xz-plane slightly away from the plane
|
|
const offset = Matrix2.Cartesian3.multiplyByScalar(
|
|
xzNormal,
|
|
5.0e-9,
|
|
wrapLongitudeOffset
|
|
);
|
|
if (Plane.Plane.getPointDistance(xzPlane, prev) < 0.0) {
|
|
Matrix2.Cartesian3.negate(offset, offset);
|
|
}
|
|
|
|
cartesians.push(
|
|
Matrix2.Cartesian3.add(intersection, offset, new Matrix2.Cartesian3())
|
|
);
|
|
segments.push(count + 1);
|
|
|
|
Matrix2.Cartesian3.negate(offset, offset);
|
|
cartesians.push(
|
|
Matrix2.Cartesian3.add(intersection, offset, new Matrix2.Cartesian3())
|
|
);
|
|
count = 1;
|
|
}
|
|
}
|
|
|
|
cartesians.push(Matrix2.Cartesian3.clone(positions[i]));
|
|
count++;
|
|
|
|
prev = cur;
|
|
}
|
|
|
|
segments.push(count);
|
|
}
|
|
|
|
return {
|
|
positions: cartesians,
|
|
lengths: segments,
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Subdivides polyline and raises all points to the specified height. Returns an array of numbers to represent the positions.
|
|
* @param {Object} options Object with the following properties:
|
|
* @param {Cartesian3[]} options.positions The array of type {Cartesian3} representing positions.
|
|
* @param {Number|Number[]} [options.height=0.0] A number or array of numbers representing the heights of each position.
|
|
* @param {Number} [options.granularity = CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
|
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the positions lie.
|
|
* @returns {Number[]} A new array of positions of type {Number} that have been subdivided and raised to the surface of the ellipsoid.
|
|
*
|
|
* @example
|
|
* const positions = Cesium.Cartesian3.fromDegreesArray([
|
|
* -105.0, 40.0,
|
|
* -100.0, 38.0,
|
|
* -105.0, 35.0,
|
|
* -100.0, 32.0
|
|
* ]);
|
|
* const surfacePositions = Cesium.PolylinePipeline.generateArc({
|
|
* positons: positions
|
|
* });
|
|
*/
|
|
PolylinePipeline.generateArc = function (options) {
|
|
if (!when.defined(options)) {
|
|
options = {};
|
|
}
|
|
const positions = options.positions;
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(positions)) {
|
|
throw new RuntimeError.DeveloperError("options.positions is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
const length = positions.length;
|
|
const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84);
|
|
let height = when.defaultValue(options.height, 0);
|
|
const hasHeightArray = Array.isArray(height);
|
|
|
|
if (length < 1) {
|
|
return [];
|
|
} else if (length === 1) {
|
|
const p = ellipsoid.scaleToGeodeticSurface(positions[0], scaleFirst);
|
|
height = hasHeightArray ? height[0] : height;
|
|
if (height !== 0) {
|
|
const n = ellipsoid.geodeticSurfaceNormal(p, cartesian);
|
|
Matrix2.Cartesian3.multiplyByScalar(n, height, n);
|
|
Matrix2.Cartesian3.add(p, n, p);
|
|
}
|
|
|
|
return [p.x, p.y, p.z];
|
|
}
|
|
|
|
let minDistance = options.minDistance;
|
|
if (!when.defined(minDistance)) {
|
|
const granularity = when.defaultValue(
|
|
options.granularity,
|
|
ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE
|
|
);
|
|
minDistance = ComponentDatatype.CesiumMath.chordLength(granularity, ellipsoid.maximumRadius);
|
|
}
|
|
|
|
let numPoints = 0;
|
|
let i;
|
|
|
|
for (i = 0; i < length - 1; i++) {
|
|
numPoints += PolylinePipeline.numberOfPoints(
|
|
positions[i],
|
|
positions[i + 1],
|
|
minDistance
|
|
);
|
|
}
|
|
|
|
const arrayLength = (numPoints + 1) * 3;
|
|
const newPositions = new Array(arrayLength);
|
|
let offset = 0;
|
|
|
|
for (i = 0; i < length - 1; i++) {
|
|
const p0 = positions[i];
|
|
const p1 = positions[i + 1];
|
|
|
|
const h0 = hasHeightArray ? height[i] : height;
|
|
const h1 = hasHeightArray ? height[i + 1] : height;
|
|
|
|
offset = generateCartesianArc(
|
|
p0,
|
|
p1,
|
|
minDistance,
|
|
ellipsoid,
|
|
h0,
|
|
h1,
|
|
newPositions,
|
|
offset
|
|
);
|
|
}
|
|
|
|
subdivideHeightsScratchArray.length = 0;
|
|
|
|
const lastPoint = positions[length - 1];
|
|
const carto = ellipsoid.cartesianToCartographic(lastPoint, carto1);
|
|
carto.height = hasHeightArray ? height[length - 1] : height;
|
|
const cart = ellipsoid.cartographicToCartesian(carto, cartesian);
|
|
Matrix2.Cartesian3.pack(cart, newPositions, arrayLength - 3);
|
|
|
|
return newPositions;
|
|
};
|
|
|
|
const scratchCartographic0 = new Matrix2.Cartographic();
|
|
const scratchCartographic1 = new Matrix2.Cartographic();
|
|
|
|
/**
|
|
* Subdivides polyline and raises all points to the specified height using Rhumb lines. Returns an array of numbers to represent the positions.
|
|
* @param {Object} options Object with the following properties:
|
|
* @param {Cartesian3[]} options.positions The array of type {Cartesian3} representing positions.
|
|
* @param {Number|Number[]} [options.height=0.0] A number or array of numbers representing the heights of each position.
|
|
* @param {Number} [options.granularity = CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
|
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the positions lie.
|
|
* @returns {Number[]} A new array of positions of type {Number} that have been subdivided and raised to the surface of the ellipsoid.
|
|
*
|
|
* @example
|
|
* const positions = Cesium.Cartesian3.fromDegreesArray([
|
|
* -105.0, 40.0,
|
|
* -100.0, 38.0,
|
|
* -105.0, 35.0,
|
|
* -100.0, 32.0
|
|
* ]);
|
|
* const surfacePositions = Cesium.PolylinePipeline.generateRhumbArc({
|
|
* positons: positions
|
|
* });
|
|
*/
|
|
PolylinePipeline.generateRhumbArc = function (options) {
|
|
if (!when.defined(options)) {
|
|
options = {};
|
|
}
|
|
const positions = options.positions;
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(positions)) {
|
|
throw new RuntimeError.DeveloperError("options.positions is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
const length = positions.length;
|
|
const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84);
|
|
let height = when.defaultValue(options.height, 0);
|
|
const hasHeightArray = Array.isArray(height);
|
|
|
|
if (length < 1) {
|
|
return [];
|
|
} else if (length === 1) {
|
|
const p = ellipsoid.scaleToGeodeticSurface(positions[0], scaleFirst);
|
|
height = hasHeightArray ? height[0] : height;
|
|
if (height !== 0) {
|
|
const n = ellipsoid.geodeticSurfaceNormal(p, cartesian);
|
|
Matrix2.Cartesian3.multiplyByScalar(n, height, n);
|
|
Matrix2.Cartesian3.add(p, n, p);
|
|
}
|
|
|
|
return [p.x, p.y, p.z];
|
|
}
|
|
|
|
const granularity = when.defaultValue(
|
|
options.granularity,
|
|
ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE
|
|
);
|
|
|
|
let numPoints = 0;
|
|
let i;
|
|
|
|
let c0 = ellipsoid.cartesianToCartographic(
|
|
positions[0],
|
|
scratchCartographic0
|
|
);
|
|
let c1;
|
|
for (i = 0; i < length - 1; i++) {
|
|
c1 = ellipsoid.cartesianToCartographic(
|
|
positions[i + 1],
|
|
scratchCartographic1
|
|
);
|
|
numPoints += PolylinePipeline.numberOfPointsRhumbLine(c0, c1, granularity);
|
|
c0 = Matrix2.Cartographic.clone(c1, scratchCartographic0);
|
|
}
|
|
|
|
const arrayLength = (numPoints + 1) * 3;
|
|
const newPositions = new Array(arrayLength);
|
|
let offset = 0;
|
|
|
|
for (i = 0; i < length - 1; i++) {
|
|
const p0 = positions[i];
|
|
const p1 = positions[i + 1];
|
|
|
|
const h0 = hasHeightArray ? height[i] : height;
|
|
const h1 = hasHeightArray ? height[i + 1] : height;
|
|
|
|
offset = generateCartesianRhumbArc(
|
|
p0,
|
|
p1,
|
|
granularity,
|
|
ellipsoid,
|
|
h0,
|
|
h1,
|
|
newPositions,
|
|
offset
|
|
);
|
|
}
|
|
|
|
subdivideHeightsScratchArray.length = 0;
|
|
|
|
const lastPoint = positions[length - 1];
|
|
const carto = ellipsoid.cartesianToCartographic(lastPoint, carto1);
|
|
carto.height = hasHeightArray ? height[length - 1] : height;
|
|
const cart = ellipsoid.cartographicToCartesian(carto, cartesian);
|
|
Matrix2.Cartesian3.pack(cart, newPositions, arrayLength - 3);
|
|
|
|
return newPositions;
|
|
};
|
|
|
|
/**
|
|
* Subdivides polyline and raises all points to the specified height. Returns an array of new {Cartesian3} positions.
|
|
* @param {Object} options Object with the following properties:
|
|
* @param {Cartesian3[]} options.positions The array of type {Cartesian3} representing positions.
|
|
* @param {Number|Number[]} [options.height=0.0] A number or array of numbers representing the heights of each position.
|
|
* @param {Number} [options.granularity = CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
|
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the positions lie.
|
|
* @returns {Cartesian3[]} A new array of cartesian3 positions that have been subdivided and raised to the surface of the ellipsoid.
|
|
*
|
|
* @example
|
|
* const positions = Cesium.Cartesian3.fromDegreesArray([
|
|
* -105.0, 40.0,
|
|
* -100.0, 38.0,
|
|
* -105.0, 35.0,
|
|
* -100.0, 32.0
|
|
* ]);
|
|
* const surfacePositions = Cesium.PolylinePipeline.generateCartesianArc({
|
|
* positons: positions
|
|
* });
|
|
*/
|
|
PolylinePipeline.generateCartesianArc = function (options) {
|
|
const numberArray = PolylinePipeline.generateArc(options);
|
|
const size = numberArray.length / 3;
|
|
const newPositions = new Array(size);
|
|
for (let i = 0; i < size; i++) {
|
|
newPositions[i] = Matrix2.Cartesian3.unpack(numberArray, i * 3);
|
|
}
|
|
return newPositions;
|
|
};
|
|
|
|
/**
|
|
* Subdivides polyline and raises all points to the specified height using Rhumb Lines. Returns an array of new {Cartesian3} positions.
|
|
* @param {Object} options Object with the following properties:
|
|
* @param {Cartesian3[]} options.positions The array of type {Cartesian3} representing positions.
|
|
* @param {Number|Number[]} [options.height=0.0] A number or array of numbers representing the heights of each position.
|
|
* @param {Number} [options.granularity = CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
|
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the positions lie.
|
|
* @returns {Cartesian3[]} A new array of cartesian3 positions that have been subdivided and raised to the surface of the ellipsoid.
|
|
*
|
|
* @example
|
|
* const positions = Cesium.Cartesian3.fromDegreesArray([
|
|
* -105.0, 40.0,
|
|
* -100.0, 38.0,
|
|
* -105.0, 35.0,
|
|
* -100.0, 32.0
|
|
* ]);
|
|
* const surfacePositions = Cesium.PolylinePipeline.generateCartesianRhumbArc({
|
|
* positons: positions
|
|
* });
|
|
*/
|
|
PolylinePipeline.generateCartesianRhumbArc = function (options) {
|
|
const numberArray = PolylinePipeline.generateRhumbArc(options);
|
|
const size = numberArray.length / 3;
|
|
const newPositions = new Array(size);
|
|
for (let i = 0; i < size; i++) {
|
|
newPositions[i] = Matrix2.Cartesian3.unpack(numberArray, i * 3);
|
|
}
|
|
return newPositions;
|
|
};
|
|
|
|
exports.PolylinePipeline = PolylinePipeline;
|
|
|
|
}));
|
|
//# sourceMappingURL=PolylinePipeline-b9913663.js.map
|