qd-changjing/public/static/Build/CesiumUnminified/Workers/PolygonPipeline-5fd67ae2.js

1244 lines
42 KiB
JavaScript

/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['exports', './Matrix2-265d9610', './RuntimeError-5b082e8f', './ComponentDatatype-aad54330', './when-4bbc8319', './EllipsoidRhumbLine-d09d563f', './GeometryAttribute-4bcb785f', './WebGLConstants-508b9636'], (function (exports, Matrix2, RuntimeError, ComponentDatatype, when, EllipsoidRhumbLine, GeometryAttribute, WebGLConstants) { 'use strict';
/* This file is automatically rebuilt by the Cesium build process. */
var earcut_1 = earcut;
var _default = earcut;
function earcut(data, holeIndices, dim) {
dim = dim || 2;
var hasHoles = holeIndices && holeIndices.length,
outerLen = hasHoles ? holeIndices[0] * dim : data.length,
outerNode = linkedList(data, 0, outerLen, dim, true),
triangles = [];
if (!outerNode || outerNode.next === outerNode.prev) return triangles;
var minX, minY, maxX, maxY, x, y, invSize;
if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim);
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
if (data.length > 80 * dim) {
minX = maxX = data[0];
minY = maxY = data[1];
for (var i = dim; i < outerLen; i += dim) {
x = data[i];
y = data[i + 1];
if (x < minX) minX = x;
if (y < minY) minY = y;
if (x > maxX) maxX = x;
if (y > maxY) maxY = y;
}
// minX, minY and invSize are later used to transform coords into integers for z-order calculation
invSize = Math.max(maxX - minX, maxY - minY);
invSize = invSize !== 0 ? 1 / invSize : 0;
}
earcutLinked(outerNode, triangles, dim, minX, minY, invSize);
return triangles;
}
// create a circular doubly linked list from polygon points in the specified winding order
function linkedList(data, start, end, dim, clockwise) {
var i, last;
if (clockwise === (signedArea(data, start, end, dim) > 0)) {
for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last);
} else {
for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last);
}
if (last && equals(last, last.next)) {
removeNode(last);
last = last.next;
}
return last;
}
// eliminate colinear or duplicate points
function filterPoints(start, end) {
if (!start) return start;
if (!end) end = start;
var p = start,
again;
do {
again = false;
if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) {
removeNode(p);
p = end = p.prev;
if (p === p.next) break;
again = true;
} else {
p = p.next;
}
} while (again || p !== end);
return end;
}
// main ear slicing loop which triangulates a polygon (given as a linked list)
function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) {
if (!ear) return;
// interlink polygon nodes in z-order
if (!pass && invSize) indexCurve(ear, minX, minY, invSize);
var stop = ear,
prev, next;
// iterate through ears, slicing them one by one
while (ear.prev !== ear.next) {
prev = ear.prev;
next = ear.next;
if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) {
// cut off the triangle
triangles.push(prev.i / dim);
triangles.push(ear.i / dim);
triangles.push(next.i / dim);
removeNode(ear);
// skipping the next vertex leads to less sliver triangles
ear = next.next;
stop = next.next;
continue;
}
ear = next;
// if we looped through the whole remaining polygon and can't find any more ears
if (ear === stop) {
// try filtering points and slicing again
if (!pass) {
earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1);
// if this didn't work, try curing all small self-intersections locally
} else if (pass === 1) {
ear = cureLocalIntersections(filterPoints(ear), triangles, dim);
earcutLinked(ear, triangles, dim, minX, minY, invSize, 2);
// as a last resort, try splitting the remaining polygon into two
} else if (pass === 2) {
splitEarcut(ear, triangles, dim, minX, minY, invSize);
}
break;
}
}
}
// check whether a polygon node forms a valid ear with adjacent nodes
function isEar(ear) {
var a = ear.prev,
b = ear,
c = ear.next;
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
// now make sure we don't have other points inside the potential ear
var p = ear.next.next;
while (p !== ear.prev) {
if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
area(p.prev, p, p.next) >= 0) return false;
p = p.next;
}
return true;
}
function isEarHashed(ear, minX, minY, invSize) {
var a = ear.prev,
b = ear,
c = ear.next;
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
// triangle bbox; min & max are calculated like this for speed
var minTX = a.x < b.x ? (a.x < c.x ? a.x : c.x) : (b.x < c.x ? b.x : c.x),
minTY = a.y < b.y ? (a.y < c.y ? a.y : c.y) : (b.y < c.y ? b.y : c.y),
maxTX = a.x > b.x ? (a.x > c.x ? a.x : c.x) : (b.x > c.x ? b.x : c.x),
maxTY = a.y > b.y ? (a.y > c.y ? a.y : c.y) : (b.y > c.y ? b.y : c.y);
// z-order range for the current triangle bbox;
var minZ = zOrder(minTX, minTY, minX, minY, invSize),
maxZ = zOrder(maxTX, maxTY, minX, minY, invSize);
var p = ear.prevZ,
n = ear.nextZ;
// look for points inside the triangle in both directions
while (p && p.z >= minZ && n && n.z <= maxZ) {
if (p !== ear.prev && p !== ear.next &&
pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
area(p.prev, p, p.next) >= 0) return false;
p = p.prevZ;
if (n !== ear.prev && n !== ear.next &&
pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) &&
area(n.prev, n, n.next) >= 0) return false;
n = n.nextZ;
}
// look for remaining points in decreasing z-order
while (p && p.z >= minZ) {
if (p !== ear.prev && p !== ear.next &&
pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) &&
area(p.prev, p, p.next) >= 0) return false;
p = p.prevZ;
}
// look for remaining points in increasing z-order
while (n && n.z <= maxZ) {
if (n !== ear.prev && n !== ear.next &&
pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) &&
area(n.prev, n, n.next) >= 0) return false;
n = n.nextZ;
}
return true;
}
// go through all polygon nodes and cure small local self-intersections
function cureLocalIntersections(start, triangles, dim) {
var p = start;
do {
var a = p.prev,
b = p.next.next;
if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) {
triangles.push(a.i / dim);
triangles.push(p.i / dim);
triangles.push(b.i / dim);
// remove two nodes involved
removeNode(p);
removeNode(p.next);
p = start = b;
}
p = p.next;
} while (p !== start);
return filterPoints(p);
}
// try splitting polygon into two and triangulate them independently
function splitEarcut(start, triangles, dim, minX, minY, invSize) {
// look for a valid diagonal that divides the polygon into two
var a = start;
do {
var b = a.next.next;
while (b !== a.prev) {
if (a.i !== b.i && isValidDiagonal(a, b)) {
// split the polygon in two by the diagonal
var c = splitPolygon(a, b);
// filter colinear points around the cuts
a = filterPoints(a, a.next);
c = filterPoints(c, c.next);
// run earcut on each half
earcutLinked(a, triangles, dim, minX, minY, invSize);
earcutLinked(c, triangles, dim, minX, minY, invSize);
return;
}
b = b.next;
}
a = a.next;
} while (a !== start);
}
// link every hole into the outer loop, producing a single-ring polygon without holes
function eliminateHoles(data, holeIndices, outerNode, dim) {
var queue = [],
i, len, start, end, list;
for (i = 0, len = holeIndices.length; i < len; i++) {
start = holeIndices[i] * dim;
end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
list = linkedList(data, start, end, dim, false);
if (list === list.next) list.steiner = true;
queue.push(getLeftmost(list));
}
queue.sort(compareX);
// process holes from left to right
for (i = 0; i < queue.length; i++) {
outerNode = eliminateHole(queue[i], outerNode);
outerNode = filterPoints(outerNode, outerNode.next);
}
return outerNode;
}
function compareX(a, b) {
return a.x - b.x;
}
// find a bridge between vertices that connects hole with an outer ring and and link it
function eliminateHole(hole, outerNode) {
var bridge = findHoleBridge(hole, outerNode);
if (!bridge) {
return outerNode;
}
var bridgeReverse = splitPolygon(bridge, hole);
// filter collinear points around the cuts
var filteredBridge = filterPoints(bridge, bridge.next);
filterPoints(bridgeReverse, bridgeReverse.next);
// Check if input node was removed by the filtering
return outerNode === bridge ? filteredBridge : outerNode;
}
// David Eberly's algorithm for finding a bridge between hole and outer polygon
function findHoleBridge(hole, outerNode) {
var p = outerNode,
hx = hole.x,
hy = hole.y,
qx = -Infinity,
m;
// find a segment intersected by a ray from the hole's leftmost point to the left;
// segment's endpoint with lesser x will be potential connection point
do {
if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) {
var x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);
if (x <= hx && x > qx) {
qx = x;
if (x === hx) {
if (hy === p.y) return p;
if (hy === p.next.y) return p.next;
}
m = p.x < p.next.x ? p : p.next;
}
}
p = p.next;
} while (p !== outerNode);
if (!m) return null;
if (hx === qx) return m; // hole touches outer segment; pick leftmost endpoint
// look for points inside the triangle of hole point, segment intersection and endpoint;
// if there are no points found, we have a valid connection;
// otherwise choose the point of the minimum angle with the ray as connection point
var stop = m,
mx = m.x,
my = m.y,
tanMin = Infinity,
tan;
p = m;
do {
if (hx >= p.x && p.x >= mx && hx !== p.x &&
pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) {
tan = Math.abs(hy - p.y) / (hx - p.x); // tangential
if (locallyInside(p, hole) &&
(tan < tanMin || (tan === tanMin && (p.x > m.x || (p.x === m.x && sectorContainsSector(m, p)))))) {
m = p;
tanMin = tan;
}
}
p = p.next;
} while (p !== stop);
return m;
}
// whether sector in vertex m contains sector in vertex p in the same coordinates
function sectorContainsSector(m, p) {
return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0;
}
// interlink polygon nodes in z-order
function indexCurve(start, minX, minY, invSize) {
var p = start;
do {
if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize);
p.prevZ = p.prev;
p.nextZ = p.next;
p = p.next;
} while (p !== start);
p.prevZ.nextZ = null;
p.prevZ = null;
sortLinked(p);
}
// Simon Tatham's linked list merge sort algorithm
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
function sortLinked(list) {
var i, p, q, e, tail, numMerges, pSize, qSize,
inSize = 1;
do {
p = list;
list = null;
tail = null;
numMerges = 0;
while (p) {
numMerges++;
q = p;
pSize = 0;
for (i = 0; i < inSize; i++) {
pSize++;
q = q.nextZ;
if (!q) break;
}
qSize = inSize;
while (pSize > 0 || (qSize > 0 && q)) {
if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) {
e = p;
p = p.nextZ;
pSize--;
} else {
e = q;
q = q.nextZ;
qSize--;
}
if (tail) tail.nextZ = e;
else list = e;
e.prevZ = tail;
tail = e;
}
p = q;
}
tail.nextZ = null;
inSize *= 2;
} while (numMerges > 1);
return list;
}
// z-order of a point given coords and inverse of the longer side of data bbox
function zOrder(x, y, minX, minY, invSize) {
// coords are transformed into non-negative 15-bit integer range
x = 32767 * (x - minX) * invSize;
y = 32767 * (y - minY) * invSize;
x = (x | (x << 8)) & 0x00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F;
x = (x | (x << 2)) & 0x33333333;
x = (x | (x << 1)) & 0x55555555;
y = (y | (y << 8)) & 0x00FF00FF;
y = (y | (y << 4)) & 0x0F0F0F0F;
y = (y | (y << 2)) & 0x33333333;
y = (y | (y << 1)) & 0x55555555;
return x | (y << 1);
}
// find the leftmost node of a polygon ring
function getLeftmost(start) {
var p = start,
leftmost = start;
do {
if (p.x < leftmost.x || (p.x === leftmost.x && p.y < leftmost.y)) leftmost = p;
p = p.next;
} while (p !== start);
return leftmost;
}
// check if a point lies within a convex triangle
function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {
return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
(ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
(bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
}
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
function isValidDiagonal(a, b) {
return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && // dones't intersect other edges
(locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible
(area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors
equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case
}
// signed area of a triangle
function area(p, q, r) {
return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
}
// check if two points are equal
function equals(p1, p2) {
return p1.x === p2.x && p1.y === p2.y;
}
// check if two segments intersect
function intersects(p1, q1, p2, q2) {
var o1 = sign(area(p1, q1, p2));
var o2 = sign(area(p1, q1, q2));
var o3 = sign(area(p2, q2, p1));
var o4 = sign(area(p2, q2, q1));
if (o1 !== o2 && o3 !== o4) return true; // general case
if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
return false;
}
// for collinear points p, q, r, check if point q lies on segment pr
function onSegment(p, q, r) {
return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y);
}
function sign(num) {
return num > 0 ? 1 : num < 0 ? -1 : 0;
}
// check if a polygon diagonal intersects any polygon segments
function intersectsPolygon(a, b) {
var p = a;
do {
if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i &&
intersects(p, p.next, a, b)) return true;
p = p.next;
} while (p !== a);
return false;
}
// check if a polygon diagonal is locally inside the polygon
function locallyInside(a, b) {
return area(a.prev, a, a.next) < 0 ?
area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 :
area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;
}
// check if the middle point of a polygon diagonal is inside the polygon
function middleInside(a, b) {
var p = a,
inside = false,
px = (a.x + b.x) / 2,
py = (a.y + b.y) / 2;
do {
if (((p.y > py) !== (p.next.y > py)) && p.next.y !== p.y &&
(px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x))
inside = !inside;
p = p.next;
} while (p !== a);
return inside;
}
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
// if one belongs to the outer ring and another to a hole, it merges it into a single ring
function splitPolygon(a, b) {
var a2 = new Node(a.i, a.x, a.y),
b2 = new Node(b.i, b.x, b.y),
an = a.next,
bp = b.prev;
a.next = b;
b.prev = a;
a2.next = an;
an.prev = a2;
b2.next = a2;
a2.prev = b2;
bp.next = b2;
b2.prev = bp;
return b2;
}
// create a node and optionally link it with previous one (in a circular doubly linked list)
function insertNode(i, x, y, last) {
var p = new Node(i, x, y);
if (!last) {
p.prev = p;
p.next = p;
} else {
p.next = last.next;
p.prev = last;
last.next.prev = p;
last.next = p;
}
return p;
}
function removeNode(p) {
p.next.prev = p.prev;
p.prev.next = p.next;
if (p.prevZ) p.prevZ.nextZ = p.nextZ;
if (p.nextZ) p.nextZ.prevZ = p.prevZ;
}
function Node(i, x, y) {
// vertex index in coordinates array
this.i = i;
// vertex coordinates
this.x = x;
this.y = y;
// previous and next vertex nodes in a polygon ring
this.prev = null;
this.next = null;
// z-order curve value
this.z = null;
// previous and next nodes in z-order
this.prevZ = null;
this.nextZ = null;
// indicates whether this is a steiner point
this.steiner = false;
}
// return a percentage difference between the polygon area and its triangulation area;
// used to verify correctness of triangulation
earcut.deviation = function (data, holeIndices, dim, triangles) {
var hasHoles = holeIndices && holeIndices.length;
var outerLen = hasHoles ? holeIndices[0] * dim : data.length;
var polygonArea = Math.abs(signedArea(data, 0, outerLen, dim));
if (hasHoles) {
for (var i = 0, len = holeIndices.length; i < len; i++) {
var start = holeIndices[i] * dim;
var end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
polygonArea -= Math.abs(signedArea(data, start, end, dim));
}
}
var trianglesArea = 0;
for (i = 0; i < triangles.length; i += 3) {
var a = triangles[i] * dim;
var b = triangles[i + 1] * dim;
var c = triangles[i + 2] * dim;
trianglesArea += Math.abs(
(data[a] - data[c]) * (data[b + 1] - data[a + 1]) -
(data[a] - data[b]) * (data[c + 1] - data[a + 1]));
}
return polygonArea === 0 && trianglesArea === 0 ? 0 :
Math.abs((trianglesArea - polygonArea) / polygonArea);
};
function signedArea(data, start, end, dim) {
var sum = 0;
for (var i = start, j = end - dim; i < end; i += dim) {
sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);
j = i;
}
return sum;
}
// turn a polygon in a multi-dimensional array form (e.g. as in GeoJSON) into a form Earcut accepts
earcut.flatten = function (data) {
var dim = data[0][0].length,
result = {vertices: [], holes: [], dimensions: dim},
holeIndex = 0;
for (var i = 0; i < data.length; i++) {
for (var j = 0; j < data[i].length; j++) {
for (var d = 0; d < dim; d++) result.vertices.push(data[i][j][d]);
}
if (i > 0) {
holeIndex += data[i - 1].length;
result.holes.push(holeIndex);
}
}
return result;
};
earcut_1.default = _default;
/**
* Winding order defines the order of vertices for a triangle to be considered front-facing.
*
* @enum {Number}
*/
const WindingOrder = {
/**
* Vertices are in clockwise order.
*
* @type {Number}
* @constant
*/
CLOCKWISE: WebGLConstants.WebGLConstants.CW,
/**
* Vertices are in counter-clockwise order.
*
* @type {Number}
* @constant
*/
COUNTER_CLOCKWISE: WebGLConstants.WebGLConstants.CCW,
};
/**
* @private
*/
WindingOrder.validate = function (windingOrder) {
return (
windingOrder === WindingOrder.CLOCKWISE ||
windingOrder === WindingOrder.COUNTER_CLOCKWISE
);
};
var WindingOrder$1 = Object.freeze(WindingOrder);
const scaleToGeodeticHeightN = new Matrix2.Cartesian3();
const scaleToGeodeticHeightP = new Matrix2.Cartesian3();
/**
* @private
*/
const PolygonPipeline = {};
/**
* @exception {DeveloperError} At least three positions are required.
*/
PolygonPipeline.computeArea2D = function (positions) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("positions", positions);
RuntimeError.Check.typeOf.number.greaterThanOrEquals(
"positions.length",
positions.length,
3
);
//>>includeEnd('debug');
const length = positions.length;
let area = 0.0;
for (let i0 = length - 1, i1 = 0; i1 < length; i0 = i1++) {
const v0 = positions[i0];
const v1 = positions[i1];
area += v0.x * v1.y - v1.x * v0.y;
}
return area * 0.5;
};
/**
* @returns {WindingOrder} The winding order.
*
* @exception {DeveloperError} At least three positions are required.
*/
PolygonPipeline.computeWindingOrder2D = function (positions) {
const area = PolygonPipeline.computeArea2D(positions);
return area > 0.0 ? WindingOrder$1.COUNTER_CLOCKWISE : WindingOrder$1.CLOCKWISE;
};
/**
* Triangulate a polygon.
*
* @param {Cartesian2[]} positions Cartesian2 array containing the vertices of the polygon
* @param {Number[]} [holes] An array of the staring indices of the holes.
* @returns {Number[]} Index array representing triangles that fill the polygon
*/
PolygonPipeline.triangulate = function (positions, holes) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("positions", positions);
//>>includeEnd('debug');
const flattenedPositions = Matrix2.Cartesian2.packArray(positions);
return earcut_1(flattenedPositions, holes, 2);
};
const subdivisionV0Scratch = new Matrix2.Cartesian3();
const subdivisionV1Scratch = new Matrix2.Cartesian3();
const subdivisionV2Scratch = new Matrix2.Cartesian3();
const subdivisionS0Scratch = new Matrix2.Cartesian3();
const subdivisionS1Scratch = new Matrix2.Cartesian3();
const subdivisionS2Scratch = new Matrix2.Cartesian3();
const subdivisionMidScratch = new Matrix2.Cartesian3();
/**
* Subdivides positions and raises points to the surface of the ellipsoid.
*
* @param {Ellipsoid} ellipsoid The ellipsoid the polygon in on.
* @param {Cartesian3[]} positions An array of {@link Cartesian3} positions of the polygon.
* @param {Number[]} indices An array of indices that determines the triangles in the polygon.
* @param {Number} [granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
*
* @exception {DeveloperError} At least three indices are required.
* @exception {DeveloperError} The number of indices must be divisable by three.
* @exception {DeveloperError} Granularity must be greater than zero.
*/
PolygonPipeline.computeSubdivision = function (
ellipsoid,
positions,
indices,
granularity
) {
granularity = when.defaultValue(granularity, ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE);
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("ellipsoid", ellipsoid);
RuntimeError.Check.defined("positions", positions);
RuntimeError.Check.defined("indices", indices);
RuntimeError.Check.typeOf.number.greaterThanOrEquals("indices.length", indices.length, 3);
RuntimeError.Check.typeOf.number.equals("indices.length % 3", "0", indices.length % 3, 0);
RuntimeError.Check.typeOf.number.greaterThan("granularity", granularity, 0.0);
//>>includeEnd('debug');
// triangles that need (or might need) to be subdivided.
const triangles = indices.slice(0);
// New positions due to edge splits are appended to the positions list.
let i;
const length = positions.length;
const subdividedPositions = new Array(length * 3);
let q = 0;
for (i = 0; i < length; i++) {
const item = positions[i];
subdividedPositions[q++] = item.x;
subdividedPositions[q++] = item.y;
subdividedPositions[q++] = item.z;
}
const subdividedIndices = [];
// Used to make sure shared edges are not split more than once.
const edges = {};
const radius = ellipsoid.maximumRadius;
const minDistance = ComponentDatatype.CesiumMath.chordLength(granularity, radius);
const minDistanceSqrd = minDistance * minDistance;
while (triangles.length > 0) {
const i2 = triangles.pop();
const i1 = triangles.pop();
const i0 = triangles.pop();
const v0 = Matrix2.Cartesian3.fromArray(
subdividedPositions,
i0 * 3,
subdivisionV0Scratch
);
const v1 = Matrix2.Cartesian3.fromArray(
subdividedPositions,
i1 * 3,
subdivisionV1Scratch
);
const v2 = Matrix2.Cartesian3.fromArray(
subdividedPositions,
i2 * 3,
subdivisionV2Scratch
);
const s0 = Matrix2.Cartesian3.multiplyByScalar(
Matrix2.Cartesian3.normalize(v0, subdivisionS0Scratch),
radius,
subdivisionS0Scratch
);
const s1 = Matrix2.Cartesian3.multiplyByScalar(
Matrix2.Cartesian3.normalize(v1, subdivisionS1Scratch),
radius,
subdivisionS1Scratch
);
const s2 = Matrix2.Cartesian3.multiplyByScalar(
Matrix2.Cartesian3.normalize(v2, subdivisionS2Scratch),
radius,
subdivisionS2Scratch
);
const g0 = Matrix2.Cartesian3.magnitudeSquared(
Matrix2.Cartesian3.subtract(s0, s1, subdivisionMidScratch)
);
const g1 = Matrix2.Cartesian3.magnitudeSquared(
Matrix2.Cartesian3.subtract(s1, s2, subdivisionMidScratch)
);
const g2 = Matrix2.Cartesian3.magnitudeSquared(
Matrix2.Cartesian3.subtract(s2, s0, subdivisionMidScratch)
);
const max = Math.max(g0, g1, g2);
let edge;
let mid;
// if the max length squared of a triangle edge is greater than the chord length of squared
// of the granularity, subdivide the triangle
if (max > minDistanceSqrd) {
if (g0 === max) {
edge = `${Math.min(i0, i1)} ${Math.max(i0, i1)}`;
i = edges[edge];
if (!when.defined(i)) {
mid = Matrix2.Cartesian3.add(v0, v1, subdivisionMidScratch);
Matrix2.Cartesian3.multiplyByScalar(mid, 0.5, mid);
subdividedPositions.push(mid.x, mid.y, mid.z);
i = subdividedPositions.length / 3 - 1;
edges[edge] = i;
}
triangles.push(i0, i, i2);
triangles.push(i, i1, i2);
} else if (g1 === max) {
edge = `${Math.min(i1, i2)} ${Math.max(i1, i2)}`;
i = edges[edge];
if (!when.defined(i)) {
mid = Matrix2.Cartesian3.add(v1, v2, subdivisionMidScratch);
Matrix2.Cartesian3.multiplyByScalar(mid, 0.5, mid);
subdividedPositions.push(mid.x, mid.y, mid.z);
i = subdividedPositions.length / 3 - 1;
edges[edge] = i;
}
triangles.push(i1, i, i0);
triangles.push(i, i2, i0);
} else if (g2 === max) {
edge = `${Math.min(i2, i0)} ${Math.max(i2, i0)}`;
i = edges[edge];
if (!when.defined(i)) {
mid = Matrix2.Cartesian3.add(v2, v0, subdivisionMidScratch);
Matrix2.Cartesian3.multiplyByScalar(mid, 0.5, mid);
subdividedPositions.push(mid.x, mid.y, mid.z);
i = subdividedPositions.length / 3 - 1;
edges[edge] = i;
}
triangles.push(i2, i, i1);
triangles.push(i, i0, i1);
}
} else {
subdividedIndices.push(i0);
subdividedIndices.push(i1);
subdividedIndices.push(i2);
}
}
return new GeometryAttribute.Geometry({
attributes: {
position: new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: subdividedPositions,
}),
},
indices: subdividedIndices,
primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
});
};
const subdivisionC0Scratch = new Matrix2.Cartographic();
const subdivisionC1Scratch = new Matrix2.Cartographic();
const subdivisionC2Scratch = new Matrix2.Cartographic();
const subdivisionCartographicScratch = new Matrix2.Cartographic();
/**
* Subdivides positions on rhumb lines and raises points to the surface of the ellipsoid.
*
* @param {Ellipsoid} ellipsoid The ellipsoid the polygon in on.
* @param {Cartesian3[]} positions An array of {@link Cartesian3} positions of the polygon.
* @param {Number[]} indices An array of indices that determines the triangles in the polygon.
* @param {Number} [granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
*
* @exception {DeveloperError} At least three indices are required.
* @exception {DeveloperError} The number of indices must be divisable by three.
* @exception {DeveloperError} Granularity must be greater than zero.
*/
PolygonPipeline.computeRhumbLineSubdivision = function (
ellipsoid,
positions,
indices,
granularity
) {
granularity = when.defaultValue(granularity, ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE);
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("ellipsoid", ellipsoid);
RuntimeError.Check.defined("positions", positions);
RuntimeError.Check.defined("indices", indices);
RuntimeError.Check.typeOf.number.greaterThanOrEquals("indices.length", indices.length, 3);
RuntimeError.Check.typeOf.number.equals("indices.length % 3", "0", indices.length % 3, 0);
RuntimeError.Check.typeOf.number.greaterThan("granularity", granularity, 0.0);
//>>includeEnd('debug');
// triangles that need (or might need) to be subdivided.
const triangles = indices.slice(0);
// New positions due to edge splits are appended to the positions list.
let i;
const length = positions.length;
const subdividedPositions = new Array(length * 3);
let q = 0;
for (i = 0; i < length; i++) {
const item = positions[i];
subdividedPositions[q++] = item.x;
subdividedPositions[q++] = item.y;
subdividedPositions[q++] = item.z;
}
const subdividedIndices = [];
// Used to make sure shared edges are not split more than once.
const edges = {};
const radius = ellipsoid.maximumRadius;
const minDistance = ComponentDatatype.CesiumMath.chordLength(granularity, radius);
const rhumb0 = new EllipsoidRhumbLine.EllipsoidRhumbLine(undefined, undefined, ellipsoid);
const rhumb1 = new EllipsoidRhumbLine.EllipsoidRhumbLine(undefined, undefined, ellipsoid);
const rhumb2 = new EllipsoidRhumbLine.EllipsoidRhumbLine(undefined, undefined, ellipsoid);
while (triangles.length > 0) {
const i2 = triangles.pop();
const i1 = triangles.pop();
const i0 = triangles.pop();
const v0 = Matrix2.Cartesian3.fromArray(
subdividedPositions,
i0 * 3,
subdivisionV0Scratch
);
const v1 = Matrix2.Cartesian3.fromArray(
subdividedPositions,
i1 * 3,
subdivisionV1Scratch
);
const v2 = Matrix2.Cartesian3.fromArray(
subdividedPositions,
i2 * 3,
subdivisionV2Scratch
);
const c0 = ellipsoid.cartesianToCartographic(v0, subdivisionC0Scratch);
const c1 = ellipsoid.cartesianToCartographic(v1, subdivisionC1Scratch);
const c2 = ellipsoid.cartesianToCartographic(v2, subdivisionC2Scratch);
rhumb0.setEndPoints(c0, c1);
const g0 = rhumb0.surfaceDistance;
rhumb1.setEndPoints(c1, c2);
const g1 = rhumb1.surfaceDistance;
rhumb2.setEndPoints(c2, c0);
const g2 = rhumb2.surfaceDistance;
const max = Math.max(g0, g1, g2);
let edge;
let mid;
let midHeight;
let midCartesian3;
// if the max length squared of a triangle edge is greater than granularity, subdivide the triangle
if (max > minDistance) {
if (g0 === max) {
edge = `${Math.min(i0, i1)} ${Math.max(i0, i1)}`;
i = edges[edge];
if (!when.defined(i)) {
mid = rhumb0.interpolateUsingFraction(
0.5,
subdivisionCartographicScratch
);
midHeight = (c0.height + c1.height) * 0.5;
midCartesian3 = Matrix2.Cartesian3.fromRadians(
mid.longitude,
mid.latitude,
midHeight,
ellipsoid,
subdivisionMidScratch
);
subdividedPositions.push(
midCartesian3.x,
midCartesian3.y,
midCartesian3.z
);
i = subdividedPositions.length / 3 - 1;
edges[edge] = i;
}
triangles.push(i0, i, i2);
triangles.push(i, i1, i2);
} else if (g1 === max) {
edge = `${Math.min(i1, i2)} ${Math.max(i1, i2)}`;
i = edges[edge];
if (!when.defined(i)) {
mid = rhumb1.interpolateUsingFraction(
0.5,
subdivisionCartographicScratch
);
midHeight = (c1.height + c2.height) * 0.5;
midCartesian3 = Matrix2.Cartesian3.fromRadians(
mid.longitude,
mid.latitude,
midHeight,
ellipsoid,
subdivisionMidScratch
);
subdividedPositions.push(
midCartesian3.x,
midCartesian3.y,
midCartesian3.z
);
i = subdividedPositions.length / 3 - 1;
edges[edge] = i;
}
triangles.push(i1, i, i0);
triangles.push(i, i2, i0);
} else if (g2 === max) {
edge = `${Math.min(i2, i0)} ${Math.max(i2, i0)}`;
i = edges[edge];
if (!when.defined(i)) {
mid = rhumb2.interpolateUsingFraction(
0.5,
subdivisionCartographicScratch
);
midHeight = (c2.height + c0.height) * 0.5;
midCartesian3 = Matrix2.Cartesian3.fromRadians(
mid.longitude,
mid.latitude,
midHeight,
ellipsoid,
subdivisionMidScratch
);
subdividedPositions.push(
midCartesian3.x,
midCartesian3.y,
midCartesian3.z
);
i = subdividedPositions.length / 3 - 1;
edges[edge] = i;
}
triangles.push(i2, i, i1);
triangles.push(i, i0, i1);
}
} else {
subdividedIndices.push(i0);
subdividedIndices.push(i1);
subdividedIndices.push(i2);
}
}
return new GeometryAttribute.Geometry({
attributes: {
position: new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: subdividedPositions,
}),
},
indices: subdividedIndices,
primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
});
};
/**
* Scales each position of a geometry's position attribute to a height, in place.
*
* @param {Number[]} positions The array of numbers representing the positions to be scaled
* @param {Number} [height=0.0] The desired height to add to the positions
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the positions lie.
* @param {Boolean} [scaleToSurface=true] <code>true</code> if the positions need to be scaled to the surface before the height is added.
* @returns {Number[]} The input array of positions, scaled to height
*/
PolygonPipeline.scaleToGeodeticHeight = function (
positions,
height,
ellipsoid,
scaleToSurface
) {
ellipsoid = when.defaultValue(ellipsoid, Matrix2.Ellipsoid.WGS84);
let n = scaleToGeodeticHeightN;
let p = scaleToGeodeticHeightP;
height = when.defaultValue(height, 0.0);
scaleToSurface = when.defaultValue(scaleToSurface, true);
if (when.defined(positions)) {
const length = positions.length;
for (let i = 0; i < length; i += 3) {
Matrix2.Cartesian3.fromArray(positions, i, p);
if (scaleToSurface) {
p = ellipsoid.scaleToGeodeticSurface(p, p);
}
if (height !== 0) {
n = ellipsoid.geodeticSurfaceNormal(p, n);
Matrix2.Cartesian3.multiplyByScalar(n, height, n);
Matrix2.Cartesian3.add(p, n, p);
}
positions[i] = p.x;
positions[i + 1] = p.y;
positions[i + 2] = p.z;
}
}
return positions;
};
exports.PolygonPipeline = PolygonPipeline;
exports.WindingOrder = WindingOrder$1;
}));
//# sourceMappingURL=PolygonPipeline-5fd67ae2.js.map