/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['./AxisAlignedBoundingBox-2a0ca7ef', './Transforms-8b90e17c', './Matrix2-265d9610', './when-4bbc8319', './TerrainEncoding-82b55fe0', './ComponentDatatype-aad54330', './OrientedBoundingBox-1e433348', './RuntimeError-5b082e8f', './WebMercatorProjection-d67afe4b', './createTaskProcessorWorker', './combine-e9466e32', './AttributeCompression-442278a0', './WebGLConstants-508b9636', './EllipsoidTangentPlane-f1a69a20', './IntersectionTests-596e31ec', './Plane-616c9c0a'], (function (AxisAlignedBoundingBox, Transforms, Matrix2, when, TerrainEncoding, ComponentDatatype, OrientedBoundingBox, RuntimeError, WebMercatorProjection, createTaskProcessorWorker, combine, AttributeCompression, WebGLConstants, EllipsoidTangentPlane, IntersectionTests, Plane) { 'use strict'; const sizeOfUint16 = Uint16Array.BYTES_PER_ELEMENT; const sizeOfInt32 = Int32Array.BYTES_PER_ELEMENT; const sizeOfUint32 = Uint32Array.BYTES_PER_ELEMENT; const sizeOfFloat = Float32Array.BYTES_PER_ELEMENT; const sizeOfDouble = Float64Array.BYTES_PER_ELEMENT; function indexOfEpsilon(arr, elem, elemType) { elemType = when.defaultValue(elemType, ComponentDatatype.CesiumMath); const count = arr.length; for (let i = 0; i < count; ++i) { if (elemType.equalsEpsilon(arr[i], elem, ComponentDatatype.CesiumMath.EPSILON12)) { return i; } } return -1; } function createVerticesFromGoogleEarthEnterpriseBuffer( parameters, transferableObjects ) { parameters.ellipsoid = Matrix2.Ellipsoid.clone(parameters.ellipsoid); parameters.rectangle = Matrix2.Rectangle.clone(parameters.rectangle); const statistics = processBuffer( parameters.buffer, parameters.relativeToCenter, parameters.ellipsoid, parameters.rectangle, parameters.nativeRectangle, parameters.exaggeration, parameters.exaggerationRelativeHeight, parameters.skirtHeight, parameters.includeWebMercatorT, parameters.negativeAltitudeExponentBias, parameters.negativeElevationThreshold ); const vertices = statistics.vertices; transferableObjects.push(vertices.buffer); const indices = statistics.indices; transferableObjects.push(indices.buffer); return { vertices: vertices.buffer, indices: indices.buffer, numberOfAttributes: statistics.encoding.stride, minimumHeight: statistics.minimumHeight, maximumHeight: statistics.maximumHeight, boundingSphere3D: statistics.boundingSphere3D, orientedBoundingBox: statistics.orientedBoundingBox, occludeePointInScaledSpace: statistics.occludeePointInScaledSpace, encoding: statistics.encoding, vertexCountWithoutSkirts: statistics.vertexCountWithoutSkirts, indexCountWithoutSkirts: statistics.indexCountWithoutSkirts, westIndicesSouthToNorth: statistics.westIndicesSouthToNorth, southIndicesEastToWest: statistics.southIndicesEastToWest, eastIndicesNorthToSouth: statistics.eastIndicesNorthToSouth, northIndicesWestToEast: statistics.northIndicesWestToEast, }; } const scratchCartographic = new Matrix2.Cartographic(); const scratchCartesian = new Matrix2.Cartesian3(); const minimumScratch = new Matrix2.Cartesian3(); const maximumScratch = new Matrix2.Cartesian3(); const matrix4Scratch = new Matrix2.Matrix4(); function processBuffer( buffer, relativeToCenter, ellipsoid, rectangle, nativeRectangle, exaggeration, exaggerationRelativeHeight, skirtHeight, includeWebMercatorT, negativeAltitudeExponentBias, negativeElevationThreshold ) { let geographicWest; let geographicSouth; let geographicEast; let geographicNorth; let rectangleWidth, rectangleHeight; if (!when.defined(rectangle)) { geographicWest = ComponentDatatype.CesiumMath.toRadians(nativeRectangle.west); geographicSouth = ComponentDatatype.CesiumMath.toRadians(nativeRectangle.south); geographicEast = ComponentDatatype.CesiumMath.toRadians(nativeRectangle.east); geographicNorth = ComponentDatatype.CesiumMath.toRadians(nativeRectangle.north); rectangleWidth = ComponentDatatype.CesiumMath.toRadians(rectangle.width); rectangleHeight = ComponentDatatype.CesiumMath.toRadians(rectangle.height); } else { geographicWest = rectangle.west; geographicSouth = rectangle.south; geographicEast = rectangle.east; geographicNorth = rectangle.north; rectangleWidth = rectangle.width; rectangleHeight = rectangle.height; } // Keep track of quad borders so we can remove duplicates around the borders const quadBorderLatitudes = [geographicSouth, geographicNorth]; const quadBorderLongitudes = [geographicWest, geographicEast]; const fromENU = Transforms.Transforms.eastNorthUpToFixedFrame( relativeToCenter, ellipsoid ); const toENU = Matrix2.Matrix4.inverseTransformation(fromENU, matrix4Scratch); let southMercatorY; let oneOverMercatorHeight; if (includeWebMercatorT) { southMercatorY = WebMercatorProjection.WebMercatorProjection.geodeticLatitudeToMercatorAngle( geographicSouth ); oneOverMercatorHeight = 1.0 / (WebMercatorProjection.WebMercatorProjection.geodeticLatitudeToMercatorAngle(geographicNorth) - southMercatorY); } const hasExaggeration = exaggeration !== 1.0; const includeGeodeticSurfaceNormals = hasExaggeration; const dv = new DataView(buffer); let minHeight = Number.POSITIVE_INFINITY; let maxHeight = Number.NEGATIVE_INFINITY; const minimum = minimumScratch; minimum.x = Number.POSITIVE_INFINITY; minimum.y = Number.POSITIVE_INFINITY; minimum.z = Number.POSITIVE_INFINITY; const maximum = maximumScratch; maximum.x = Number.NEGATIVE_INFINITY; maximum.y = Number.NEGATIVE_INFINITY; maximum.z = Number.NEGATIVE_INFINITY; // Compute sizes let offset = 0; let size = 0; let indicesSize = 0; let quadSize; let quad; for (quad = 0; quad < 4; ++quad) { let o = offset; quadSize = dv.getUint32(o, true); o += sizeOfUint32; const x = ComponentDatatype.CesiumMath.toRadians(dv.getFloat64(o, true) * 180.0); o += sizeOfDouble; if (indexOfEpsilon(quadBorderLongitudes, x) === -1) { quadBorderLongitudes.push(x); } const y = ComponentDatatype.CesiumMath.toRadians(dv.getFloat64(o, true) * 180.0); o += sizeOfDouble; if (indexOfEpsilon(quadBorderLatitudes, y) === -1) { quadBorderLatitudes.push(y); } o += 2 * sizeOfDouble; // stepX + stepY let c = dv.getInt32(o, true); // Read point count o += sizeOfInt32; size += c; c = dv.getInt32(o, true); // Read index count indicesSize += c * 3; offset += quadSize + sizeOfUint32; // Jump to next quad } // Quad Border points to remove duplicates const quadBorderPoints = []; const quadBorderIndices = []; // Create arrays const positions = new Array(size); const uvs = new Array(size); const heights = new Array(size); const webMercatorTs = includeWebMercatorT ? new Array(size) : []; const geodeticSurfaceNormals = includeGeodeticSurfaceNormals ? new Array(size) : []; const indices = new Array(indicesSize); // Points are laid out in rows starting at SW, so storing border points as we // come across them all points will be adjacent. const westBorder = []; const southBorder = []; const eastBorder = []; const northBorder = []; // Each tile is split into 4 parts let pointOffset = 0; let indicesOffset = 0; offset = 0; for (quad = 0; quad < 4; ++quad) { quadSize = dv.getUint32(offset, true); offset += sizeOfUint32; const startQuad = offset; const originX = ComponentDatatype.CesiumMath.toRadians(dv.getFloat64(offset, true) * 180.0); offset += sizeOfDouble; const originY = ComponentDatatype.CesiumMath.toRadians(dv.getFloat64(offset, true) * 180.0); offset += sizeOfDouble; const stepX = ComponentDatatype.CesiumMath.toRadians(dv.getFloat64(offset, true) * 180.0); const halfStepX = stepX * 0.5; offset += sizeOfDouble; const stepY = ComponentDatatype.CesiumMath.toRadians(dv.getFloat64(offset, true) * 180.0); const halfStepY = stepY * 0.5; offset += sizeOfDouble; const numPoints = dv.getInt32(offset, true); offset += sizeOfInt32; const numFaces = dv.getInt32(offset, true); offset += sizeOfInt32; //const level = dv.getInt32(offset, true); offset += sizeOfInt32; // Keep track of quad indices to overall tile indices const indicesMapping = new Array(numPoints); for (let i = 0; i < numPoints; ++i) { const longitude = originX + dv.getUint8(offset++) * stepX; scratchCartographic.longitude = longitude; const latitude = originY + dv.getUint8(offset++) * stepY; scratchCartographic.latitude = latitude; let height = dv.getFloat32(offset, true); offset += sizeOfFloat; // In order to support old clients, negative altitude values are stored as // height/-2^32. Old clients see the value as really close to 0 but new clients multiply // by -2^32 to get the real negative altitude value. if (height !== 0 && height < negativeElevationThreshold) { height *= -Math.pow(2, negativeAltitudeExponentBias); } // Height is stored in units of (1/EarthRadius) or (1/6371010.0) height *= 6371010.0; scratchCartographic.height = height; // Is it along a quad border - if so check if already exists and use that index if ( indexOfEpsilon(quadBorderLongitudes, longitude) !== -1 || indexOfEpsilon(quadBorderLatitudes, latitude) !== -1 ) { const index = indexOfEpsilon( quadBorderPoints, scratchCartographic, Matrix2.Cartographic ); if (index === -1) { quadBorderPoints.push(Matrix2.Cartographic.clone(scratchCartographic)); quadBorderIndices.push(pointOffset); } else { indicesMapping[i] = quadBorderIndices[index]; continue; } } indicesMapping[i] = pointOffset; if (Math.abs(longitude - geographicWest) < halfStepX) { westBorder.push({ index: pointOffset, cartographic: Matrix2.Cartographic.clone(scratchCartographic), }); } else if (Math.abs(longitude - geographicEast) < halfStepX) { eastBorder.push({ index: pointOffset, cartographic: Matrix2.Cartographic.clone(scratchCartographic), }); } else if (Math.abs(latitude - geographicSouth) < halfStepY) { southBorder.push({ index: pointOffset, cartographic: Matrix2.Cartographic.clone(scratchCartographic), }); } else if (Math.abs(latitude - geographicNorth) < halfStepY) { northBorder.push({ index: pointOffset, cartographic: Matrix2.Cartographic.clone(scratchCartographic), }); } minHeight = Math.min(height, minHeight); maxHeight = Math.max(height, maxHeight); heights[pointOffset] = height; const pos = ellipsoid.cartographicToCartesian(scratchCartographic); positions[pointOffset] = pos; if (includeWebMercatorT) { webMercatorTs[pointOffset] = (WebMercatorProjection.WebMercatorProjection.geodeticLatitudeToMercatorAngle(latitude) - southMercatorY) * oneOverMercatorHeight; } if (includeGeodeticSurfaceNormals) { const normal = ellipsoid.geodeticSurfaceNormal(pos); geodeticSurfaceNormals[pointOffset] = normal; } Matrix2.Matrix4.multiplyByPoint(toENU, pos, scratchCartesian); Matrix2.Cartesian3.minimumByComponent(scratchCartesian, minimum, minimum); Matrix2.Cartesian3.maximumByComponent(scratchCartesian, maximum, maximum); let u = (longitude - geographicWest) / (geographicEast - geographicWest); u = ComponentDatatype.CesiumMath.clamp(u, 0.0, 1.0); let v = (latitude - geographicSouth) / (geographicNorth - geographicSouth); v = ComponentDatatype.CesiumMath.clamp(v, 0.0, 1.0); uvs[pointOffset] = new Matrix2.Cartesian2(u, v); ++pointOffset; } const facesElementCount = numFaces * 3; for (let j = 0; j < facesElementCount; ++j, ++indicesOffset) { indices[indicesOffset] = indicesMapping[dv.getUint16(offset, true)]; offset += sizeOfUint16; } if (quadSize !== offset - startQuad) { throw new RuntimeError.RuntimeError("Invalid terrain tile."); } } positions.length = pointOffset; uvs.length = pointOffset; heights.length = pointOffset; if (includeWebMercatorT) { webMercatorTs.length = pointOffset; } if (includeGeodeticSurfaceNormals) { geodeticSurfaceNormals.length = pointOffset; } const vertexCountWithoutSkirts = pointOffset; const indexCountWithoutSkirts = indicesOffset; // Add skirt points const skirtOptions = { hMin: minHeight, lastBorderPoint: undefined, skirtHeight: skirtHeight, toENU: toENU, ellipsoid: ellipsoid, minimum: minimum, maximum: maximum, }; // Sort counter clockwise from NW corner // Corner points are in the east/west arrays westBorder.sort(function (a, b) { return b.cartographic.latitude - a.cartographic.latitude; }); southBorder.sort(function (a, b) { return a.cartographic.longitude - b.cartographic.longitude; }); eastBorder.sort(function (a, b) { return a.cartographic.latitude - b.cartographic.latitude; }); northBorder.sort(function (a, b) { return b.cartographic.longitude - a.cartographic.longitude; }); const percentage = 0.00001; addSkirt( positions, heights, uvs, webMercatorTs, geodeticSurfaceNormals, indices, skirtOptions, westBorder, -percentage * rectangleWidth, true, -percentage * rectangleHeight ); addSkirt( positions, heights, uvs, webMercatorTs, geodeticSurfaceNormals, indices, skirtOptions, southBorder, -percentage * rectangleHeight, false ); addSkirt( positions, heights, uvs, webMercatorTs, geodeticSurfaceNormals, indices, skirtOptions, eastBorder, percentage * rectangleWidth, true, percentage * rectangleHeight ); addSkirt( positions, heights, uvs, webMercatorTs, geodeticSurfaceNormals, indices, skirtOptions, northBorder, percentage * rectangleHeight, false ); // Since the corner between the north and west sides is in the west array, generate the last // two triangles between the last north vertex and the first west vertex if (westBorder.length > 0 && northBorder.length > 0) { const firstBorderIndex = westBorder[0].index; const firstSkirtIndex = vertexCountWithoutSkirts; const lastBorderIndex = northBorder[northBorder.length - 1].index; const lastSkirtIndex = positions.length - 1; indices.push( lastBorderIndex, lastSkirtIndex, firstSkirtIndex, firstSkirtIndex, firstBorderIndex, lastBorderIndex ); } size = positions.length; // Get new size with skirt vertices const boundingSphere3D = Transforms.BoundingSphere.fromPoints(positions); let orientedBoundingBox; if (when.defined(rectangle)) { orientedBoundingBox = OrientedBoundingBox.OrientedBoundingBox.fromRectangle( rectangle, minHeight, maxHeight, ellipsoid ); } const occluder = new TerrainEncoding.EllipsoidalOccluder(ellipsoid); const occludeePointInScaledSpace = occluder.computeHorizonCullingPointPossiblyUnderEllipsoid( relativeToCenter, positions, minHeight ); const aaBox = new AxisAlignedBoundingBox.AxisAlignedBoundingBox(minimum, maximum, relativeToCenter); const encoding = new TerrainEncoding.TerrainEncoding( relativeToCenter, aaBox, skirtOptions.hMin, maxHeight, fromENU, false, includeWebMercatorT, includeGeodeticSurfaceNormals, exaggeration, exaggerationRelativeHeight ); const vertices = new Float32Array(size * encoding.stride); let bufferIndex = 0; for (let k = 0; k < size; ++k) { bufferIndex = encoding.encode( vertices, bufferIndex, positions[k], uvs[k], heights[k], undefined, webMercatorTs[k], geodeticSurfaceNormals[k] ); } const westIndicesSouthToNorth = westBorder .map(function (vertex) { return vertex.index; }) .reverse(); const southIndicesEastToWest = southBorder .map(function (vertex) { return vertex.index; }) .reverse(); const eastIndicesNorthToSouth = eastBorder .map(function (vertex) { return vertex.index; }) .reverse(); const northIndicesWestToEast = northBorder .map(function (vertex) { return vertex.index; }) .reverse(); southIndicesEastToWest.unshift( eastIndicesNorthToSouth[eastIndicesNorthToSouth.length - 1] ); southIndicesEastToWest.push(westIndicesSouthToNorth[0]); northIndicesWestToEast.unshift( westIndicesSouthToNorth[westIndicesSouthToNorth.length - 1] ); northIndicesWestToEast.push(eastIndicesNorthToSouth[0]); return { vertices: vertices, indices: new Uint16Array(indices), maximumHeight: maxHeight, minimumHeight: minHeight, encoding: encoding, boundingSphere3D: boundingSphere3D, orientedBoundingBox: orientedBoundingBox, occludeePointInScaledSpace: occludeePointInScaledSpace, vertexCountWithoutSkirts: vertexCountWithoutSkirts, indexCountWithoutSkirts: indexCountWithoutSkirts, westIndicesSouthToNorth: westIndicesSouthToNorth, southIndicesEastToWest: southIndicesEastToWest, eastIndicesNorthToSouth: eastIndicesNorthToSouth, northIndicesWestToEast: northIndicesWestToEast, }; } function addSkirt( positions, heights, uvs, webMercatorTs, geodeticSurfaceNormals, indices, skirtOptions, borderPoints, fudgeFactor, eastOrWest, cornerFudge ) { const count = borderPoints.length; for (let j = 0; j < count; ++j) { const borderPoint = borderPoints[j]; const borderCartographic = borderPoint.cartographic; const borderIndex = borderPoint.index; const currentIndex = positions.length; const longitude = borderCartographic.longitude; let latitude = borderCartographic.latitude; latitude = ComponentDatatype.CesiumMath.clamp( latitude, -ComponentDatatype.CesiumMath.PI_OVER_TWO, ComponentDatatype.CesiumMath.PI_OVER_TWO ); // Don't go over the poles const height = borderCartographic.height - skirtOptions.skirtHeight; skirtOptions.hMin = Math.min(skirtOptions.hMin, height); Matrix2.Cartographic.fromRadians(longitude, latitude, height, scratchCartographic); // Adjust sides to angle out if (eastOrWest) { scratchCartographic.longitude += fudgeFactor; } // Adjust top or bottom to angle out // Since corners are in the east/west arrays angle the first and last points as well if (!eastOrWest) { scratchCartographic.latitude += fudgeFactor; } else if (j === count - 1) { scratchCartographic.latitude += cornerFudge; } else if (j === 0) { scratchCartographic.latitude -= cornerFudge; } const pos = skirtOptions.ellipsoid.cartographicToCartesian( scratchCartographic ); positions.push(pos); heights.push(height); uvs.push(Matrix2.Cartesian2.clone(uvs[borderIndex])); // Copy UVs from border point if (webMercatorTs.length > 0) { webMercatorTs.push(webMercatorTs[borderIndex]); } if (geodeticSurfaceNormals.length > 0) { geodeticSurfaceNormals.push(geodeticSurfaceNormals[borderIndex]); } Matrix2.Matrix4.multiplyByPoint(skirtOptions.toENU, pos, scratchCartesian); const minimum = skirtOptions.minimum; const maximum = skirtOptions.maximum; Matrix2.Cartesian3.minimumByComponent(scratchCartesian, minimum, minimum); Matrix2.Cartesian3.maximumByComponent(scratchCartesian, maximum, maximum); const lastBorderPoint = skirtOptions.lastBorderPoint; if (when.defined(lastBorderPoint)) { const lastBorderIndex = lastBorderPoint.index; indices.push( lastBorderIndex, currentIndex - 1, currentIndex, currentIndex, borderIndex, lastBorderIndex ); } skirtOptions.lastBorderPoint = borderPoint; } } var createVerticesFromGoogleEarthEnterpriseBuffer$1 = createTaskProcessorWorker( createVerticesFromGoogleEarthEnterpriseBuffer ); return createVerticesFromGoogleEarthEnterpriseBuffer$1; })); //# sourceMappingURL=createVerticesFromGoogleEarthEnterpriseBuffer.js.map