/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['./when-4bbc8319', './Matrix2-265d9610', './ArcType-fc72c06c', './GeometryOffsetAttribute-7e016332', './BoundingRectangle-8f2409a1', './Transforms-8b90e17c', './RuntimeError-5b082e8f', './ComponentDatatype-aad54330', './EllipsoidGeodesic-ed024f16', './EllipsoidTangentPlane-f1a69a20', './GeometryAttribute-4bcb785f', './GeometryInstance-d57564f8', './GeometryPipeline-e93f6439', './IndexDatatype-6739e544', './PolygonGeometryLibrary-e329b948', './PolygonPipeline-5fd67ae2', './VertexFormat-07539138', './combine-e9466e32', './WebGLConstants-508b9636', './AxisAlignedBoundingBox-2a0ca7ef', './IntersectionTests-596e31ec', './Plane-616c9c0a', './AttributeCompression-442278a0', './EncodedCartesian3-da8f96bc', './arrayRemoveDuplicates-65de6756', './EllipsoidRhumbLine-d09d563f', './GeometryAttributes-7827a6c2'], (function (when, Matrix2, ArcType, GeometryOffsetAttribute, BoundingRectangle, Transforms, RuntimeError, ComponentDatatype, EllipsoidGeodesic, EllipsoidTangentPlane, GeometryAttribute, GeometryInstance, GeometryPipeline, IndexDatatype, PolygonGeometryLibrary, PolygonPipeline, VertexFormat, combine, WebGLConstants, AxisAlignedBoundingBox, IntersectionTests, Plane, AttributeCompression, EncodedCartesian3, arrayRemoveDuplicates, EllipsoidRhumbLine, GeometryAttributes) { 'use strict'; const scratchCarto1 = new Matrix2.Cartographic(); const scratchCarto2 = new Matrix2.Cartographic(); function adjustPosHeightsForNormal(position, p1, p2, ellipsoid) { const carto1 = ellipsoid.cartesianToCartographic(position, scratchCarto1); const height = carto1.height; const p1Carto = ellipsoid.cartesianToCartographic(p1, scratchCarto2); p1Carto.height = height; ellipsoid.cartographicToCartesian(p1Carto, p1); const p2Carto = ellipsoid.cartesianToCartographic(p2, scratchCarto2); p2Carto.height = height - 100; ellipsoid.cartographicToCartesian(p2Carto, p2); } const scratchBoundingRectangle = new BoundingRectangle.BoundingRectangle(); const scratchPosition = new Matrix2.Cartesian3(); const scratchNormal = new Matrix2.Cartesian3(); const scratchTangent = new Matrix2.Cartesian3(); const scratchBitangent = new Matrix2.Cartesian3(); const p1Scratch = new Matrix2.Cartesian3(); const p2Scratch = new Matrix2.Cartesian3(); let scratchPerPosNormal = new Matrix2.Cartesian3(); let scratchPerPosTangent = new Matrix2.Cartesian3(); let scratchPerPosBitangent = new Matrix2.Cartesian3(); const appendTextureCoordinatesOrigin = new Matrix2.Cartesian2(); const appendTextureCoordinatesCartesian2 = new Matrix2.Cartesian2(); const appendTextureCoordinatesCartesian3 = new Matrix2.Cartesian3(); const appendTextureCoordinatesQuaternion = new Transforms.Quaternion(); const appendTextureCoordinatesMatrix3 = new Matrix2.Matrix3(); const tangentMatrixScratch = new Matrix2.Matrix3(); function computeAttributes(options) { const vertexFormat = options.vertexFormat; const geometry = options.geometry; const shadowVolume = options.shadowVolume; const flatPositions = geometry.attributes.position.values; let length = flatPositions.length; const wall = options.wall; const top = options.top || wall; const bottom = options.bottom || wall; if ( vertexFormat.st || vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent || shadowVolume ) { // PERFORMANCE_IDEA: Compute before subdivision, then just interpolate during subdivision. // PERFORMANCE_IDEA: Compute with createGeometryFromPositions() for fast path when there's no holes. const boundingRectangle = options.boundingRectangle; const tangentPlane = options.tangentPlane; const ellipsoid = options.ellipsoid; const stRotation = options.stRotation; const perPositionHeight = options.perPositionHeight; const origin = appendTextureCoordinatesOrigin; origin.x = boundingRectangle.x; origin.y = boundingRectangle.y; const textureCoordinates = vertexFormat.st ? new Float32Array(2 * (length / 3)) : undefined; let normals; if (vertexFormat.normal) { if (perPositionHeight && top && !wall) { normals = geometry.attributes.normal.values; } else { normals = new Float32Array(length); } } const tangents = vertexFormat.tangent ? new Float32Array(length) : undefined; const bitangents = vertexFormat.bitangent ? new Float32Array(length) : undefined; const extrudeNormals = shadowVolume ? new Float32Array(length) : undefined; let textureCoordIndex = 0; let attrIndex = 0; let normal = scratchNormal; let tangent = scratchTangent; let bitangent = scratchBitangent; let recomputeNormal = true; let textureMatrix = appendTextureCoordinatesMatrix3; let tangentRotationMatrix = tangentMatrixScratch; if (stRotation !== 0.0) { let rotation = Transforms.Quaternion.fromAxisAngle( tangentPlane._plane.normal, stRotation, appendTextureCoordinatesQuaternion ); textureMatrix = Matrix2.Matrix3.fromQuaternion(rotation, textureMatrix); rotation = Transforms.Quaternion.fromAxisAngle( tangentPlane._plane.normal, -stRotation, appendTextureCoordinatesQuaternion ); tangentRotationMatrix = Matrix2.Matrix3.fromQuaternion( rotation, tangentRotationMatrix ); } else { textureMatrix = Matrix2.Matrix3.clone(Matrix2.Matrix3.IDENTITY, textureMatrix); tangentRotationMatrix = Matrix2.Matrix3.clone( Matrix2.Matrix3.IDENTITY, tangentRotationMatrix ); } let bottomOffset = 0; let bottomOffset2 = 0; if (top && bottom) { bottomOffset = length / 2; bottomOffset2 = length / 3; length /= 2; } for (let i = 0; i < length; i += 3) { const position = Matrix2.Cartesian3.fromArray( flatPositions, i, appendTextureCoordinatesCartesian3 ); if (vertexFormat.st) { let p = Matrix2.Matrix3.multiplyByVector( textureMatrix, position, scratchPosition ); p = ellipsoid.scaleToGeodeticSurface(p, p); const st = tangentPlane.projectPointOntoPlane( p, appendTextureCoordinatesCartesian2 ); Matrix2.Cartesian2.subtract(st, origin, st); const stx = ComponentDatatype.CesiumMath.clamp(st.x / boundingRectangle.width, 0, 1); const sty = ComponentDatatype.CesiumMath.clamp(st.y / boundingRectangle.height, 0, 1); if (bottom) { textureCoordinates[textureCoordIndex + bottomOffset2] = stx; textureCoordinates[textureCoordIndex + 1 + bottomOffset2] = sty; } if (top) { textureCoordinates[textureCoordIndex] = stx; textureCoordinates[textureCoordIndex + 1] = sty; } textureCoordIndex += 2; } if ( vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent || shadowVolume ) { const attrIndex1 = attrIndex + 1; const attrIndex2 = attrIndex + 2; if (wall) { if (i + 3 < length) { const p1 = Matrix2.Cartesian3.fromArray(flatPositions, i + 3, p1Scratch); if (recomputeNormal) { const p2 = Matrix2.Cartesian3.fromArray( flatPositions, i + length, p2Scratch ); if (perPositionHeight) { adjustPosHeightsForNormal(position, p1, p2, ellipsoid); } Matrix2.Cartesian3.subtract(p1, position, p1); Matrix2.Cartesian3.subtract(p2, position, p2); normal = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross(p2, p1, normal), normal ); recomputeNormal = false; } if (Matrix2.Cartesian3.equalsEpsilon(p1, position, ComponentDatatype.CesiumMath.EPSILON10)) { // if we've reached a corner recomputeNormal = true; } } if (vertexFormat.tangent || vertexFormat.bitangent) { bitangent = ellipsoid.geodeticSurfaceNormal(position, bitangent); if (vertexFormat.tangent) { tangent = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross(bitangent, normal, tangent), tangent ); } } } else { normal = ellipsoid.geodeticSurfaceNormal(position, normal); if (vertexFormat.tangent || vertexFormat.bitangent) { if (perPositionHeight) { scratchPerPosNormal = Matrix2.Cartesian3.fromArray( normals, attrIndex, scratchPerPosNormal ); scratchPerPosTangent = Matrix2.Cartesian3.cross( Matrix2.Cartesian3.UNIT_Z, scratchPerPosNormal, scratchPerPosTangent ); scratchPerPosTangent = Matrix2.Cartesian3.normalize( Matrix2.Matrix3.multiplyByVector( tangentRotationMatrix, scratchPerPosTangent, scratchPerPosTangent ), scratchPerPosTangent ); if (vertexFormat.bitangent) { scratchPerPosBitangent = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross( scratchPerPosNormal, scratchPerPosTangent, scratchPerPosBitangent ), scratchPerPosBitangent ); } } tangent = Matrix2.Cartesian3.cross(Matrix2.Cartesian3.UNIT_Z, normal, tangent); tangent = Matrix2.Cartesian3.normalize( Matrix2.Matrix3.multiplyByVector(tangentRotationMatrix, tangent, tangent), tangent ); if (vertexFormat.bitangent) { bitangent = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross(normal, tangent, bitangent), bitangent ); } } } if (vertexFormat.normal) { if (options.wall) { normals[attrIndex + bottomOffset] = normal.x; normals[attrIndex1 + bottomOffset] = normal.y; normals[attrIndex2 + bottomOffset] = normal.z; } else if (bottom) { normals[attrIndex + bottomOffset] = -normal.x; normals[attrIndex1 + bottomOffset] = -normal.y; normals[attrIndex2 + bottomOffset] = -normal.z; } if ((top && !perPositionHeight) || wall) { normals[attrIndex] = normal.x; normals[attrIndex1] = normal.y; normals[attrIndex2] = normal.z; } } if (shadowVolume) { if (wall) { normal = ellipsoid.geodeticSurfaceNormal(position, normal); } extrudeNormals[attrIndex + bottomOffset] = -normal.x; extrudeNormals[attrIndex1 + bottomOffset] = -normal.y; extrudeNormals[attrIndex2 + bottomOffset] = -normal.z; } if (vertexFormat.tangent) { if (options.wall) { tangents[attrIndex + bottomOffset] = tangent.x; tangents[attrIndex1 + bottomOffset] = tangent.y; tangents[attrIndex2 + bottomOffset] = tangent.z; } else if (bottom) { tangents[attrIndex + bottomOffset] = -tangent.x; tangents[attrIndex1 + bottomOffset] = -tangent.y; tangents[attrIndex2 + bottomOffset] = -tangent.z; } if (top) { if (perPositionHeight) { tangents[attrIndex] = scratchPerPosTangent.x; tangents[attrIndex1] = scratchPerPosTangent.y; tangents[attrIndex2] = scratchPerPosTangent.z; } else { tangents[attrIndex] = tangent.x; tangents[attrIndex1] = tangent.y; tangents[attrIndex2] = tangent.z; } } } if (vertexFormat.bitangent) { if (bottom) { bitangents[attrIndex + bottomOffset] = bitangent.x; bitangents[attrIndex1 + bottomOffset] = bitangent.y; bitangents[attrIndex2 + bottomOffset] = bitangent.z; } if (top) { if (perPositionHeight) { bitangents[attrIndex] = scratchPerPosBitangent.x; bitangents[attrIndex1] = scratchPerPosBitangent.y; bitangents[attrIndex2] = scratchPerPosBitangent.z; } else { bitangents[attrIndex] = bitangent.x; bitangents[attrIndex1] = bitangent.y; bitangents[attrIndex2] = bitangent.z; } } } attrIndex += 3; } } if (vertexFormat.st) { geometry.attributes.st = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: textureCoordinates, }); } if (vertexFormat.normal) { geometry.attributes.normal = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: normals, }); } if (vertexFormat.tangent) { geometry.attributes.tangent = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: tangents, }); } if (vertexFormat.bitangent) { geometry.attributes.bitangent = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: bitangents, }); } if (shadowVolume) { geometry.attributes.extrudeDirection = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: extrudeNormals, }); } } if (options.extrude && when.defined(options.offsetAttribute)) { const size = flatPositions.length / 3; let offsetAttribute = new Uint8Array(size); if (options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP) { if ((top && bottom) || wall) { offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, 1, 0, size / 2); } else if (top) { offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, 1); } } else { const offsetValue = options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1; offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, offsetValue); } geometry.attributes.applyOffset = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute: 1, values: offsetAttribute, }); } return geometry; } const startCartographicScratch = new Matrix2.Cartographic(); const endCartographicScratch = new Matrix2.Cartographic(); const idlCross = { westOverIDL: 0.0, eastOverIDL: 0.0, }; let ellipsoidGeodesic = new EllipsoidGeodesic.EllipsoidGeodesic(); function computeRectangle(positions, ellipsoid, arcType, granularity, result) { result = when.defaultValue(result, new Matrix2.Rectangle()); if (!when.defined(positions) || positions.length < 3) { result.west = 0.0; result.north = 0.0; result.south = 0.0; result.east = 0.0; return result; } if (arcType === ArcType.ArcType.RHUMB) { return Matrix2.Rectangle.fromCartesianArray(positions, ellipsoid, result); } if (!ellipsoidGeodesic.ellipsoid.equals(ellipsoid)) { ellipsoidGeodesic = new EllipsoidGeodesic.EllipsoidGeodesic(undefined, undefined, ellipsoid); } result.west = Number.POSITIVE_INFINITY; result.east = Number.NEGATIVE_INFINITY; result.south = Number.POSITIVE_INFINITY; result.north = Number.NEGATIVE_INFINITY; idlCross.westOverIDL = Number.POSITIVE_INFINITY; idlCross.eastOverIDL = Number.NEGATIVE_INFINITY; const inverseChordLength = 1.0 / ComponentDatatype.CesiumMath.chordLength(granularity, ellipsoid.maximumRadius); const positionsLength = positions.length; let endCartographic = ellipsoid.cartesianToCartographic( positions[0], endCartographicScratch ); let startCartographic = startCartographicScratch; let swap; for (let i = 1; i < positionsLength; i++) { swap = startCartographic; startCartographic = endCartographic; endCartographic = ellipsoid.cartesianToCartographic(positions[i], swap); ellipsoidGeodesic.setEndPoints(startCartographic, endCartographic); interpolateAndGrowRectangle( ellipsoidGeodesic, inverseChordLength, result, idlCross ); } swap = startCartographic; startCartographic = endCartographic; endCartographic = ellipsoid.cartesianToCartographic(positions[0], swap); ellipsoidGeodesic.setEndPoints(startCartographic, endCartographic); interpolateAndGrowRectangle( ellipsoidGeodesic, inverseChordLength, result, idlCross ); if (result.east - result.west > idlCross.eastOverIDL - idlCross.westOverIDL) { result.west = idlCross.westOverIDL; result.east = idlCross.eastOverIDL; if (result.east > ComponentDatatype.CesiumMath.PI) { result.east = result.east - ComponentDatatype.CesiumMath.TWO_PI; } if (result.west > ComponentDatatype.CesiumMath.PI) { result.west = result.west - ComponentDatatype.CesiumMath.TWO_PI; } } return result; } const interpolatedCartographicScratch = new Matrix2.Cartographic(); function interpolateAndGrowRectangle( ellipsoidGeodesic, inverseChordLength, result, idlCross ) { const segmentLength = ellipsoidGeodesic.surfaceDistance; const numPoints = Math.ceil(segmentLength * inverseChordLength); const subsegmentDistance = numPoints > 0 ? segmentLength / (numPoints - 1) : Number.POSITIVE_INFINITY; let interpolationDistance = 0.0; for (let i = 0; i < numPoints; i++) { const interpolatedCartographic = ellipsoidGeodesic.interpolateUsingSurfaceDistance( interpolationDistance, interpolatedCartographicScratch ); interpolationDistance += subsegmentDistance; const longitude = interpolatedCartographic.longitude; const latitude = interpolatedCartographic.latitude; result.west = Math.min(result.west, longitude); result.east = Math.max(result.east, longitude); result.south = Math.min(result.south, latitude); result.north = Math.max(result.north, latitude); const lonAdjusted = longitude >= 0 ? longitude : longitude + ComponentDatatype.CesiumMath.TWO_PI; idlCross.westOverIDL = Math.min(idlCross.westOverIDL, lonAdjusted); idlCross.eastOverIDL = Math.max(idlCross.eastOverIDL, lonAdjusted); } } const createGeometryFromPositionsExtrudedPositions = []; function createGeometryFromPositionsExtruded( ellipsoid, polygon, granularity, hierarchy, perPositionHeight, closeTop, closeBottom, vertexFormat, arcType ) { const geos = { walls: [], }; let i; if (closeTop || closeBottom) { const topGeo = PolygonGeometryLibrary.PolygonGeometryLibrary.createGeometryFromPositions( ellipsoid, polygon, granularity, perPositionHeight, vertexFormat, arcType ); const edgePoints = topGeo.attributes.position.values; const indices = topGeo.indices; let numPositions; let newIndices; if (closeTop && closeBottom) { const topBottomPositions = edgePoints.concat(edgePoints); numPositions = topBottomPositions.length / 3; newIndices = IndexDatatype.IndexDatatype.createTypedArray( numPositions, indices.length * 2 ); newIndices.set(indices); const ilength = indices.length; const length = numPositions / 2; for (i = 0; i < ilength; i += 3) { const i0 = newIndices[i] + length; const i1 = newIndices[i + 1] + length; const i2 = newIndices[i + 2] + length; newIndices[i + ilength] = i2; newIndices[i + 1 + ilength] = i1; newIndices[i + 2 + ilength] = i0; } topGeo.attributes.position.values = topBottomPositions; if (perPositionHeight && vertexFormat.normal) { const normals = topGeo.attributes.normal.values; topGeo.attributes.normal.values = new Float32Array( topBottomPositions.length ); topGeo.attributes.normal.values.set(normals); } topGeo.indices = newIndices; } else if (closeBottom) { numPositions = edgePoints.length / 3; newIndices = IndexDatatype.IndexDatatype.createTypedArray(numPositions, indices.length); for (i = 0; i < indices.length; i += 3) { newIndices[i] = indices[i + 2]; newIndices[i + 1] = indices[i + 1]; newIndices[i + 2] = indices[i]; } topGeo.indices = newIndices; } geos.topAndBottom = new GeometryInstance.GeometryInstance({ geometry: topGeo, }); } let outerRing = hierarchy.outerRing; let tangentPlane = EllipsoidTangentPlane.EllipsoidTangentPlane.fromPoints(outerRing, ellipsoid); let positions2D = tangentPlane.projectPointsOntoPlane( outerRing, createGeometryFromPositionsExtrudedPositions ); let windingOrder = PolygonPipeline.PolygonPipeline.computeWindingOrder2D(positions2D); if (windingOrder === PolygonPipeline.WindingOrder.CLOCKWISE) { outerRing = outerRing.slice().reverse(); } let wallGeo = PolygonGeometryLibrary.PolygonGeometryLibrary.computeWallGeometry( outerRing, ellipsoid, granularity, perPositionHeight, arcType ); geos.walls.push( new GeometryInstance.GeometryInstance({ geometry: wallGeo, }) ); const holes = hierarchy.holes; for (i = 0; i < holes.length; i++) { let hole = holes[i]; tangentPlane = EllipsoidTangentPlane.EllipsoidTangentPlane.fromPoints(hole, ellipsoid); positions2D = tangentPlane.projectPointsOntoPlane( hole, createGeometryFromPositionsExtrudedPositions ); windingOrder = PolygonPipeline.PolygonPipeline.computeWindingOrder2D(positions2D); if (windingOrder === PolygonPipeline.WindingOrder.COUNTER_CLOCKWISE) { hole = hole.slice().reverse(); } wallGeo = PolygonGeometryLibrary.PolygonGeometryLibrary.computeWallGeometry( hole, ellipsoid, granularity, perPositionHeight, arcType ); geos.walls.push( new GeometryInstance.GeometryInstance({ geometry: wallGeo, }) ); } return geos; } /** * A description of a polygon on the ellipsoid. The polygon is defined by a polygon hierarchy. Polygon geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}. * * @alias PolygonGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {PolygonHierarchy} options.polygonHierarchy A polygon hierarchy that can include holes. * @param {Number} [options.height=0.0] The distance in meters between the polygon and the ellipsoid surface. * @param {Number} [options.extrudedHeight] The distance in meters between the polygon's extruded face and the ellipsoid surface. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * @param {Number} [options.stRotation=0.0] The rotation of the texture coordinates, in radians. A positive rotation is counter-clockwise. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer. * @param {Boolean} [options.perPositionHeight=false] Use the height of options.positions for each position instead of using options.height to determine the height. * @param {Boolean} [options.closeTop=true] When false, leaves off the top of an extruded polygon open. * @param {Boolean} [options.closeBottom=true] When false, leaves off the bottom of an extruded polygon open. * @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polygon edges must follow. Valid options are {@link ArcType.GEODESIC} and {@link ArcType.RHUMB}. * * @see PolygonGeometry#createGeometry * @see PolygonGeometry#fromPositions * * @demo {@link https://sandcastle.cesium.com/index.html?src=Polygon.html|Cesium Sandcastle Polygon Demo} * * @example * // 1. create a polygon from points * const polygon = new Cesium.PolygonGeometry({ * polygonHierarchy : new Cesium.PolygonHierarchy( * Cesium.Cartesian3.fromDegreesArray([ * -72.0, 40.0, * -70.0, 35.0, * -75.0, 30.0, * -70.0, 30.0, * -68.0, 40.0 * ]) * ) * }); * const geometry = Cesium.PolygonGeometry.createGeometry(polygon); * * // 2. create a nested polygon with holes * const polygonWithHole = new Cesium.PolygonGeometry({ * polygonHierarchy : new Cesium.PolygonHierarchy( * Cesium.Cartesian3.fromDegreesArray([ * -109.0, 30.0, * -95.0, 30.0, * -95.0, 40.0, * -109.0, 40.0 * ]), * [new Cesium.PolygonHierarchy( * Cesium.Cartesian3.fromDegreesArray([ * -107.0, 31.0, * -107.0, 39.0, * -97.0, 39.0, * -97.0, 31.0 * ]), * [new Cesium.PolygonHierarchy( * Cesium.Cartesian3.fromDegreesArray([ * -105.0, 33.0, * -99.0, 33.0, * -99.0, 37.0, * -105.0, 37.0 * ]), * [new Cesium.PolygonHierarchy( * Cesium.Cartesian3.fromDegreesArray([ * -103.0, 34.0, * -101.0, 34.0, * -101.0, 36.0, * -103.0, 36.0 * ]) * )] * )] * )] * ) * }); * const geometry = Cesium.PolygonGeometry.createGeometry(polygonWithHole); * * // 3. create extruded polygon * const extrudedPolygon = new Cesium.PolygonGeometry({ * polygonHierarchy : new Cesium.PolygonHierarchy( * Cesium.Cartesian3.fromDegreesArray([ * -72.0, 40.0, * -70.0, 35.0, * -75.0, 30.0, * -70.0, 30.0, * -68.0, 40.0 * ]) * ), * extrudedHeight: 300000 * }); * const geometry = Cesium.PolygonGeometry.createGeometry(extrudedPolygon); */ function PolygonGeometry(options) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("options", options); RuntimeError.Check.typeOf.object("options.polygonHierarchy", options.polygonHierarchy); if ( when.defined(options.perPositionHeight) && options.perPositionHeight && when.defined(options.height) ) { throw new RuntimeError.DeveloperError( "Cannot use both options.perPositionHeight and options.height" ); } if ( when.defined(options.arcType) && options.arcType !== ArcType.ArcType.GEODESIC && options.arcType !== ArcType.ArcType.RHUMB ) { throw new RuntimeError.DeveloperError( "Invalid arcType. Valid options are ArcType.GEODESIC and ArcType.RHUMB." ); } //>>includeEnd('debug'); const polygonHierarchy = options.polygonHierarchy; const vertexFormat = when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT); const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84); const granularity = when.defaultValue( options.granularity, ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE ); const stRotation = when.defaultValue(options.stRotation, 0.0); const perPositionHeight = when.defaultValue(options.perPositionHeight, false); const perPositionHeightExtrude = perPositionHeight && when.defined(options.extrudedHeight); let height = when.defaultValue(options.height, 0.0); let extrudedHeight = when.defaultValue(options.extrudedHeight, height); if (!perPositionHeightExtrude) { const h = Math.max(height, extrudedHeight); extrudedHeight = Math.min(height, extrudedHeight); height = h; } this._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat); this._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid); this._granularity = granularity; this._stRotation = stRotation; this._height = height; this._extrudedHeight = extrudedHeight; this._closeTop = when.defaultValue(options.closeTop, true); this._closeBottom = when.defaultValue(options.closeBottom, true); this._polygonHierarchy = polygonHierarchy; this._perPositionHeight = perPositionHeight; this._perPositionHeightExtrude = perPositionHeightExtrude; this._shadowVolume = when.defaultValue(options.shadowVolume, false); this._workerName = "createPolygonGeometry"; this._offsetAttribute = options.offsetAttribute; this._arcType = when.defaultValue(options.arcType, ArcType.ArcType.GEODESIC); this._rectangle = undefined; this._textureCoordinateRotationPoints = undefined; /** * The number of elements used to pack the object into an array. * @type {Number} */ this.packedLength = PolygonGeometryLibrary.PolygonGeometryLibrary.computeHierarchyPackedLength(polygonHierarchy) + Matrix2.Ellipsoid.packedLength + VertexFormat.VertexFormat.packedLength + 12; } /** * A description of a polygon from an array of positions. Polygon geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}. * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.positions An array of positions that defined the corner points of the polygon. * @param {Number} [options.height=0.0] The height of the polygon. * @param {Number} [options.extrudedHeight] The height of the polygon extrusion. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * @param {Number} [options.stRotation=0.0] The rotation of the texture coordinates, in radians. A positive rotation is counter-clockwise. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer. * @param {Boolean} [options.perPositionHeight=false] Use the height of options.positions for each position instead of using options.height to determine the height. * @param {Boolean} [options.closeTop=true] When false, leaves off the top of an extruded polygon open. * @param {Boolean} [options.closeBottom=true] When false, leaves off the bottom of an extruded polygon open. * @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polygon edges must follow. Valid options are {@link ArcType.GEODESIC} and {@link ArcType.RHUMB}. * @returns {PolygonGeometry} * * * @example * // create a polygon from points * const polygon = Cesium.PolygonGeometry.fromPositions({ * positions : Cesium.Cartesian3.fromDegreesArray([ * -72.0, 40.0, * -70.0, 35.0, * -75.0, 30.0, * -70.0, 30.0, * -68.0, 40.0 * ]) * }); * const geometry = Cesium.PolygonGeometry.createGeometry(polygon); * * @see PolygonGeometry#createGeometry */ PolygonGeometry.fromPositions = function (options) { options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT); //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("options.positions", options.positions); //>>includeEnd('debug'); const newOptions = { polygonHierarchy: { positions: options.positions, }, height: options.height, extrudedHeight: options.extrudedHeight, vertexFormat: options.vertexFormat, stRotation: options.stRotation, ellipsoid: options.ellipsoid, granularity: options.granularity, perPositionHeight: options.perPositionHeight, closeTop: options.closeTop, closeBottom: options.closeBottom, offsetAttribute: options.offsetAttribute, arcType: options.arcType, }; return new PolygonGeometry(newOptions); }; /** * Stores the provided instance into the provided array. * * @param {PolygonGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ PolygonGeometry.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("value", value); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); startingIndex = PolygonGeometryLibrary.PolygonGeometryLibrary.packPolygonHierarchy( value._polygonHierarchy, array, startingIndex ); Matrix2.Ellipsoid.pack(value._ellipsoid, array, startingIndex); startingIndex += Matrix2.Ellipsoid.packedLength; VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex); startingIndex += VertexFormat.VertexFormat.packedLength; array[startingIndex++] = value._height; array[startingIndex++] = value._extrudedHeight; array[startingIndex++] = value._granularity; array[startingIndex++] = value._stRotation; array[startingIndex++] = value._perPositionHeightExtrude ? 1.0 : 0.0; array[startingIndex++] = value._perPositionHeight ? 1.0 : 0.0; array[startingIndex++] = value._closeTop ? 1.0 : 0.0; array[startingIndex++] = value._closeBottom ? 1.0 : 0.0; array[startingIndex++] = value._shadowVolume ? 1.0 : 0.0; array[startingIndex++] = when.defaultValue(value._offsetAttribute, -1); array[startingIndex++] = value._arcType; array[startingIndex] = value.packedLength; return array; }; const scratchEllipsoid = Matrix2.Ellipsoid.clone(Matrix2.Ellipsoid.UNIT_SPHERE); const scratchVertexFormat = new VertexFormat.VertexFormat(); //Only used to avoid inability to default construct. const dummyOptions = { polygonHierarchy: {}, }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {PolygonGeometry} [result] The object into which to store the result. */ PolygonGeometry.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); const polygonHierarchy = PolygonGeometryLibrary.PolygonGeometryLibrary.unpackPolygonHierarchy( array, startingIndex ); startingIndex = polygonHierarchy.startingIndex; delete polygonHierarchy.startingIndex; const ellipsoid = Matrix2.Ellipsoid.unpack(array, startingIndex, scratchEllipsoid); startingIndex += Matrix2.Ellipsoid.packedLength; const vertexFormat = VertexFormat.VertexFormat.unpack( array, startingIndex, scratchVertexFormat ); startingIndex += VertexFormat.VertexFormat.packedLength; const height = array[startingIndex++]; const extrudedHeight = array[startingIndex++]; const granularity = array[startingIndex++]; const stRotation = array[startingIndex++]; const perPositionHeightExtrude = array[startingIndex++] === 1.0; const perPositionHeight = array[startingIndex++] === 1.0; const closeTop = array[startingIndex++] === 1.0; const closeBottom = array[startingIndex++] === 1.0; const shadowVolume = array[startingIndex++] === 1.0; const offsetAttribute = array[startingIndex++]; const arcType = array[startingIndex++]; const packedLength = array[startingIndex]; if (!when.defined(result)) { result = new PolygonGeometry(dummyOptions); } result._polygonHierarchy = polygonHierarchy; result._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid, result._ellipsoid); result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat); result._height = height; result._extrudedHeight = extrudedHeight; result._granularity = granularity; result._stRotation = stRotation; result._perPositionHeightExtrude = perPositionHeightExtrude; result._perPositionHeight = perPositionHeight; result._closeTop = closeTop; result._closeBottom = closeBottom; result._shadowVolume = shadowVolume; result._offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; result._arcType = arcType; result.packedLength = packedLength; return result; }; /** * Returns the bounding rectangle given the provided options * * @param {Object} options Object with the following properties: * @param {PolygonHierarchy} options.polygonHierarchy A polygon hierarchy that can include holes. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions sampled. * @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polygon edges must follow. Valid options are {@link ArcType.GEODESIC} and {@link ArcType.RHUMB}. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * @param {Rectangle} [result] An object in which to store the result. * * @returns {Rectangle} The result rectangle */ PolygonGeometry.computeRectangle = function (options, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("options", options); RuntimeError.Check.typeOf.object("options.polygonHierarchy", options.polygonHierarchy); //>>includeEnd('debug'); const granularity = when.defaultValue( options.granularity, ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE ); const arcType = when.defaultValue(options.arcType, ArcType.ArcType.GEODESIC); //>>includeStart('debug', pragmas.debug); if (arcType !== ArcType.ArcType.GEODESIC && arcType !== ArcType.ArcType.RHUMB) { throw new RuntimeError.DeveloperError( "Invalid arcType. Valid options are ArcType.GEODESIC and ArcType.RHUMB." ); } //>>includeEnd('debug'); const polygonHierarchy = options.polygonHierarchy; const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84); return computeRectangle( polygonHierarchy.positions, ellipsoid, arcType, granularity, result ); }; /** * Computes the geometric representation of a polygon, including its vertices, indices, and a bounding sphere. * * @param {PolygonGeometry} polygonGeometry A description of the polygon. * @returns {Geometry|undefined} The computed vertices and indices. */ PolygonGeometry.createGeometry = function (polygonGeometry) { const vertexFormat = polygonGeometry._vertexFormat; const ellipsoid = polygonGeometry._ellipsoid; const granularity = polygonGeometry._granularity; const stRotation = polygonGeometry._stRotation; const polygonHierarchy = polygonGeometry._polygonHierarchy; const perPositionHeight = polygonGeometry._perPositionHeight; const closeTop = polygonGeometry._closeTop; const closeBottom = polygonGeometry._closeBottom; const arcType = polygonGeometry._arcType; let outerPositions = polygonHierarchy.positions; if (outerPositions.length < 3) { return; } const tangentPlane = EllipsoidTangentPlane.EllipsoidTangentPlane.fromPoints( outerPositions, ellipsoid ); const results = PolygonGeometryLibrary.PolygonGeometryLibrary.polygonsFromHierarchy( polygonHierarchy, tangentPlane.projectPointsOntoPlane.bind(tangentPlane), !perPositionHeight, ellipsoid ); const hierarchy = results.hierarchy; const polygons = results.polygons; if (hierarchy.length === 0) { return; } outerPositions = hierarchy[0].outerRing; const boundingRectangle = PolygonGeometryLibrary.PolygonGeometryLibrary.computeBoundingRectangle( tangentPlane.plane.normal, tangentPlane.projectPointOntoPlane.bind(tangentPlane), outerPositions, stRotation, scratchBoundingRectangle ); const geometries = []; const height = polygonGeometry._height; const extrudedHeight = polygonGeometry._extrudedHeight; const extrude = polygonGeometry._perPositionHeightExtrude || !ComponentDatatype.CesiumMath.equalsEpsilon(height, extrudedHeight, 0, ComponentDatatype.CesiumMath.EPSILON2); const options = { perPositionHeight: perPositionHeight, vertexFormat: vertexFormat, geometry: undefined, tangentPlane: tangentPlane, boundingRectangle: boundingRectangle, ellipsoid: ellipsoid, stRotation: stRotation, bottom: false, top: true, wall: false, extrude: false, arcType: arcType, }; let i; if (extrude) { options.extrude = true; options.top = closeTop; options.bottom = closeBottom; options.shadowVolume = polygonGeometry._shadowVolume; options.offsetAttribute = polygonGeometry._offsetAttribute; for (i = 0; i < polygons.length; i++) { const splitGeometry = createGeometryFromPositionsExtruded( ellipsoid, polygons[i], granularity, hierarchy[i], perPositionHeight, closeTop, closeBottom, vertexFormat, arcType ); let topAndBottom; if (closeTop && closeBottom) { topAndBottom = splitGeometry.topAndBottom; options.geometry = PolygonGeometryLibrary.PolygonGeometryLibrary.scaleToGeodeticHeightExtruded( topAndBottom.geometry, height, extrudedHeight, ellipsoid, perPositionHeight ); } else if (closeTop) { topAndBottom = splitGeometry.topAndBottom; topAndBottom.geometry.attributes.position.values = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight( topAndBottom.geometry.attributes.position.values, height, ellipsoid, !perPositionHeight ); options.geometry = topAndBottom.geometry; } else if (closeBottom) { topAndBottom = splitGeometry.topAndBottom; topAndBottom.geometry.attributes.position.values = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight( topAndBottom.geometry.attributes.position.values, extrudedHeight, ellipsoid, true ); options.geometry = topAndBottom.geometry; } if (closeTop || closeBottom) { options.wall = false; topAndBottom.geometry = computeAttributes(options); geometries.push(topAndBottom); } const walls = splitGeometry.walls; options.wall = true; for (let k = 0; k < walls.length; k++) { const wall = walls[k]; options.geometry = PolygonGeometryLibrary.PolygonGeometryLibrary.scaleToGeodeticHeightExtruded( wall.geometry, height, extrudedHeight, ellipsoid, perPositionHeight ); wall.geometry = computeAttributes(options); geometries.push(wall); } } } else { for (i = 0; i < polygons.length; i++) { const geometryInstance = new GeometryInstance.GeometryInstance({ geometry: PolygonGeometryLibrary.PolygonGeometryLibrary.createGeometryFromPositions( ellipsoid, polygons[i], granularity, perPositionHeight, vertexFormat, arcType ), }); geometryInstance.geometry.attributes.position.values = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight( geometryInstance.geometry.attributes.position.values, height, ellipsoid, !perPositionHeight ); options.geometry = geometryInstance.geometry; geometryInstance.geometry = computeAttributes(options); if (when.defined(polygonGeometry._offsetAttribute)) { const length = geometryInstance.geometry.attributes.position.values.length; const applyOffset = new Uint8Array(length / 3); const offsetValue = polygonGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1; GeometryOffsetAttribute.arrayFill(applyOffset, offsetValue); geometryInstance.geometry.attributes.applyOffset = new GeometryAttribute.GeometryAttribute( { componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute: 1, values: applyOffset, } ); } geometries.push(geometryInstance); } } const geometry = GeometryPipeline.GeometryPipeline.combineInstances(geometries)[0]; geometry.attributes.position.values = new Float64Array( geometry.attributes.position.values ); geometry.indices = IndexDatatype.IndexDatatype.createTypedArray( geometry.attributes.position.values.length / 3, geometry.indices ); const attributes = geometry.attributes; const boundingSphere = Transforms.BoundingSphere.fromVertices( attributes.position.values ); if (!vertexFormat.position) { delete attributes.position; } return new GeometryAttribute.Geometry({ attributes: attributes, indices: geometry.indices, primitiveType: geometry.primitiveType, boundingSphere: boundingSphere, offsetAttribute: polygonGeometry._offsetAttribute, }); }; /** * @private */ PolygonGeometry.createShadowVolume = function ( polygonGeometry, minHeightFunc, maxHeightFunc ) { const granularity = polygonGeometry._granularity; const ellipsoid = polygonGeometry._ellipsoid; const minHeight = minHeightFunc(granularity, ellipsoid); const maxHeight = maxHeightFunc(granularity, ellipsoid); return new PolygonGeometry({ polygonHierarchy: polygonGeometry._polygonHierarchy, ellipsoid: ellipsoid, stRotation: polygonGeometry._stRotation, granularity: granularity, perPositionHeight: false, extrudedHeight: minHeight, height: maxHeight, vertexFormat: VertexFormat.VertexFormat.POSITION_ONLY, shadowVolume: true, arcType: polygonGeometry._arcType, }); }; function textureCoordinateRotationPoints(polygonGeometry) { const stRotation = -polygonGeometry._stRotation; if (stRotation === 0.0) { return [0, 0, 0, 1, 1, 0]; } const ellipsoid = polygonGeometry._ellipsoid; const positions = polygonGeometry._polygonHierarchy.positions; const boundingRectangle = polygonGeometry.rectangle; return GeometryAttribute.Geometry._textureCoordinateRotationPoints( positions, stRotation, ellipsoid, boundingRectangle ); } Object.defineProperties(PolygonGeometry.prototype, { /** * @private */ rectangle: { get: function () { if (!when.defined(this._rectangle)) { const positions = this._polygonHierarchy.positions; this._rectangle = computeRectangle( positions, this._ellipsoid, this._arcType, this._granularity ); } return this._rectangle; }, }, /** * For remapping texture coordinates when rendering PolygonGeometries as GroundPrimitives. * @private */ textureCoordinateRotationPoints: { get: function () { if (!when.defined(this._textureCoordinateRotationPoints)) { this._textureCoordinateRotationPoints = textureCoordinateRotationPoints( this ); } return this._textureCoordinateRotationPoints; }, }, }); function createPolygonGeometry(polygonGeometry, offset) { if (when.defined(offset)) { polygonGeometry = PolygonGeometry.unpack(polygonGeometry, offset); } polygonGeometry._ellipsoid = Matrix2.Ellipsoid.clone(polygonGeometry._ellipsoid); return PolygonGeometry.createGeometry(polygonGeometry); } return createPolygonGeometry; })); //# sourceMappingURL=createPolygonGeometry.js.map