/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['exports', './RuntimeError-5b082e8f', './when-4bbc8319', './ComponentDatatype-aad54330'], (function (exports, RuntimeError, when, ComponentDatatype) { 'use strict'; /** * A 3D Cartesian point. * @alias Cartesian3 * @constructor * * @param {Number} [x=0.0] The X component. * @param {Number} [y=0.0] The Y component. * @param {Number} [z=0.0] The Z component. * * @see Cartesian2 * @see Cartesian4 * @see Packable */ function Cartesian3(x, y, z) { /** * The X component. * @type {Number} * @default 0.0 */ this.x = when.defaultValue(x, 0.0); /** * The Y component. * @type {Number} * @default 0.0 */ this.y = when.defaultValue(y, 0.0); /** * The Z component. * @type {Number} * @default 0.0 */ this.z = when.defaultValue(z, 0.0); } /** * Converts the provided Spherical into Cartesian3 coordinates. * * @param {Spherical} spherical The Spherical to be converted to Cartesian3. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.fromSpherical = function (spherical, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("spherical", spherical); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Cartesian3(); } const clock = spherical.clock; const cone = spherical.cone; const magnitude = when.defaultValue(spherical.magnitude, 1.0); const radial = magnitude * Math.sin(cone); result.x = radial * Math.cos(clock); result.y = radial * Math.sin(clock); result.z = magnitude * Math.cos(cone); return result; }; /** * Creates a Cartesian3 instance from x, y and z coordinates. * * @param {Number} x The x coordinate. * @param {Number} y The y coordinate. * @param {Number} z The z coordinate. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.fromElements = function (x, y, z, result) { if (!when.defined(result)) { return new Cartesian3(x, y, z); } result.x = x; result.y = y; result.z = z; return result; }; /** * Duplicates a Cartesian3 instance. * * @param {Cartesian3} cartesian The Cartesian to duplicate. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. (Returns undefined if cartesian is undefined) */ Cartesian3.clone = function (cartesian, result) { if (!when.defined(cartesian)) { return undefined; } if (!when.defined(result)) { return new Cartesian3(cartesian.x, cartesian.y, cartesian.z); } result.x = cartesian.x; result.y = cartesian.y; result.z = cartesian.z; return result; }; /** * Creates a Cartesian3 instance from an existing Cartesian4. This simply takes the * x, y, and z properties of the Cartesian4 and drops w. * @function * * @param {Cartesian4} cartesian The Cartesian4 instance to create a Cartesian3 instance from. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.fromCartesian4 = Cartesian3.clone; /** * The number of elements used to pack the object into an array. * @type {Number} */ Cartesian3.packedLength = 3; /** * Stores the provided instance into the provided array. * * @param {Cartesian3} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Cartesian3.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("value", value); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); array[startingIndex++] = value.x; array[startingIndex++] = value.y; array[startingIndex] = value.z; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Cartesian3} [result] The object into which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new Cartesian3(); } result.x = array[startingIndex++]; result.y = array[startingIndex++]; result.z = array[startingIndex]; return result; }; /** * Flattens an array of Cartesian3s into an array of components. * * @param {Cartesian3[]} array The array of cartesians to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 3 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 3) elements. * @returns {Number[]} The packed array. */ Cartesian3.packArray = function (array, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); const length = array.length; const resultLength = length * 3; if (!when.defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { //>>includeStart('debug', pragmas.debug); throw new RuntimeError.DeveloperError( "If result is a typed array, it must have exactly array.length * 3 elements" ); //>>includeEnd('debug'); } else if (result.length !== resultLength) { result.length = resultLength; } for (let i = 0; i < length; ++i) { Cartesian3.pack(array[i], result, i * 3); } return result; }; /** * Unpacks an array of cartesian components into an array of Cartesian3s. * * @param {Number[]} array The array of components to unpack. * @param {Cartesian3[]} [result] The array onto which to store the result. * @returns {Cartesian3[]} The unpacked array. */ Cartesian3.unpackArray = function (array, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); RuntimeError.Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 3); if (array.length % 3 !== 0) { throw new RuntimeError.DeveloperError("array length must be a multiple of 3."); } //>>includeEnd('debug'); const length = array.length; if (!when.defined(result)) { result = new Array(length / 3); } else { result.length = length / 3; } for (let i = 0; i < length; i += 3) { const index = i / 3; result[index] = Cartesian3.unpack(array, i, result[index]); } return result; }; /** * Creates a Cartesian3 from three consecutive elements in an array. * @function * * @param {Number[]} array The array whose three consecutive elements correspond to the x, y, and z components, respectively. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. * * @example * // Create a Cartesian3 with (1.0, 2.0, 3.0) * const v = [1.0, 2.0, 3.0]; * const p = Cesium.Cartesian3.fromArray(v); * * // Create a Cartesian3 with (1.0, 2.0, 3.0) using an offset into an array * const v2 = [0.0, 0.0, 1.0, 2.0, 3.0]; * const p2 = Cesium.Cartesian3.fromArray(v2, 2); */ Cartesian3.fromArray = Cartesian3.unpack; /** * Computes the value of the maximum component for the supplied Cartesian. * * @param {Cartesian3} cartesian The cartesian to use. * @returns {Number} The value of the maximum component. */ Cartesian3.maximumComponent = function (cartesian) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return Math.max(cartesian.x, cartesian.y, cartesian.z); }; /** * Computes the value of the minimum component for the supplied Cartesian. * * @param {Cartesian3} cartesian The cartesian to use. * @returns {Number} The value of the minimum component. */ Cartesian3.minimumComponent = function (cartesian) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return Math.min(cartesian.x, cartesian.y, cartesian.z); }; /** * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians. * * @param {Cartesian3} first A cartesian to compare. * @param {Cartesian3} second A cartesian to compare. * @param {Cartesian3} result The object into which to store the result. * @returns {Cartesian3} A cartesian with the minimum components. */ Cartesian3.minimumByComponent = function (first, second, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("first", first); RuntimeError.Check.typeOf.object("second", second); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.min(first.x, second.x); result.y = Math.min(first.y, second.y); result.z = Math.min(first.z, second.z); return result; }; /** * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians. * * @param {Cartesian3} first A cartesian to compare. * @param {Cartesian3} second A cartesian to compare. * @param {Cartesian3} result The object into which to store the result. * @returns {Cartesian3} A cartesian with the maximum components. */ Cartesian3.maximumByComponent = function (first, second, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("first", first); RuntimeError.Check.typeOf.object("second", second); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.max(first.x, second.x); result.y = Math.max(first.y, second.y); result.z = Math.max(first.z, second.z); return result; }; /** * Computes the provided Cartesian's squared magnitude. * * @param {Cartesian3} cartesian The Cartesian instance whose squared magnitude is to be computed. * @returns {Number} The squared magnitude. */ Cartesian3.magnitudeSquared = function (cartesian) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return ( cartesian.x * cartesian.x + cartesian.y * cartesian.y + cartesian.z * cartesian.z ); }; /** * Computes the Cartesian's magnitude (length). * * @param {Cartesian3} cartesian The Cartesian instance whose magnitude is to be computed. * @returns {Number} The magnitude. */ Cartesian3.magnitude = function (cartesian) { return Math.sqrt(Cartesian3.magnitudeSquared(cartesian)); }; const distanceScratch$2 = new Cartesian3(); /** * Computes the distance between two points. * * @param {Cartesian3} left The first point to compute the distance from. * @param {Cartesian3} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 1.0 * const d = Cesium.Cartesian3.distance(new Cesium.Cartesian3(1.0, 0.0, 0.0), new Cesium.Cartesian3(2.0, 0.0, 0.0)); */ Cartesian3.distance = function (left, right) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian3.subtract(left, right, distanceScratch$2); return Cartesian3.magnitude(distanceScratch$2); }; /** * Computes the squared distance between two points. Comparing squared distances * using this function is more efficient than comparing distances using {@link Cartesian3#distance}. * * @param {Cartesian3} left The first point to compute the distance from. * @param {Cartesian3} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 4.0, not 2.0 * const d = Cesium.Cartesian3.distanceSquared(new Cesium.Cartesian3(1.0, 0.0, 0.0), new Cesium.Cartesian3(3.0, 0.0, 0.0)); */ Cartesian3.distanceSquared = function (left, right) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian3.subtract(left, right, distanceScratch$2); return Cartesian3.magnitudeSquared(distanceScratch$2); }; /** * Computes the normalized form of the supplied Cartesian. * * @param {Cartesian3} cartesian The Cartesian to be normalized. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.normalize = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const magnitude = Cartesian3.magnitude(cartesian); result.x = cartesian.x / magnitude; result.y = cartesian.y / magnitude; result.z = cartesian.z / magnitude; //>>includeStart('debug', pragmas.debug); if (isNaN(result.x) || isNaN(result.y) || isNaN(result.z)) { throw new RuntimeError.DeveloperError("normalized result is not a number"); } //>>includeEnd('debug'); return result; }; /** * Computes the dot (scalar) product of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @returns {Number} The dot product. */ Cartesian3.dot = function (left, right) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); //>>includeEnd('debug'); return left.x * right.x + left.y * right.y + left.z * right.z; }; /** * Computes the componentwise product of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.multiplyComponents = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x * right.x; result.y = left.y * right.y; result.z = left.z * right.z; return result; }; /** * Computes the componentwise quotient of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.divideComponents = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x / right.x; result.y = left.y / right.y; result.z = left.z / right.z; return result; }; /** * Computes the componentwise sum of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.add = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x + right.x; result.y = left.y + right.y; result.z = left.z + right.z; return result; }; /** * Computes the componentwise difference of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.subtract = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x - right.x; result.y = left.y - right.y; result.z = left.z - right.z; return result; }; /** * Multiplies the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian3} cartesian The Cartesian to be scaled. * @param {Number} scalar The scalar to multiply with. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.multiplyByScalar = function (cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.number("scalar", scalar); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = cartesian.x * scalar; result.y = cartesian.y * scalar; result.z = cartesian.z * scalar; return result; }; /** * Divides the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian3} cartesian The Cartesian to be divided. * @param {Number} scalar The scalar to divide by. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.divideByScalar = function (cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.number("scalar", scalar); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = cartesian.x / scalar; result.y = cartesian.y / scalar; result.z = cartesian.z / scalar; return result; }; /** * Negates the provided Cartesian. * * @param {Cartesian3} cartesian The Cartesian to be negated. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.negate = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = -cartesian.x; result.y = -cartesian.y; result.z = -cartesian.z; return result; }; /** * Computes the absolute value of the provided Cartesian. * * @param {Cartesian3} cartesian The Cartesian whose absolute value is to be computed. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.abs = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.abs(cartesian.x); result.y = Math.abs(cartesian.y); result.z = Math.abs(cartesian.z); return result; }; const lerpScratch$2 = new Cartesian3(); /** * Computes the linear interpolation or extrapolation at t using the provided cartesians. * * @param {Cartesian3} start The value corresponding to t at 0.0. * @param {Cartesian3} end The value corresponding to t at 1.0. * @param {Number} t The point along t at which to interpolate. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.lerp = function (start, end, t, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("start", start); RuntimeError.Check.typeOf.object("end", end); RuntimeError.Check.typeOf.number("t", t); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); Cartesian3.multiplyByScalar(end, t, lerpScratch$2); result = Cartesian3.multiplyByScalar(start, 1.0 - t, result); return Cartesian3.add(lerpScratch$2, result, result); }; const angleBetweenScratch$1 = new Cartesian3(); const angleBetweenScratch2$1 = new Cartesian3(); /** * Returns the angle, in radians, between the provided Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @returns {Number} The angle between the Cartesians. */ Cartesian3.angleBetween = function (left, right) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian3.normalize(left, angleBetweenScratch$1); Cartesian3.normalize(right, angleBetweenScratch2$1); const cosine = Cartesian3.dot(angleBetweenScratch$1, angleBetweenScratch2$1); const sine = Cartesian3.magnitude( Cartesian3.cross( angleBetweenScratch$1, angleBetweenScratch2$1, angleBetweenScratch$1 ) ); return Math.atan2(sine, cosine); }; const mostOrthogonalAxisScratch$2 = new Cartesian3(); /** * Returns the axis that is most orthogonal to the provided Cartesian. * * @param {Cartesian3} cartesian The Cartesian on which to find the most orthogonal axis. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The most orthogonal axis. */ Cartesian3.mostOrthogonalAxis = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const f = Cartesian3.normalize(cartesian, mostOrthogonalAxisScratch$2); Cartesian3.abs(f, f); if (f.x <= f.y) { if (f.x <= f.z) { result = Cartesian3.clone(Cartesian3.UNIT_X, result); } else { result = Cartesian3.clone(Cartesian3.UNIT_Z, result); } } else if (f.y <= f.z) { result = Cartesian3.clone(Cartesian3.UNIT_Y, result); } else { result = Cartesian3.clone(Cartesian3.UNIT_Z, result); } return result; }; /** * Projects vector a onto vector b * @param {Cartesian3} a The vector that needs projecting * @param {Cartesian3} b The vector to project onto * @param {Cartesian3} result The result cartesian * @returns {Cartesian3} The modified result parameter */ Cartesian3.projectVector = function (a, b, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("a", a); RuntimeError.Check.defined("b", b); RuntimeError.Check.defined("result", result); //>>includeEnd('debug'); const scalar = Cartesian3.dot(a, b) / Cartesian3.dot(b, b); return Cartesian3.multiplyByScalar(b, scalar, result); }; /** * Compares the provided Cartesians componentwise and returns * true if they are equal, false otherwise. * * @param {Cartesian3} [left] The first Cartesian. * @param {Cartesian3} [right] The second Cartesian. * @returns {Boolean} true if left and right are equal, false otherwise. */ Cartesian3.equals = function (left, right) { return ( left === right || (when.defined(left) && when.defined(right) && left.x === right.x && left.y === right.y && left.z === right.z) ); }; /** * @private */ Cartesian3.equalsArray = function (cartesian, array, offset) { return ( cartesian.x === array[offset] && cartesian.y === array[offset + 1] && cartesian.z === array[offset + 2] ); }; /** * Compares the provided Cartesians componentwise and returns * true if they pass an absolute or relative tolerance test, * false otherwise. * * @param {Cartesian3} [left] The first Cartesian. * @param {Cartesian3} [right] The second Cartesian. * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Cartesian3.equalsEpsilon = function ( left, right, relativeEpsilon, absoluteEpsilon ) { return ( left === right || (when.defined(left) && when.defined(right) && ComponentDatatype.CesiumMath.equalsEpsilon( left.x, right.x, relativeEpsilon, absoluteEpsilon ) && ComponentDatatype.CesiumMath.equalsEpsilon( left.y, right.y, relativeEpsilon, absoluteEpsilon ) && ComponentDatatype.CesiumMath.equalsEpsilon( left.z, right.z, relativeEpsilon, absoluteEpsilon )) ); }; /** * Computes the cross (outer) product of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The cross product. */ Cartesian3.cross = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const leftX = left.x; const leftY = left.y; const leftZ = left.z; const rightX = right.x; const rightY = right.y; const rightZ = right.z; const x = leftY * rightZ - leftZ * rightY; const y = leftZ * rightX - leftX * rightZ; const z = leftX * rightY - leftY * rightX; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the midpoint between the right and left Cartesian. * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The midpoint. */ Cartesian3.midpoint = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = (left.x + right.x) * 0.5; result.y = (left.y + right.y) * 0.5; result.z = (left.z + right.z) * 0.5; return result; }; /** * Returns a Cartesian3 position from longitude and latitude values given in degrees. * * @param {Number} longitude The longitude, in degrees * @param {Number} latitude The latitude, in degrees * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The position * * @example * const position = Cesium.Cartesian3.fromDegrees(-115.0, 37.0); */ Cartesian3.fromDegrees = function ( longitude, latitude, height, ellipsoid, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("longitude", longitude); RuntimeError.Check.typeOf.number("latitude", latitude); //>>includeEnd('debug'); longitude = ComponentDatatype.CesiumMath.toRadians(longitude); latitude = ComponentDatatype.CesiumMath.toRadians(latitude); return Cartesian3.fromRadians(longitude, latitude, height, ellipsoid, result); }; let scratchN = new Cartesian3(); let scratchK = new Cartesian3(); const wgs84RadiiSquared = new Cartesian3( 6378137.0 * 6378137.0, 6378137.0 * 6378137.0, 6356752.3142451793 * 6356752.3142451793 ); /** * Returns a Cartesian3 position from longitude and latitude values given in radians. * * @param {Number} longitude The longitude, in radians * @param {Number} latitude The latitude, in radians * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The position * * @example * const position = Cesium.Cartesian3.fromRadians(-2.007, 0.645); */ Cartesian3.fromRadians = function ( longitude, latitude, height, ellipsoid, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("longitude", longitude); RuntimeError.Check.typeOf.number("latitude", latitude); //>>includeEnd('debug'); height = when.defaultValue(height, 0.0); const radiiSquared = when.defined(ellipsoid) ? ellipsoid.radiiSquared : wgs84RadiiSquared; const cosLatitude = Math.cos(latitude); scratchN.x = cosLatitude * Math.cos(longitude); scratchN.y = cosLatitude * Math.sin(longitude); scratchN.z = Math.sin(latitude); scratchN = Cartesian3.normalize(scratchN, scratchN); Cartesian3.multiplyComponents(radiiSquared, scratchN, scratchK); const gamma = Math.sqrt(Cartesian3.dot(scratchN, scratchK)); scratchK = Cartesian3.divideByScalar(scratchK, gamma, scratchK); scratchN = Cartesian3.multiplyByScalar(scratchN, height, scratchN); if (!when.defined(result)) { result = new Cartesian3(); } return Cartesian3.add(scratchK, scratchN, result); }; /** * Returns an array of Cartesian3 positions given an array of longitude and latitude values given in degrees. * * @param {Number[]} coordinates A list of longitude and latitude values. Values alternate [longitude, latitude, longitude, latitude...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the coordinates lie. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * const positions = Cesium.Cartesian3.fromDegreesArray([-115.0, 37.0, -107.0, 33.0]); */ Cartesian3.fromDegreesArray = function (coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("coordinates", coordinates); if (coordinates.length < 2 || coordinates.length % 2 !== 0) { throw new RuntimeError.DeveloperError( "the number of coordinates must be a multiple of 2 and at least 2" ); } //>>includeEnd('debug'); const length = coordinates.length; if (!when.defined(result)) { result = new Array(length / 2); } else { result.length = length / 2; } for (let i = 0; i < length; i += 2) { const longitude = coordinates[i]; const latitude = coordinates[i + 1]; const index = i / 2; result[index] = Cartesian3.fromDegrees( longitude, latitude, 0, ellipsoid, result[index] ); } return result; }; /** * Returns an array of Cartesian3 positions given an array of longitude and latitude values given in radians. * * @param {Number[]} coordinates A list of longitude and latitude values. Values alternate [longitude, latitude, longitude, latitude...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the coordinates lie. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * const positions = Cesium.Cartesian3.fromRadiansArray([-2.007, 0.645, -1.867, .575]); */ Cartesian3.fromRadiansArray = function (coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("coordinates", coordinates); if (coordinates.length < 2 || coordinates.length % 2 !== 0) { throw new RuntimeError.DeveloperError( "the number of coordinates must be a multiple of 2 and at least 2" ); } //>>includeEnd('debug'); const length = coordinates.length; if (!when.defined(result)) { result = new Array(length / 2); } else { result.length = length / 2; } for (let i = 0; i < length; i += 2) { const longitude = coordinates[i]; const latitude = coordinates[i + 1]; const index = i / 2; result[index] = Cartesian3.fromRadians( longitude, latitude, 0, ellipsoid, result[index] ); } return result; }; /** * Returns an array of Cartesian3 positions given an array of longitude, latitude and height values where longitude and latitude are given in degrees. * * @param {Number[]} coordinates A list of longitude, latitude and height values. Values alternate [longitude, latitude, height, longitude, latitude, height...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * const positions = Cesium.Cartesian3.fromDegreesArrayHeights([-115.0, 37.0, 100000.0, -107.0, 33.0, 150000.0]); */ Cartesian3.fromDegreesArrayHeights = function (coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("coordinates", coordinates); if (coordinates.length < 3 || coordinates.length % 3 !== 0) { throw new RuntimeError.DeveloperError( "the number of coordinates must be a multiple of 3 and at least 3" ); } //>>includeEnd('debug'); const length = coordinates.length; if (!when.defined(result)) { result = new Array(length / 3); } else { result.length = length / 3; } for (let i = 0; i < length; i += 3) { const longitude = coordinates[i]; const latitude = coordinates[i + 1]; const height = coordinates[i + 2]; const index = i / 3; result[index] = Cartesian3.fromDegrees( longitude, latitude, height, ellipsoid, result[index] ); } return result; }; /** * Returns an array of Cartesian3 positions given an array of longitude, latitude and height values where longitude and latitude are given in radians. * * @param {Number[]} coordinates A list of longitude, latitude and height values. Values alternate [longitude, latitude, height, longitude, latitude, height...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * const positions = Cesium.Cartesian3.fromRadiansArrayHeights([-2.007, 0.645, 100000.0, -1.867, .575, 150000.0]); */ Cartesian3.fromRadiansArrayHeights = function (coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("coordinates", coordinates); if (coordinates.length < 3 || coordinates.length % 3 !== 0) { throw new RuntimeError.DeveloperError( "the number of coordinates must be a multiple of 3 and at least 3" ); } //>>includeEnd('debug'); const length = coordinates.length; if (!when.defined(result)) { result = new Array(length / 3); } else { result.length = length / 3; } for (let i = 0; i < length; i += 3) { const longitude = coordinates[i]; const latitude = coordinates[i + 1]; const height = coordinates[i + 2]; const index = i / 3; result[index] = Cartesian3.fromRadians( longitude, latitude, height, ellipsoid, result[index] ); } return result; }; /** * An immutable Cartesian3 instance initialized to (0.0, 0.0, 0.0). * * @type {Cartesian3} * @constant */ Cartesian3.ZERO = Object.freeze(new Cartesian3(0.0, 0.0, 0.0)); /** * An immutable Cartesian3 instance initialized to (1.0, 1.0, 1.0). * * @type {Cartesian3} * @constant */ Cartesian3.ONE = Object.freeze(new Cartesian3(1.0, 1.0, 1.0)); /** * An immutable Cartesian3 instance initialized to (1.0, 0.0, 0.0). * * @type {Cartesian3} * @constant */ Cartesian3.UNIT_X = Object.freeze(new Cartesian3(1.0, 0.0, 0.0)); /** * An immutable Cartesian3 instance initialized to (0.0, 1.0, 0.0). * * @type {Cartesian3} * @constant */ Cartesian3.UNIT_Y = Object.freeze(new Cartesian3(0.0, 1.0, 0.0)); /** * An immutable Cartesian3 instance initialized to (0.0, 0.0, 1.0). * * @type {Cartesian3} * @constant */ Cartesian3.UNIT_Z = Object.freeze(new Cartesian3(0.0, 0.0, 1.0)); /** * Duplicates this Cartesian3 instance. * * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.prototype.clone = function (result) { return Cartesian3.clone(this, result); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * true if they are equal, false otherwise. * * @param {Cartesian3} [right] The right hand side Cartesian. * @returns {Boolean} true if they are equal, false otherwise. */ Cartesian3.prototype.equals = function (right) { return Cartesian3.equals(this, right); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * true if they pass an absolute or relative tolerance test, * false otherwise. * * @param {Cartesian3} [right] The right hand side Cartesian. * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Cartesian3.prototype.equalsEpsilon = function ( right, relativeEpsilon, absoluteEpsilon ) { return Cartesian3.equalsEpsilon( this, right, relativeEpsilon, absoluteEpsilon ); }; /** * Creates a string representing this Cartesian in the format '(x, y, z)'. * * @returns {String} A string representing this Cartesian in the format '(x, y, z)'. */ Cartesian3.prototype.toString = function () { return `(${this.x}, ${this.y}, ${this.z})`; }; const scaleToGeodeticSurfaceIntersection = new Cartesian3(); const scaleToGeodeticSurfaceGradient = new Cartesian3(); /** * Scales the provided Cartesian position along the geodetic surface normal * so that it is on the surface of this ellipsoid. If the position is * at the center of the ellipsoid, this function returns undefined. * * @param {Cartesian3} cartesian The Cartesian position to scale. * @param {Cartesian3} oneOverRadii One over radii of the ellipsoid. * @param {Cartesian3} oneOverRadiiSquared One over radii squared of the ellipsoid. * @param {Number} centerToleranceSquared Tolerance for closeness to the center. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter, a new Cartesian3 instance if none was provided, or undefined if the position is at the center. * * @function scaleToGeodeticSurface * * @private */ function scaleToGeodeticSurface( cartesian, oneOverRadii, oneOverRadiiSquared, centerToleranceSquared, result ) { //>>includeStart('debug', pragmas.debug); if (!when.defined(cartesian)) { throw new RuntimeError.DeveloperError("cartesian is required."); } if (!when.defined(oneOverRadii)) { throw new RuntimeError.DeveloperError("oneOverRadii is required."); } if (!when.defined(oneOverRadiiSquared)) { throw new RuntimeError.DeveloperError("oneOverRadiiSquared is required."); } if (!when.defined(centerToleranceSquared)) { throw new RuntimeError.DeveloperError("centerToleranceSquared is required."); } //>>includeEnd('debug'); const positionX = cartesian.x; const positionY = cartesian.y; const positionZ = cartesian.z; const oneOverRadiiX = oneOverRadii.x; const oneOverRadiiY = oneOverRadii.y; const oneOverRadiiZ = oneOverRadii.z; const x2 = positionX * positionX * oneOverRadiiX * oneOverRadiiX; const y2 = positionY * positionY * oneOverRadiiY * oneOverRadiiY; const z2 = positionZ * positionZ * oneOverRadiiZ * oneOverRadiiZ; // Compute the squared ellipsoid norm. const squaredNorm = x2 + y2 + z2; const ratio = Math.sqrt(1.0 / squaredNorm); // As an initial approximation, assume that the radial intersection is the projection point. const intersection = Cartesian3.multiplyByScalar( cartesian, ratio, scaleToGeodeticSurfaceIntersection ); // If the position is near the center, the iteration will not converge. if (squaredNorm < centerToleranceSquared) { return !isFinite(ratio) ? undefined : Cartesian3.clone(intersection, result); } const oneOverRadiiSquaredX = oneOverRadiiSquared.x; const oneOverRadiiSquaredY = oneOverRadiiSquared.y; const oneOverRadiiSquaredZ = oneOverRadiiSquared.z; // Use the gradient at the intersection point in place of the true unit normal. // The difference in magnitude will be absorbed in the multiplier. const gradient = scaleToGeodeticSurfaceGradient; gradient.x = intersection.x * oneOverRadiiSquaredX * 2.0; gradient.y = intersection.y * oneOverRadiiSquaredY * 2.0; gradient.z = intersection.z * oneOverRadiiSquaredZ * 2.0; // Compute the initial guess at the normal vector multiplier, lambda. let lambda = ((1.0 - ratio) * Cartesian3.magnitude(cartesian)) / (0.5 * Cartesian3.magnitude(gradient)); let correction = 0.0; let func; let denominator; let xMultiplier; let yMultiplier; let zMultiplier; let xMultiplier2; let yMultiplier2; let zMultiplier2; let xMultiplier3; let yMultiplier3; let zMultiplier3; do { lambda -= correction; xMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredX); yMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredY); zMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredZ); xMultiplier2 = xMultiplier * xMultiplier; yMultiplier2 = yMultiplier * yMultiplier; zMultiplier2 = zMultiplier * zMultiplier; xMultiplier3 = xMultiplier2 * xMultiplier; yMultiplier3 = yMultiplier2 * yMultiplier; zMultiplier3 = zMultiplier2 * zMultiplier; func = x2 * xMultiplier2 + y2 * yMultiplier2 + z2 * zMultiplier2 - 1.0; // "denominator" here refers to the use of this expression in the velocity and acceleration // computations in the sections to follow. denominator = x2 * xMultiplier3 * oneOverRadiiSquaredX + y2 * yMultiplier3 * oneOverRadiiSquaredY + z2 * zMultiplier3 * oneOverRadiiSquaredZ; const derivative = -2.0 * denominator; correction = func / derivative; } while (Math.abs(func) > ComponentDatatype.CesiumMath.EPSILON12); if (!when.defined(result)) { return new Cartesian3( positionX * xMultiplier, positionY * yMultiplier, positionZ * zMultiplier ); } result.x = positionX * xMultiplier; result.y = positionY * yMultiplier; result.z = positionZ * zMultiplier; return result; } /** * A position defined by longitude, latitude, and height. * @alias Cartographic * @constructor * * @param {Number} [longitude=0.0] The longitude, in radians. * @param {Number} [latitude=0.0] The latitude, in radians. * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * * @see Ellipsoid */ function Cartographic(longitude, latitude, height) { /** * The longitude, in radians. * @type {Number} * @default 0.0 */ this.longitude = when.defaultValue(longitude, 0.0); /** * The latitude, in radians. * @type {Number} * @default 0.0 */ this.latitude = when.defaultValue(latitude, 0.0); /** * The height, in meters, above the ellipsoid. * @type {Number} * @default 0.0 */ this.height = when.defaultValue(height, 0.0); } /** * Creates a new Cartographic instance from longitude and latitude * specified in radians. * * @param {Number} longitude The longitude, in radians. * @param {Number} latitude The latitude, in radians. * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided. */ Cartographic.fromRadians = function (longitude, latitude, height, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("longitude", longitude); RuntimeError.Check.typeOf.number("latitude", latitude); //>>includeEnd('debug'); height = when.defaultValue(height, 0.0); if (!when.defined(result)) { return new Cartographic(longitude, latitude, height); } result.longitude = longitude; result.latitude = latitude; result.height = height; return result; }; /** * Creates a new Cartographic instance from longitude and latitude * specified in degrees. The values in the resulting object will * be in radians. * * @param {Number} longitude The longitude, in degrees. * @param {Number} latitude The latitude, in degrees. * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided. */ Cartographic.fromDegrees = function (longitude, latitude, height, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("longitude", longitude); RuntimeError.Check.typeOf.number("latitude", latitude); //>>includeEnd('debug'); longitude = ComponentDatatype.CesiumMath.toRadians(longitude); latitude = ComponentDatatype.CesiumMath.toRadians(latitude); return Cartographic.fromRadians(longitude, latitude, height, result); }; const cartesianToCartographicN$1 = new Cartesian3(); const cartesianToCartographicP$1 = new Cartesian3(); const cartesianToCartographicH$1 = new Cartesian3(); const wgs84OneOverRadii = new Cartesian3( 1.0 / 6378137.0, 1.0 / 6378137.0, 1.0 / 6356752.3142451793 ); const wgs84OneOverRadiiSquared = new Cartesian3( 1.0 / (6378137.0 * 6378137.0), 1.0 / (6378137.0 * 6378137.0), 1.0 / (6356752.3142451793 * 6356752.3142451793) ); const wgs84CenterToleranceSquared = ComponentDatatype.CesiumMath.EPSILON1; /** * Creates a new Cartographic instance from a Cartesian position. The values in the * resulting object will be in radians. * * @param {Cartesian3} cartesian The Cartesian position to convert to cartographic representation. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter, new Cartographic instance if none was provided, or undefined if the cartesian is at the center of the ellipsoid. */ Cartographic.fromCartesian = function (cartesian, ellipsoid, result) { const oneOverRadii = when.defined(ellipsoid) ? ellipsoid.oneOverRadii : wgs84OneOverRadii; const oneOverRadiiSquared = when.defined(ellipsoid) ? ellipsoid.oneOverRadiiSquared : wgs84OneOverRadiiSquared; const centerToleranceSquared = when.defined(ellipsoid) ? ellipsoid._centerToleranceSquared : wgs84CenterToleranceSquared; //`cartesian is required.` is thrown from scaleToGeodeticSurface const p = scaleToGeodeticSurface( cartesian, oneOverRadii, oneOverRadiiSquared, centerToleranceSquared, cartesianToCartographicP$1 ); if (!when.defined(p)) { return undefined; } let n = Cartesian3.multiplyComponents( p, oneOverRadiiSquared, cartesianToCartographicN$1 ); n = Cartesian3.normalize(n, n); const h = Cartesian3.subtract(cartesian, p, cartesianToCartographicH$1); const longitude = Math.atan2(n.y, n.x); const latitude = Math.asin(n.z); const height = ComponentDatatype.CesiumMath.sign(Cartesian3.dot(h, cartesian)) * Cartesian3.magnitude(h); if (!when.defined(result)) { return new Cartographic(longitude, latitude, height); } result.longitude = longitude; result.latitude = latitude; result.height = height; return result; }; /** * Creates a new Cartesian3 instance from a Cartographic input. The values in the inputted * object should be in radians. * * @param {Cartographic} cartographic Input to be converted into a Cartesian3 output. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The position */ Cartographic.toCartesian = function (cartographic, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("cartographic", cartographic); //>>includeEnd('debug'); return Cartesian3.fromRadians( cartographic.longitude, cartographic.latitude, cartographic.height, ellipsoid, result ); }; /** * Duplicates a Cartographic instance. * * @param {Cartographic} cartographic The cartographic to duplicate. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided. (Returns undefined if cartographic is undefined) */ Cartographic.clone = function (cartographic, result) { if (!when.defined(cartographic)) { return undefined; } if (!when.defined(result)) { return new Cartographic( cartographic.longitude, cartographic.latitude, cartographic.height ); } result.longitude = cartographic.longitude; result.latitude = cartographic.latitude; result.height = cartographic.height; return result; }; /** * Compares the provided cartographics componentwise and returns * true if they are equal, false otherwise. * * @param {Cartographic} [left] The first cartographic. * @param {Cartographic} [right] The second cartographic. * @returns {Boolean} true if left and right are equal, false otherwise. */ Cartographic.equals = function (left, right) { return ( left === right || (when.defined(left) && when.defined(right) && left.longitude === right.longitude && left.latitude === right.latitude && left.height === right.height) ); }; /** * Compares the provided cartographics componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Cartographic} [left] The first cartographic. * @param {Cartographic} [right] The second cartographic. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Cartographic.equalsEpsilon = function (left, right, epsilon) { epsilon = when.defaultValue(epsilon, 0); return ( left === right || (when.defined(left) && when.defined(right) && Math.abs(left.longitude - right.longitude) <= epsilon && Math.abs(left.latitude - right.latitude) <= epsilon && Math.abs(left.height - right.height) <= epsilon) ); }; /** * An immutable Cartographic instance initialized to (0.0, 0.0, 0.0). * * @type {Cartographic} * @constant */ Cartographic.ZERO = Object.freeze(new Cartographic(0.0, 0.0, 0.0)); /** * Duplicates this instance. * * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided. */ Cartographic.prototype.clone = function (result) { return Cartographic.clone(this, result); }; /** * Compares the provided against this cartographic componentwise and returns * true if they are equal, false otherwise. * * @param {Cartographic} [right] The second cartographic. * @returns {Boolean} true if left and right are equal, false otherwise. */ Cartographic.prototype.equals = function (right) { return Cartographic.equals(this, right); }; /** * Compares the provided against this cartographic componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Cartographic} [right] The second cartographic. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Cartographic.prototype.equalsEpsilon = function (right, epsilon) { return Cartographic.equalsEpsilon(this, right, epsilon); }; /** * Creates a string representing this cartographic in the format '(longitude, latitude, height)'. * * @returns {String} A string representing the provided cartographic in the format '(longitude, latitude, height)'. */ Cartographic.prototype.toString = function () { return `(${this.longitude}, ${this.latitude}, ${this.height})`; }; function initialize(ellipsoid, x, y, z) { x = when.defaultValue(x, 0.0); y = when.defaultValue(y, 0.0); z = when.defaultValue(z, 0.0); //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number.greaterThanOrEquals("x", x, 0.0); RuntimeError.Check.typeOf.number.greaterThanOrEquals("y", y, 0.0); RuntimeError.Check.typeOf.number.greaterThanOrEquals("z", z, 0.0); //>>includeEnd('debug'); ellipsoid._radii = new Cartesian3(x, y, z); ellipsoid._radiiSquared = new Cartesian3(x * x, y * y, z * z); ellipsoid._radiiToTheFourth = new Cartesian3( x * x * x * x, y * y * y * y, z * z * z * z ); ellipsoid._oneOverRadii = new Cartesian3( x === 0.0 ? 0.0 : 1.0 / x, y === 0.0 ? 0.0 : 1.0 / y, z === 0.0 ? 0.0 : 1.0 / z ); ellipsoid._oneOverRadiiSquared = new Cartesian3( x === 0.0 ? 0.0 : 1.0 / (x * x), y === 0.0 ? 0.0 : 1.0 / (y * y), z === 0.0 ? 0.0 : 1.0 / (z * z) ); ellipsoid._minimumRadius = Math.min(x, y, z); ellipsoid._maximumRadius = Math.max(x, y, z); ellipsoid._centerToleranceSquared = ComponentDatatype.CesiumMath.EPSILON1; if (ellipsoid._radiiSquared.z !== 0) { ellipsoid._squaredXOverSquaredZ = ellipsoid._radiiSquared.x / ellipsoid._radiiSquared.z; } } /** * A quadratic surface defined in Cartesian coordinates by the equation * (x / a)^2 + (y / b)^2 + (z / c)^2 = 1. Primarily used * by Cesium to represent the shape of planetary bodies. * * Rather than constructing this object directly, one of the provided * constants is normally used. * @alias Ellipsoid * @constructor * * @param {Number} [x=0] The radius in the x direction. * @param {Number} [y=0] The radius in the y direction. * @param {Number} [z=0] The radius in the z direction. * * @exception {DeveloperError} All radii components must be greater than or equal to zero. * * @see Ellipsoid.fromCartesian3 * @see Ellipsoid.WGS84 * @see Ellipsoid.UNIT_SPHERE */ function Ellipsoid(x, y, z) { this._radii = undefined; this._radiiSquared = undefined; this._radiiToTheFourth = undefined; this._oneOverRadii = undefined; this._oneOverRadiiSquared = undefined; this._minimumRadius = undefined; this._maximumRadius = undefined; this._centerToleranceSquared = undefined; this._squaredXOverSquaredZ = undefined; initialize(this, x, y, z); } Object.defineProperties(Ellipsoid.prototype, { /** * Gets the radii of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ radii: { get: function () { return this._radii; }, }, /** * Gets the squared radii of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ radiiSquared: { get: function () { return this._radiiSquared; }, }, /** * Gets the radii of the ellipsoid raise to the fourth power. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ radiiToTheFourth: { get: function () { return this._radiiToTheFourth; }, }, /** * Gets one over the radii of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ oneOverRadii: { get: function () { return this._oneOverRadii; }, }, /** * Gets one over the squared radii of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ oneOverRadiiSquared: { get: function () { return this._oneOverRadiiSquared; }, }, /** * Gets the minimum radius of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Number} * @readonly */ minimumRadius: { get: function () { return this._minimumRadius; }, }, /** * Gets the maximum radius of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Number} * @readonly */ maximumRadius: { get: function () { return this._maximumRadius; }, }, }); /** * Duplicates an Ellipsoid instance. * * @param {Ellipsoid} ellipsoid The ellipsoid to duplicate. * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new * instance should be created. * @returns {Ellipsoid} The cloned Ellipsoid. (Returns undefined if ellipsoid is undefined) */ Ellipsoid.clone = function (ellipsoid, result) { if (!when.defined(ellipsoid)) { return undefined; } const radii = ellipsoid._radii; if (!when.defined(result)) { return new Ellipsoid(radii.x, radii.y, radii.z); } Cartesian3.clone(radii, result._radii); Cartesian3.clone(ellipsoid._radiiSquared, result._radiiSquared); Cartesian3.clone(ellipsoid._radiiToTheFourth, result._radiiToTheFourth); Cartesian3.clone(ellipsoid._oneOverRadii, result._oneOverRadii); Cartesian3.clone(ellipsoid._oneOverRadiiSquared, result._oneOverRadiiSquared); result._minimumRadius = ellipsoid._minimumRadius; result._maximumRadius = ellipsoid._maximumRadius; result._centerToleranceSquared = ellipsoid._centerToleranceSquared; return result; }; /** * Computes an Ellipsoid from a Cartesian specifying the radii in x, y, and z directions. * * @param {Cartesian3} [cartesian=Cartesian3.ZERO] The ellipsoid's radius in the x, y, and z directions. * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new * instance should be created. * @returns {Ellipsoid} A new Ellipsoid instance. * * @exception {DeveloperError} All radii components must be greater than or equal to zero. * * @see Ellipsoid.WGS84 * @see Ellipsoid.UNIT_SPHERE */ Ellipsoid.fromCartesian3 = function (cartesian, result) { if (!when.defined(result)) { result = new Ellipsoid(); } if (!when.defined(cartesian)) { return result; } initialize(result, cartesian.x, cartesian.y, cartesian.z); return result; }; /** * An Ellipsoid instance initialized to the WGS84 standard. * * @type {Ellipsoid} * @constant */ Ellipsoid.WGS84 = Object.freeze( new Ellipsoid(6378137.0, 6378137.0, 6356752.3142451793) ); /** * An Ellipsoid instance initialized to radii of (1.0, 1.0, 1.0). * * @type {Ellipsoid} * @constant */ Ellipsoid.UNIT_SPHERE = Object.freeze(new Ellipsoid(1.0, 1.0, 1.0)); /** * An Ellipsoid instance initialized to a sphere with the lunar radius. * * @type {Ellipsoid} * @constant */ Ellipsoid.MOON = Object.freeze( new Ellipsoid( ComponentDatatype.CesiumMath.LUNAR_RADIUS, ComponentDatatype.CesiumMath.LUNAR_RADIUS, ComponentDatatype.CesiumMath.LUNAR_RADIUS ) ); /** * Duplicates an Ellipsoid instance. * * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new * instance should be created. * @returns {Ellipsoid} The cloned Ellipsoid. */ Ellipsoid.prototype.clone = function (result) { return Ellipsoid.clone(this, result); }; /** * The number of elements used to pack the object into an array. * @type {Number} */ Ellipsoid.packedLength = Cartesian3.packedLength; /** * Stores the provided instance into the provided array. * * @param {Ellipsoid} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Ellipsoid.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("value", value); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); Cartesian3.pack(value._radii, array, startingIndex); return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Ellipsoid} [result] The object into which to store the result. * @returns {Ellipsoid} The modified result parameter or a new Ellipsoid instance if one was not provided. */ Ellipsoid.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); const radii = Cartesian3.unpack(array, startingIndex); return Ellipsoid.fromCartesian3(radii, result); }; /** * Computes the unit vector directed from the center of this ellipsoid toward the provided Cartesian position. * @function * * @param {Cartesian3} cartesian The Cartesian for which to to determine the geocentric normal. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. */ Ellipsoid.prototype.geocentricSurfaceNormal = Cartesian3.normalize; /** * Computes the normal of the plane tangent to the surface of the ellipsoid at the provided position. * * @param {Cartographic} cartographic The cartographic position for which to to determine the geodetic normal. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. */ Ellipsoid.prototype.geodeticSurfaceNormalCartographic = function ( cartographic, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartographic", cartographic); //>>includeEnd('debug'); const longitude = cartographic.longitude; const latitude = cartographic.latitude; const cosLatitude = Math.cos(latitude); const x = cosLatitude * Math.cos(longitude); const y = cosLatitude * Math.sin(longitude); const z = Math.sin(latitude); if (!when.defined(result)) { result = new Cartesian3(); } result.x = x; result.y = y; result.z = z; return Cartesian3.normalize(result, result); }; /** * Computes the normal of the plane tangent to the surface of the ellipsoid at the provided position. * * @param {Cartesian3} cartesian The Cartesian position for which to to determine the surface normal. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided, or undefined if a normal cannot be found. */ Ellipsoid.prototype.geodeticSurfaceNormal = function (cartesian, result) { if ( Cartesian3.equalsEpsilon(cartesian, Cartesian3.ZERO, ComponentDatatype.CesiumMath.EPSILON14) ) { return undefined; } if (!when.defined(result)) { result = new Cartesian3(); } result = Cartesian3.multiplyComponents( cartesian, this._oneOverRadiiSquared, result ); return Cartesian3.normalize(result, result); }; const cartographicToCartesianNormal = new Cartesian3(); const cartographicToCartesianK = new Cartesian3(); /** * Converts the provided cartographic to Cartesian representation. * * @param {Cartographic} cartographic The cartographic position. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. * * @example * //Create a Cartographic and determine it's Cartesian representation on a WGS84 ellipsoid. * const position = new Cesium.Cartographic(Cesium.Math.toRadians(21), Cesium.Math.toRadians(78), 5000); * const cartesianPosition = Cesium.Ellipsoid.WGS84.cartographicToCartesian(position); */ Ellipsoid.prototype.cartographicToCartesian = function (cartographic, result) { //`cartographic is required` is thrown from geodeticSurfaceNormalCartographic. const n = cartographicToCartesianNormal; const k = cartographicToCartesianK; this.geodeticSurfaceNormalCartographic(cartographic, n); Cartesian3.multiplyComponents(this._radiiSquared, n, k); const gamma = Math.sqrt(Cartesian3.dot(n, k)); Cartesian3.divideByScalar(k, gamma, k); Cartesian3.multiplyByScalar(n, cartographic.height, n); if (!when.defined(result)) { result = new Cartesian3(); } return Cartesian3.add(k, n, result); }; /** * Converts the provided array of cartographics to an array of Cartesians. * * @param {Cartographic[]} cartographics An array of cartographic positions. * @param {Cartesian3[]} [result] The object onto which to store the result. * @returns {Cartesian3[]} The modified result parameter or a new Array instance if none was provided. * * @example * //Convert an array of Cartographics and determine their Cartesian representation on a WGS84 ellipsoid. * const positions = [new Cesium.Cartographic(Cesium.Math.toRadians(21), Cesium.Math.toRadians(78), 0), * new Cesium.Cartographic(Cesium.Math.toRadians(21.321), Cesium.Math.toRadians(78.123), 100), * new Cesium.Cartographic(Cesium.Math.toRadians(21.645), Cesium.Math.toRadians(78.456), 250)]; * const cartesianPositions = Cesium.Ellipsoid.WGS84.cartographicArrayToCartesianArray(positions); */ Ellipsoid.prototype.cartographicArrayToCartesianArray = function ( cartographics, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("cartographics", cartographics); //>>includeEnd('debug') const length = cartographics.length; if (!when.defined(result)) { result = new Array(length); } else { result.length = length; } for (let i = 0; i < length; i++) { result[i] = this.cartographicToCartesian(cartographics[i], result[i]); } return result; }; const cartesianToCartographicN = new Cartesian3(); const cartesianToCartographicP = new Cartesian3(); const cartesianToCartographicH = new Cartesian3(); /** * Converts the provided cartesian to cartographic representation. * The cartesian is undefined at the center of the ellipsoid. * * @param {Cartesian3} cartesian The Cartesian position to convert to cartographic representation. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter, new Cartographic instance if none was provided, or undefined if the cartesian is at the center of the ellipsoid. * * @example * //Create a Cartesian and determine it's Cartographic representation on a WGS84 ellipsoid. * const position = new Cesium.Cartesian3(17832.12, 83234.52, 952313.73); * const cartographicPosition = Cesium.Ellipsoid.WGS84.cartesianToCartographic(position); */ Ellipsoid.prototype.cartesianToCartographic = function (cartesian, result) { //`cartesian is required.` is thrown from scaleToGeodeticSurface const p = this.scaleToGeodeticSurface(cartesian, cartesianToCartographicP); if (!when.defined(p)) { return undefined; } const n = this.geodeticSurfaceNormal(p, cartesianToCartographicN); const h = Cartesian3.subtract(cartesian, p, cartesianToCartographicH); const longitude = Math.atan2(n.y, n.x); const latitude = Math.asin(n.z); const height = ComponentDatatype.CesiumMath.sign(Cartesian3.dot(h, cartesian)) * Cartesian3.magnitude(h); if (!when.defined(result)) { return new Cartographic(longitude, latitude, height); } result.longitude = longitude; result.latitude = latitude; result.height = height; return result; }; /** * Converts the provided array of cartesians to an array of cartographics. * * @param {Cartesian3[]} cartesians An array of Cartesian positions. * @param {Cartographic[]} [result] The object onto which to store the result. * @returns {Cartographic[]} The modified result parameter or a new Array instance if none was provided. * * @example * //Create an array of Cartesians and determine their Cartographic representation on a WGS84 ellipsoid. * const positions = [new Cesium.Cartesian3(17832.12, 83234.52, 952313.73), * new Cesium.Cartesian3(17832.13, 83234.53, 952313.73), * new Cesium.Cartesian3(17832.14, 83234.54, 952313.73)] * const cartographicPositions = Cesium.Ellipsoid.WGS84.cartesianArrayToCartographicArray(positions); */ Ellipsoid.prototype.cartesianArrayToCartographicArray = function ( cartesians, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("cartesians", cartesians); //>>includeEnd('debug'); const length = cartesians.length; if (!when.defined(result)) { result = new Array(length); } else { result.length = length; } for (let i = 0; i < length; ++i) { result[i] = this.cartesianToCartographic(cartesians[i], result[i]); } return result; }; /** * Scales the provided Cartesian position along the geodetic surface normal * so that it is on the surface of this ellipsoid. If the position is * at the center of the ellipsoid, this function returns undefined. * * @param {Cartesian3} cartesian The Cartesian position to scale. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter, a new Cartesian3 instance if none was provided, or undefined if the position is at the center. */ Ellipsoid.prototype.scaleToGeodeticSurface = function (cartesian, result) { return scaleToGeodeticSurface( cartesian, this._oneOverRadii, this._oneOverRadiiSquared, this._centerToleranceSquared, result ); }; /** * Scales the provided Cartesian position along the geocentric surface normal * so that it is on the surface of this ellipsoid. * * @param {Cartesian3} cartesian The Cartesian position to scale. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. */ Ellipsoid.prototype.scaleToGeocentricSurface = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Cartesian3(); } const positionX = cartesian.x; const positionY = cartesian.y; const positionZ = cartesian.z; const oneOverRadiiSquared = this._oneOverRadiiSquared; const beta = 1.0 / Math.sqrt( positionX * positionX * oneOverRadiiSquared.x + positionY * positionY * oneOverRadiiSquared.y + positionZ * positionZ * oneOverRadiiSquared.z ); return Cartesian3.multiplyByScalar(cartesian, beta, result); }; /** * Transforms a Cartesian X, Y, Z position to the ellipsoid-scaled space by multiplying * its components by the result of {@link Ellipsoid#oneOverRadii}. * * @param {Cartesian3} position The position to transform. * @param {Cartesian3} [result] The position to which to copy the result, or undefined to create and * return a new instance. * @returns {Cartesian3} The position expressed in the scaled space. The returned instance is the * one passed as the result parameter if it is not undefined, or a new instance of it is. */ Ellipsoid.prototype.transformPositionToScaledSpace = function ( position, result ) { if (!when.defined(result)) { result = new Cartesian3(); } return Cartesian3.multiplyComponents(position, this._oneOverRadii, result); }; /** * Transforms a Cartesian X, Y, Z position from the ellipsoid-scaled space by multiplying * its components by the result of {@link Ellipsoid#radii}. * * @param {Cartesian3} position The position to transform. * @param {Cartesian3} [result] The position to which to copy the result, or undefined to create and * return a new instance. * @returns {Cartesian3} The position expressed in the unscaled space. The returned instance is the * one passed as the result parameter if it is not undefined, or a new instance of it is. */ Ellipsoid.prototype.transformPositionFromScaledSpace = function ( position, result ) { if (!when.defined(result)) { result = new Cartesian3(); } return Cartesian3.multiplyComponents(position, this._radii, result); }; /** * Compares this Ellipsoid against the provided Ellipsoid componentwise and returns * true if they are equal, false otherwise. * * @param {Ellipsoid} [right] The other Ellipsoid. * @returns {Boolean} true if they are equal, false otherwise. */ Ellipsoid.prototype.equals = function (right) { return ( this === right || (when.defined(right) && Cartesian3.equals(this._radii, right._radii)) ); }; /** * Creates a string representing this Ellipsoid in the format '(radii.x, radii.y, radii.z)'. * * @returns {String} A string representing this ellipsoid in the format '(radii.x, radii.y, radii.z)'. */ Ellipsoid.prototype.toString = function () { return this._radii.toString(); }; /** * Computes a point which is the intersection of the surface normal with the z-axis. * * @param {Cartesian3} position the position. must be on the surface of the ellipsoid. * @param {Number} [buffer = 0.0] A buffer to subtract from the ellipsoid size when checking if the point is inside the ellipsoid. * In earth case, with common earth datums, there is no need for this buffer since the intersection point is always (relatively) very close to the center. * In WGS84 datum, intersection point is at max z = +-42841.31151331382 (0.673% of z-axis). * Intersection point could be outside the ellipsoid if the ratio of MajorAxis / AxisOfRotation is bigger than the square root of 2 * @param {Cartesian3} [result] The cartesian to which to copy the result, or undefined to create and * return a new instance. * @returns {Cartesian3 | undefined} the intersection point if it's inside the ellipsoid, undefined otherwise * * @exception {DeveloperError} position is required. * @exception {DeveloperError} Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y). * @exception {DeveloperError} Ellipsoid.radii.z must be greater than 0. */ Ellipsoid.prototype.getSurfaceNormalIntersectionWithZAxis = function ( position, buffer, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("position", position); if ( !ComponentDatatype.CesiumMath.equalsEpsilon( this._radii.x, this._radii.y, ComponentDatatype.CesiumMath.EPSILON15 ) ) { throw new RuntimeError.DeveloperError( "Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y)" ); } RuntimeError.Check.typeOf.number.greaterThan("Ellipsoid.radii.z", this._radii.z, 0); //>>includeEnd('debug'); buffer = when.defaultValue(buffer, 0.0); const squaredXOverSquaredZ = this._squaredXOverSquaredZ; if (!when.defined(result)) { result = new Cartesian3(); } result.x = 0.0; result.y = 0.0; result.z = position.z * (1 - squaredXOverSquaredZ); if (Math.abs(result.z) >= this._radii.z - buffer) { return undefined; } return result; }; const abscissas = [ 0.14887433898163, 0.43339539412925, 0.67940956829902, 0.86506336668898, 0.97390652851717, 0.0, ]; const weights = [ 0.29552422471475, 0.26926671930999, 0.21908636251598, 0.14945134915058, 0.066671344308684, 0.0, ]; /** * Compute the 10th order Gauss-Legendre Quadrature of the given definite integral. * * @param {Number} a The lower bound for the integration. * @param {Number} b The upper bound for the integration. * @param {Ellipsoid~RealValuedScalarFunction} func The function to integrate. * @returns {Number} The value of the integral of the given function over the given domain. * * @private */ function gaussLegendreQuadrature(a, b, func) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("a", a); RuntimeError.Check.typeOf.number("b", b); RuntimeError.Check.typeOf.func("func", func); //>>includeEnd('debug'); // The range is half of the normal range since the five weights add to one (ten weights add to two). // The values of the abscissas are multiplied by two to account for this. const xMean = 0.5 * (b + a); const xRange = 0.5 * (b - a); let sum = 0.0; for (let i = 0; i < 5; i++) { const dx = xRange * abscissas[i]; sum += weights[i] * (func(xMean + dx) + func(xMean - dx)); } // Scale the sum to the range of x. sum *= xRange; return sum; } /** * A real valued scalar function. * @callback Ellipsoid~RealValuedScalarFunction * * @param {Number} x The value used to evaluate the function. * @returns {Number} The value of the function at x. * * @private */ /** * Computes an approximation of the surface area of a rectangle on the surface of an ellipsoid using * Gauss-Legendre 10th order quadrature. * * @param {Rectangle} rectangle The rectangle used for computing the surface area. * @returns {Number} The approximate area of the rectangle on the surface of this ellipsoid. */ Ellipsoid.prototype.surfaceArea = function (rectangle) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); //>>includeEnd('debug'); const minLongitude = rectangle.west; let maxLongitude = rectangle.east; const minLatitude = rectangle.south; const maxLatitude = rectangle.north; while (maxLongitude < minLongitude) { maxLongitude += ComponentDatatype.CesiumMath.TWO_PI; } const radiiSquared = this._radiiSquared; const a2 = radiiSquared.x; const b2 = radiiSquared.y; const c2 = radiiSquared.z; const a2b2 = a2 * b2; return gaussLegendreQuadrature(minLatitude, maxLatitude, function (lat) { // phi represents the angle measured from the north pole // sin(phi) = sin(pi / 2 - lat) = cos(lat), cos(phi) is similar const sinPhi = Math.cos(lat); const cosPhi = Math.sin(lat); return ( Math.cos(lat) * gaussLegendreQuadrature(minLongitude, maxLongitude, function (lon) { const cosTheta = Math.cos(lon); const sinTheta = Math.sin(lon); return Math.sqrt( a2b2 * cosPhi * cosPhi + c2 * (b2 * cosTheta * cosTheta + a2 * sinTheta * sinTheta) * sinPhi * sinPhi ); }) ); }); }; /** * A 3x3 matrix, indexable as a column-major order array. * Constructor parameters are in row-major order for code readability. * @alias Matrix3 * @constructor * @implements {ArrayLike} * * @param {Number} [column0Row0=0.0] The value for column 0, row 0. * @param {Number} [column1Row0=0.0] The value for column 1, row 0. * @param {Number} [column2Row0=0.0] The value for column 2, row 0. * @param {Number} [column0Row1=0.0] The value for column 0, row 1. * @param {Number} [column1Row1=0.0] The value for column 1, row 1. * @param {Number} [column2Row1=0.0] The value for column 2, row 1. * @param {Number} [column0Row2=0.0] The value for column 0, row 2. * @param {Number} [column1Row2=0.0] The value for column 1, row 2. * @param {Number} [column2Row2=0.0] The value for column 2, row 2. * * @see Matrix3.fromArray * @see Matrix3.fromColumnMajorArray * @see Matrix3.fromRowMajorArray * @see Matrix3.fromQuaternion * @see Matrix3.fromHeadingPitchRoll * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.fromCrossProduct * @see Matrix3.fromRotationX * @see Matrix3.fromRotationY * @see Matrix3.fromRotationZ * @see Matrix2 * @see Matrix4 */ function Matrix3( column0Row0, column1Row0, column2Row0, column0Row1, column1Row1, column2Row1, column0Row2, column1Row2, column2Row2 ) { this[0] = when.defaultValue(column0Row0, 0.0); this[1] = when.defaultValue(column0Row1, 0.0); this[2] = when.defaultValue(column0Row2, 0.0); this[3] = when.defaultValue(column1Row0, 0.0); this[4] = when.defaultValue(column1Row1, 0.0); this[5] = when.defaultValue(column1Row2, 0.0); this[6] = when.defaultValue(column2Row0, 0.0); this[7] = when.defaultValue(column2Row1, 0.0); this[8] = when.defaultValue(column2Row2, 0.0); } /** * The number of elements used to pack the object into an array. * @type {Number} */ Matrix3.packedLength = 9; /** * Stores the provided instance into the provided array. * * @param {Matrix3} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Matrix3.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("value", value); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); array[startingIndex++] = value[0]; array[startingIndex++] = value[1]; array[startingIndex++] = value[2]; array[startingIndex++] = value[3]; array[startingIndex++] = value[4]; array[startingIndex++] = value[5]; array[startingIndex++] = value[6]; array[startingIndex++] = value[7]; array[startingIndex++] = value[8]; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Matrix3} [result] The object into which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. */ Matrix3.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new Matrix3(); } result[0] = array[startingIndex++]; result[1] = array[startingIndex++]; result[2] = array[startingIndex++]; result[3] = array[startingIndex++]; result[4] = array[startingIndex++]; result[5] = array[startingIndex++]; result[6] = array[startingIndex++]; result[7] = array[startingIndex++]; result[8] = array[startingIndex++]; return result; }; /** * Flattens an array of Matrix3s into an array of components. The components * are stored in column-major order. * * @param {Matrix3[]} array The array of matrices to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 9 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 9) elements. * @returns {Number[]} The packed array. */ Matrix3.packArray = function (array, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); const length = array.length; const resultLength = length * 9; if (!when.defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { //>>includeStart('debug', pragmas.debug); throw new RuntimeError.DeveloperError( "If result is a typed array, it must have exactly array.length * 9 elements" ); //>>includeEnd('debug'); } else if (result.length !== resultLength) { result.length = resultLength; } for (let i = 0; i < length; ++i) { Matrix3.pack(array[i], result, i * 9); } return result; }; /** * Unpacks an array of column-major matrix components into an array of Matrix3s. * * @param {Number[]} array The array of components to unpack. * @param {Matrix3[]} [result] The array onto which to store the result. * @returns {Matrix3[]} The unpacked array. */ Matrix3.unpackArray = function (array, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); RuntimeError.Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 9); if (array.length % 9 !== 0) { throw new RuntimeError.DeveloperError("array length must be a multiple of 9."); } //>>includeEnd('debug'); const length = array.length; if (!when.defined(result)) { result = new Array(length / 9); } else { result.length = length / 9; } for (let i = 0; i < length; i += 9) { const index = i / 9; result[index] = Matrix3.unpack(array, i, result[index]); } return result; }; /** * Duplicates a Matrix3 instance. * * @param {Matrix3} matrix The matrix to duplicate. * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. (Returns undefined if matrix is undefined) */ Matrix3.clone = function (matrix, result) { if (!when.defined(matrix)) { return undefined; } if (!when.defined(result)) { return new Matrix3( matrix[0], matrix[3], matrix[6], matrix[1], matrix[4], matrix[7], matrix[2], matrix[5], matrix[8] ); } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; return result; }; /** * Creates a Matrix3 from 9 consecutive elements in an array. * * @param {Number[]} array The array whose 9 consecutive elements correspond to the positions of the matrix. Assumes column-major order. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix. * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. * * @example * // Create the Matrix3: * // [1.0, 2.0, 3.0] * // [1.0, 2.0, 3.0] * // [1.0, 2.0, 3.0] * * const v = [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0]; * const m = Cesium.Matrix3.fromArray(v); * * // Create same Matrix3 with using an offset into an array * const v2 = [0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0]; * const m2 = Cesium.Matrix3.fromArray(v2, 2); */ Matrix3.fromArray = Matrix3.unpack; /** * Creates a Matrix3 instance from a column-major order array. * * @param {Number[]} values The column-major order array. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. */ Matrix3.fromColumnMajorArray = function (values, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("values", values); //>>includeEnd('debug'); return Matrix3.clone(values, result); }; /** * Creates a Matrix3 instance from a row-major order array. * The resulting matrix will be in column-major order. * * @param {Number[]} values The row-major order array. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. */ Matrix3.fromRowMajorArray = function (values, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("values", values); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix3( values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], values[8] ); } result[0] = values[0]; result[1] = values[3]; result[2] = values[6]; result[3] = values[1]; result[4] = values[4]; result[5] = values[7]; result[6] = values[2]; result[7] = values[5]; result[8] = values[8]; return result; }; /** * Computes a 3x3 rotation matrix from the provided quaternion. * * @param {Quaternion} quaternion the quaternion to use. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The 3x3 rotation matrix from this quaternion. */ Matrix3.fromQuaternion = function (quaternion, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("quaternion", quaternion); //>>includeEnd('debug'); const x2 = quaternion.x * quaternion.x; const xy = quaternion.x * quaternion.y; const xz = quaternion.x * quaternion.z; const xw = quaternion.x * quaternion.w; const y2 = quaternion.y * quaternion.y; const yz = quaternion.y * quaternion.z; const yw = quaternion.y * quaternion.w; const z2 = quaternion.z * quaternion.z; const zw = quaternion.z * quaternion.w; const w2 = quaternion.w * quaternion.w; const m00 = x2 - y2 - z2 + w2; const m01 = 2.0 * (xy - zw); const m02 = 2.0 * (xz + yw); const m10 = 2.0 * (xy + zw); const m11 = -x2 + y2 - z2 + w2; const m12 = 2.0 * (yz - xw); const m20 = 2.0 * (xz - yw); const m21 = 2.0 * (yz + xw); const m22 = -x2 - y2 + z2 + w2; if (!when.defined(result)) { return new Matrix3(m00, m01, m02, m10, m11, m12, m20, m21, m22); } result[0] = m00; result[1] = m10; result[2] = m20; result[3] = m01; result[4] = m11; result[5] = m21; result[6] = m02; result[7] = m12; result[8] = m22; return result; }; /** * Computes a 3x3 rotation matrix from the provided headingPitchRoll. (see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles ) * * @param {HeadingPitchRoll} headingPitchRoll the headingPitchRoll to use. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The 3x3 rotation matrix from this headingPitchRoll. */ Matrix3.fromHeadingPitchRoll = function (headingPitchRoll, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("headingPitchRoll", headingPitchRoll); //>>includeEnd('debug'); const cosTheta = Math.cos(-headingPitchRoll.pitch); const cosPsi = Math.cos(-headingPitchRoll.heading); const cosPhi = Math.cos(headingPitchRoll.roll); const sinTheta = Math.sin(-headingPitchRoll.pitch); const sinPsi = Math.sin(-headingPitchRoll.heading); const sinPhi = Math.sin(headingPitchRoll.roll); const m00 = cosTheta * cosPsi; const m01 = -cosPhi * sinPsi + sinPhi * sinTheta * cosPsi; const m02 = sinPhi * sinPsi + cosPhi * sinTheta * cosPsi; const m10 = cosTheta * sinPsi; const m11 = cosPhi * cosPsi + sinPhi * sinTheta * sinPsi; const m12 = -sinPhi * cosPsi + cosPhi * sinTheta * sinPsi; const m20 = -sinTheta; const m21 = sinPhi * cosTheta; const m22 = cosPhi * cosTheta; if (!when.defined(result)) { return new Matrix3(m00, m01, m02, m10, m11, m12, m20, m21, m22); } result[0] = m00; result[1] = m10; result[2] = m20; result[3] = m01; result[4] = m11; result[5] = m21; result[6] = m02; result[7] = m12; result[8] = m22; return result; }; /** * Computes a Matrix3 instance representing a non-uniform scale. * * @param {Cartesian3} scale The x, y, and z scale factors. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [7.0, 0.0, 0.0] * // [0.0, 8.0, 0.0] * // [0.0, 0.0, 9.0] * const m = Cesium.Matrix3.fromScale(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */ Matrix3.fromScale = function (scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("scale", scale); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix3(scale.x, 0.0, 0.0, 0.0, scale.y, 0.0, 0.0, 0.0, scale.z); } result[0] = scale.x; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = scale.y; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = scale.z; return result; }; /** * Computes a Matrix3 instance representing a uniform scale. * * @param {Number} scale The uniform scale factor. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [2.0, 0.0, 0.0] * // [0.0, 2.0, 0.0] * // [0.0, 0.0, 2.0] * const m = Cesium.Matrix3.fromUniformScale(2.0); */ Matrix3.fromUniformScale = function (scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("scale", scale); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix3(scale, 0.0, 0.0, 0.0, scale, 0.0, 0.0, 0.0, scale); } result[0] = scale; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = scale; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = scale; return result; }; /** * Computes a Matrix3 instance representing the cross product equivalent matrix of a Cartesian3 vector. * * @param {Cartesian3} vector the vector on the left hand side of the cross product operation. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [0.0, -9.0, 8.0] * // [9.0, 0.0, -7.0] * // [-8.0, 7.0, 0.0] * const m = Cesium.Matrix3.fromCrossProduct(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */ Matrix3.fromCrossProduct = function (vector, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("vector", vector); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix3( 0.0, -vector.z, vector.y, vector.z, 0.0, -vector.x, -vector.y, vector.x, 0.0 ); } result[0] = 0.0; result[1] = vector.z; result[2] = -vector.y; result[3] = -vector.z; result[4] = 0.0; result[5] = vector.x; result[6] = vector.y; result[7] = -vector.x; result[8] = 0.0; return result; }; /** * Creates a rotation matrix around the x-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the x-axis. * const p = new Cesium.Cartesian3(5, 6, 7); * const m = Cesium.Matrix3.fromRotationX(Cesium.Math.toRadians(45.0)); * const rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationX = function (angle, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("angle", angle); //>>includeEnd('debug'); const cosAngle = Math.cos(angle); const sinAngle = Math.sin(angle); if (!when.defined(result)) { return new Matrix3( 1.0, 0.0, 0.0, 0.0, cosAngle, -sinAngle, 0.0, sinAngle, cosAngle ); } result[0] = 1.0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = cosAngle; result[5] = sinAngle; result[6] = 0.0; result[7] = -sinAngle; result[8] = cosAngle; return result; }; /** * Creates a rotation matrix around the y-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the y-axis. * const p = new Cesium.Cartesian3(5, 6, 7); * const m = Cesium.Matrix3.fromRotationY(Cesium.Math.toRadians(45.0)); * const rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationY = function (angle, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("angle", angle); //>>includeEnd('debug'); const cosAngle = Math.cos(angle); const sinAngle = Math.sin(angle); if (!when.defined(result)) { return new Matrix3( cosAngle, 0.0, sinAngle, 0.0, 1.0, 0.0, -sinAngle, 0.0, cosAngle ); } result[0] = cosAngle; result[1] = 0.0; result[2] = -sinAngle; result[3] = 0.0; result[4] = 1.0; result[5] = 0.0; result[6] = sinAngle; result[7] = 0.0; result[8] = cosAngle; return result; }; /** * Creates a rotation matrix around the z-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the z-axis. * const p = new Cesium.Cartesian3(5, 6, 7); * const m = Cesium.Matrix3.fromRotationZ(Cesium.Math.toRadians(45.0)); * const rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationZ = function (angle, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("angle", angle); //>>includeEnd('debug'); const cosAngle = Math.cos(angle); const sinAngle = Math.sin(angle); if (!when.defined(result)) { return new Matrix3( cosAngle, -sinAngle, 0.0, sinAngle, cosAngle, 0.0, 0.0, 0.0, 1.0 ); } result[0] = cosAngle; result[1] = sinAngle; result[2] = 0.0; result[3] = -sinAngle; result[4] = cosAngle; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = 1.0; return result; }; /** * Creates an Array from the provided Matrix3 instance. * The array will be in column-major order. * * @param {Matrix3} matrix The matrix to use.. * @param {Number[]} [result] The Array onto which to store the result. * @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided. */ Matrix3.toArray = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); if (!when.defined(result)) { return [ matrix[0], matrix[1], matrix[2], matrix[3], matrix[4], matrix[5], matrix[6], matrix[7], matrix[8], ]; } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; return result; }; /** * Computes the array index of the element at the provided row and column. * * @param {Number} column The zero-based index of the column. * @param {Number} row The zero-based index of the row. * @returns {Number} The index of the element at the provided row and column. * * @exception {DeveloperError} row must be 0, 1, or 2. * @exception {DeveloperError} column must be 0, 1, or 2. * * @example * const myMatrix = new Cesium.Matrix3(); * const column1Row0Index = Cesium.Matrix3.getElementIndex(1, 0); * const column1Row0 = myMatrix[column1Row0Index] * myMatrix[column1Row0Index] = 10.0; */ Matrix3.getElementIndex = function (column, row) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number.greaterThanOrEquals("row", row, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("row", row, 2); RuntimeError.Check.typeOf.number.greaterThanOrEquals("column", column, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("column", column, 2); //>>includeEnd('debug'); return column * 3 + row; }; /** * Retrieves a copy of the matrix column at the provided index as a Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the column to retrieve. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.getColumn = function (matrix, index, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number.greaterThanOrEquals("index", index, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("index", index, 2); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const startIndex = index * 3; const x = matrix[startIndex]; const y = matrix[startIndex + 1]; const z = matrix[startIndex + 2]; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the column to set. * @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified column. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.setColumn = function (matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number.greaterThanOrEquals("index", index, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("index", index, 2); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result = Matrix3.clone(matrix, result); const startIndex = index * 3; result[startIndex] = cartesian.x; result[startIndex + 1] = cartesian.y; result[startIndex + 2] = cartesian.z; return result; }; /** * Retrieves a copy of the matrix row at the provided index as a Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the row to retrieve. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.getRow = function (matrix, index, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number.greaterThanOrEquals("index", index, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("index", index, 2); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const x = matrix[index]; const y = matrix[index + 3]; const z = matrix[index + 6]; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the row to set. * @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified row. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.setRow = function (matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number.greaterThanOrEquals("index", index, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("index", index, 2); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result = Matrix3.clone(matrix, result); result[index] = cartesian.x; result[index + 3] = cartesian.y; result[index + 6] = cartesian.z; return result; }; const scaleScratch1$2 = new Cartesian3(); /** * Computes a new matrix that replaces the scale with the provided scale. * This assumes the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix to use. * @param {Cartesian3} scale The scale that replaces the scale of the provided matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.setUniformScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.multiplyByScale * @see Matrix3.multiplyByUniformScale * @see Matrix3.getScale */ Matrix3.setScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("scale", scale); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const existingScale = Matrix3.getScale(matrix, scaleScratch1$2); const scaleRatioX = scale.x / existingScale.x; const scaleRatioY = scale.y / existingScale.y; const scaleRatioZ = scale.z / existingScale.z; result[0] = matrix[0] * scaleRatioX; result[1] = matrix[1] * scaleRatioX; result[2] = matrix[2] * scaleRatioX; result[3] = matrix[3] * scaleRatioY; result[4] = matrix[4] * scaleRatioY; result[5] = matrix[5] * scaleRatioY; result[6] = matrix[6] * scaleRatioZ; result[7] = matrix[7] * scaleRatioZ; result[8] = matrix[8] * scaleRatioZ; return result; }; const scaleScratch2$2 = new Cartesian3(); /** * Computes a new matrix that replaces the scale with the provided uniform scale. * This assumes the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix to use. * @param {Number} scale The uniform scale that replaces the scale of the provided matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.setScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.multiplyByScale * @see Matrix3.multiplyByUniformScale * @see Matrix3.getScale */ Matrix3.setUniformScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number("scale", scale); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const existingScale = Matrix3.getScale(matrix, scaleScratch2$2); const scaleRatioX = scale / existingScale.x; const scaleRatioY = scale / existingScale.y; const scaleRatioZ = scale / existingScale.z; result[0] = matrix[0] * scaleRatioX; result[1] = matrix[1] * scaleRatioX; result[2] = matrix[2] * scaleRatioX; result[3] = matrix[3] * scaleRatioY; result[4] = matrix[4] * scaleRatioY; result[5] = matrix[5] * scaleRatioY; result[6] = matrix[6] * scaleRatioZ; result[7] = matrix[7] * scaleRatioZ; result[8] = matrix[8] * scaleRatioZ; return result; }; const scratchColumn$2 = new Cartesian3(); /** * Extracts the non-uniform scale assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @see Matrix3.multiplyByScale * @see Matrix3.multiplyByUniformScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.setScale * @see Matrix3.setUniformScale */ Matrix3.getScale = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Cartesian3.magnitude( Cartesian3.fromElements(matrix[0], matrix[1], matrix[2], scratchColumn$2) ); result.y = Cartesian3.magnitude( Cartesian3.fromElements(matrix[3], matrix[4], matrix[5], scratchColumn$2) ); result.z = Cartesian3.magnitude( Cartesian3.fromElements(matrix[6], matrix[7], matrix[8], scratchColumn$2) ); return result; }; const scaleScratch3$2 = new Cartesian3(); /** * Computes the maximum scale assuming the matrix is an affine transformation. * The maximum scale is the maximum length of the column vectors. * * @param {Matrix3} matrix The matrix. * @returns {Number} The maximum scale. */ Matrix3.getMaximumScale = function (matrix) { Matrix3.getScale(matrix, scaleScratch3$2); return Cartesian3.maximumComponent(scaleScratch3$2); }; const scaleScratch4$2 = new Cartesian3(); /** * Sets the rotation assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Matrix3} rotation The rotation matrix. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.getRotation */ Matrix3.setRotation = function (matrix, rotation, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const scale = Matrix3.getScale(matrix, scaleScratch4$2); result[0] = rotation[0] * scale.x; result[1] = rotation[1] * scale.x; result[2] = rotation[2] * scale.x; result[3] = rotation[3] * scale.y; result[4] = rotation[4] * scale.y; result[5] = rotation[5] * scale.y; result[6] = rotation[6] * scale.z; result[7] = rotation[7] * scale.z; result[8] = rotation[8] * scale.z; return result; }; const scaleScratch5$2 = new Cartesian3(); /** * Extracts the rotation matrix assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @see Matrix3.setRotation */ Matrix3.getRotation = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const scale = Matrix3.getScale(matrix, scaleScratch5$2); result[0] = matrix[0] / scale.x; result[1] = matrix[1] / scale.x; result[2] = matrix[2] / scale.x; result[3] = matrix[3] / scale.y; result[4] = matrix[4] / scale.y; result[5] = matrix[5] / scale.y; result[6] = matrix[6] / scale.z; result[7] = matrix[7] / scale.z; result[8] = matrix[8] / scale.z; return result; }; /** * Computes the product of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.multiply = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const column0Row0 = left[0] * right[0] + left[3] * right[1] + left[6] * right[2]; const column0Row1 = left[1] * right[0] + left[4] * right[1] + left[7] * right[2]; const column0Row2 = left[2] * right[0] + left[5] * right[1] + left[8] * right[2]; const column1Row0 = left[0] * right[3] + left[3] * right[4] + left[6] * right[5]; const column1Row1 = left[1] * right[3] + left[4] * right[4] + left[7] * right[5]; const column1Row2 = left[2] * right[3] + left[5] * right[4] + left[8] * right[5]; const column2Row0 = left[0] * right[6] + left[3] * right[7] + left[6] * right[8]; const column2Row1 = left[1] * right[6] + left[4] * right[7] + left[7] * right[8]; const column2Row2 = left[2] * right[6] + left[5] * right[7] + left[8] * right[8]; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = column1Row0; result[4] = column1Row1; result[5] = column1Row2; result[6] = column2Row0; result[7] = column2Row1; result[8] = column2Row2; return result; }; /** * Computes the sum of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.add = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = left[0] + right[0]; result[1] = left[1] + right[1]; result[2] = left[2] + right[2]; result[3] = left[3] + right[3]; result[4] = left[4] + right[4]; result[5] = left[5] + right[5]; result[6] = left[6] + right[6]; result[7] = left[7] + right[7]; result[8] = left[8] + right[8]; return result; }; /** * Computes the difference of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.subtract = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = left[0] - right[0]; result[1] = left[1] - right[1]; result[2] = left[2] - right[2]; result[3] = left[3] - right[3]; result[4] = left[4] - right[4]; result[5] = left[5] - right[5]; result[6] = left[6] - right[6]; result[7] = left[7] - right[7]; result[8] = left[8] - right[8]; return result; }; /** * Computes the product of a matrix and a column vector. * * @param {Matrix3} matrix The matrix. * @param {Cartesian3} cartesian The column. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Matrix3.multiplyByVector = function (matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const vX = cartesian.x; const vY = cartesian.y; const vZ = cartesian.z; const x = matrix[0] * vX + matrix[3] * vY + matrix[6] * vZ; const y = matrix[1] * vX + matrix[4] * vY + matrix[7] * vZ; const z = matrix[2] * vX + matrix[5] * vY + matrix[8] * vZ; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the product of a matrix and a scalar. * * @param {Matrix3} matrix The matrix. * @param {Number} scalar The number to multiply by. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.multiplyByScalar = function (matrix, scalar, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number("scalar", scalar); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scalar; result[1] = matrix[1] * scalar; result[2] = matrix[2] * scalar; result[3] = matrix[3] * scalar; result[4] = matrix[4] * scalar; result[5] = matrix[5] * scalar; result[6] = matrix[6] * scalar; result[7] = matrix[7] * scalar; result[8] = matrix[8] * scalar; return result; }; /** * Computes the product of a matrix times a (non-uniform) scale, as if the scale were a scale matrix. * * @param {Matrix3} matrix The matrix on the left-hand side. * @param {Number} scale The non-uniform scale on the right-hand side. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * * @example * // Instead of Cesium.Matrix3.multiply(m, Cesium.Matrix3.fromScale(scale), m); * Cesium.Matrix3.multiplyByScale(m, scale, m); * * @see Matrix3.multiplyByUniformScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.setScale * @see Matrix3.setUniformScale * @see Matrix3.getScale */ Matrix3.multiplyByScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("scale", scale); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scale.x; result[1] = matrix[1] * scale.x; result[2] = matrix[2] * scale.x; result[3] = matrix[3] * scale.y; result[4] = matrix[4] * scale.y; result[5] = matrix[5] * scale.y; result[6] = matrix[6] * scale.z; result[7] = matrix[7] * scale.z; result[8] = matrix[8] * scale.z; return result; }; /** * Computes the product of a matrix times a uniform scale, as if the scale were a scale matrix. * * @param {Matrix3} matrix The matrix on the left-hand side. * @param {Number} scale The uniform scale on the right-hand side. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @example * // Instead of Cesium.Matrix3.multiply(m, Cesium.Matrix3.fromUniformScale(scale), m); * Cesium.Matrix3.multiplyByUniformScale(m, scale, m); * * @see Matrix3.multiplyByScale * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix3.setScale * @see Matrix3.setUniformScale * @see Matrix3.getScale */ Matrix3.multiplyByUniformScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number("scale", scale); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scale; result[1] = matrix[1] * scale; result[2] = matrix[2] * scale; result[3] = matrix[3] * scale; result[4] = matrix[4] * scale; result[5] = matrix[5] * scale; result[6] = matrix[6] * scale; result[7] = matrix[7] * scale; result[8] = matrix[8] * scale; return result; }; /** * Creates a negated copy of the provided matrix. * * @param {Matrix3} matrix The matrix to negate. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.negate = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = -matrix[0]; result[1] = -matrix[1]; result[2] = -matrix[2]; result[3] = -matrix[3]; result[4] = -matrix[4]; result[5] = -matrix[5]; result[6] = -matrix[6]; result[7] = -matrix[7]; result[8] = -matrix[8]; return result; }; /** * Computes the transpose of the provided matrix. * * @param {Matrix3} matrix The matrix to transpose. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.transpose = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const column0Row0 = matrix[0]; const column0Row1 = matrix[3]; const column0Row2 = matrix[6]; const column1Row0 = matrix[1]; const column1Row1 = matrix[4]; const column1Row2 = matrix[7]; const column2Row0 = matrix[2]; const column2Row1 = matrix[5]; const column2Row2 = matrix[8]; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = column1Row0; result[4] = column1Row1; result[5] = column1Row2; result[6] = column2Row0; result[7] = column2Row1; result[8] = column2Row2; return result; }; function computeFrobeniusNorm(matrix) { let norm = 0.0; for (let i = 0; i < 9; ++i) { const temp = matrix[i]; norm += temp * temp; } return Math.sqrt(norm); } const rowVal = [1, 0, 0]; const colVal = [2, 2, 1]; function offDiagonalFrobeniusNorm(matrix) { // Computes the "off-diagonal" Frobenius norm. // Assumes matrix is symmetric. let norm = 0.0; for (let i = 0; i < 3; ++i) { const temp = matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])]; norm += 2.0 * temp * temp; } return Math.sqrt(norm); } function shurDecomposition(matrix, result) { // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan, // section 8.4.2 The 2by2 Symmetric Schur Decomposition. // // The routine takes a matrix, which is assumed to be symmetric, and // finds the largest off-diagonal term, and then creates // a matrix (result) which can be used to help reduce it const tolerance = ComponentDatatype.CesiumMath.EPSILON15; let maxDiagonal = 0.0; let rotAxis = 1; // find pivot (rotAxis) based on max diagonal of matrix for (let i = 0; i < 3; ++i) { const temp = Math.abs( matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])] ); if (temp > maxDiagonal) { rotAxis = i; maxDiagonal = temp; } } let c = 1.0; let s = 0.0; const p = rowVal[rotAxis]; const q = colVal[rotAxis]; if (Math.abs(matrix[Matrix3.getElementIndex(q, p)]) > tolerance) { const qq = matrix[Matrix3.getElementIndex(q, q)]; const pp = matrix[Matrix3.getElementIndex(p, p)]; const qp = matrix[Matrix3.getElementIndex(q, p)]; const tau = (qq - pp) / 2.0 / qp; let t; if (tau < 0.0) { t = -1.0 / (-tau + Math.sqrt(1.0 + tau * tau)); } else { t = 1.0 / (tau + Math.sqrt(1.0 + tau * tau)); } c = 1.0 / Math.sqrt(1.0 + t * t); s = t * c; } result = Matrix3.clone(Matrix3.IDENTITY, result); result[Matrix3.getElementIndex(p, p)] = result[ Matrix3.getElementIndex(q, q) ] = c; result[Matrix3.getElementIndex(q, p)] = s; result[Matrix3.getElementIndex(p, q)] = -s; return result; } const jMatrix = new Matrix3(); const jMatrixTranspose = new Matrix3(); /** * Computes the eigenvectors and eigenvalues of a symmetric matrix. *

* Returns a diagonal matrix and unitary matrix such that: * matrix = unitary matrix * diagonal matrix * transpose(unitary matrix) *

*

* The values along the diagonal of the diagonal matrix are the eigenvalues. The columns * of the unitary matrix are the corresponding eigenvectors. *

* * @param {Matrix3} matrix The matrix to decompose into diagonal and unitary matrix. Expected to be symmetric. * @param {Object} [result] An object with unitary and diagonal properties which are matrices onto which to store the result. * @returns {Object} An object with unitary and diagonal properties which are the unitary and diagonal matrices, respectively. * * @example * const a = //... symetric matrix * const result = { * unitary : new Cesium.Matrix3(), * diagonal : new Cesium.Matrix3() * }; * Cesium.Matrix3.computeEigenDecomposition(a, result); * * const unitaryTranspose = Cesium.Matrix3.transpose(result.unitary, new Cesium.Matrix3()); * const b = Cesium.Matrix3.multiply(result.unitary, result.diagonal, new Cesium.Matrix3()); * Cesium.Matrix3.multiply(b, unitaryTranspose, b); // b is now equal to a * * const lambda = Cesium.Matrix3.getColumn(result.diagonal, 0, new Cesium.Cartesian3()).x; // first eigenvalue * const v = Cesium.Matrix3.getColumn(result.unitary, 0, new Cesium.Cartesian3()); // first eigenvector * const c = Cesium.Cartesian3.multiplyByScalar(v, lambda, new Cesium.Cartesian3()); // equal to Cesium.Matrix3.multiplyByVector(a, v) */ Matrix3.computeEigenDecomposition = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan, // section 8.4.3 The Classical Jacobi Algorithm const tolerance = ComponentDatatype.CesiumMath.EPSILON20; const maxSweeps = 10; let count = 0; let sweep = 0; if (!when.defined(result)) { result = {}; } const unitaryMatrix = (result.unitary = Matrix3.clone( Matrix3.IDENTITY, result.unitary )); const diagMatrix = (result.diagonal = Matrix3.clone(matrix, result.diagonal)); const epsilon = tolerance * computeFrobeniusNorm(diagMatrix); while (sweep < maxSweeps && offDiagonalFrobeniusNorm(diagMatrix) > epsilon) { shurDecomposition(diagMatrix, jMatrix); Matrix3.transpose(jMatrix, jMatrixTranspose); Matrix3.multiply(diagMatrix, jMatrix, diagMatrix); Matrix3.multiply(jMatrixTranspose, diagMatrix, diagMatrix); Matrix3.multiply(unitaryMatrix, jMatrix, unitaryMatrix); if (++count > 2) { ++sweep; count = 0; } } return result; }; /** * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements. * * @param {Matrix3} matrix The matrix with signed elements. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.abs = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = Math.abs(matrix[0]); result[1] = Math.abs(matrix[1]); result[2] = Math.abs(matrix[2]); result[3] = Math.abs(matrix[3]); result[4] = Math.abs(matrix[4]); result[5] = Math.abs(matrix[5]); result[6] = Math.abs(matrix[6]); result[7] = Math.abs(matrix[7]); result[8] = Math.abs(matrix[8]); return result; }; /** * Computes the determinant of the provided matrix. * * @param {Matrix3} matrix The matrix to use. * @returns {Number} The value of the determinant of the matrix. */ Matrix3.determinant = function (matrix) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); const m11 = matrix[0]; const m21 = matrix[3]; const m31 = matrix[6]; const m12 = matrix[1]; const m22 = matrix[4]; const m32 = matrix[7]; const m13 = matrix[2]; const m23 = matrix[5]; const m33 = matrix[8]; return ( m11 * (m22 * m33 - m23 * m32) + m12 * (m23 * m31 - m21 * m33) + m13 * (m21 * m32 - m22 * m31) ); }; /** * Computes the inverse of the provided matrix. * * @param {Matrix3} matrix The matrix to invert. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} matrix is not invertible. */ Matrix3.inverse = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const m11 = matrix[0]; const m21 = matrix[1]; const m31 = matrix[2]; const m12 = matrix[3]; const m22 = matrix[4]; const m32 = matrix[5]; const m13 = matrix[6]; const m23 = matrix[7]; const m33 = matrix[8]; const determinant = Matrix3.determinant(matrix); //>>includeStart('debug', pragmas.debug); if (Math.abs(determinant) <= ComponentDatatype.CesiumMath.EPSILON15) { throw new RuntimeError.DeveloperError("matrix is not invertible"); } //>>includeEnd('debug'); result[0] = m22 * m33 - m23 * m32; result[1] = m23 * m31 - m21 * m33; result[2] = m21 * m32 - m22 * m31; result[3] = m13 * m32 - m12 * m33; result[4] = m11 * m33 - m13 * m31; result[5] = m12 * m31 - m11 * m32; result[6] = m12 * m23 - m13 * m22; result[7] = m13 * m21 - m11 * m23; result[8] = m11 * m22 - m12 * m21; const scale = 1.0 / determinant; return Matrix3.multiplyByScalar(result, scale, result); }; const scratchTransposeMatrix$1 = new Matrix3(); /** * Computes the inverse transpose of a matrix. * * @param {Matrix3} matrix The matrix to transpose and invert. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.inverseTranspose = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); return Matrix3.inverse( Matrix3.transpose(matrix, scratchTransposeMatrix$1), result ); }; /** * Compares the provided matrices componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix3} [left] The first matrix. * @param {Matrix3} [right] The second matrix. * @returns {Boolean} true if left and right are equal, false otherwise. */ Matrix3.equals = function (left, right) { return ( left === right || (when.defined(left) && when.defined(right) && left[0] === right[0] && left[1] === right[1] && left[2] === right[2] && left[3] === right[3] && left[4] === right[4] && left[5] === right[5] && left[6] === right[6] && left[7] === right[7] && left[8] === right[8]) ); }; /** * Compares the provided matrices componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix3} [left] The first matrix. * @param {Matrix3} [right] The second matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Matrix3.equalsEpsilon = function (left, right, epsilon) { epsilon = when.defaultValue(epsilon, 0); return ( left === right || (when.defined(left) && when.defined(right) && Math.abs(left[0] - right[0]) <= epsilon && Math.abs(left[1] - right[1]) <= epsilon && Math.abs(left[2] - right[2]) <= epsilon && Math.abs(left[3] - right[3]) <= epsilon && Math.abs(left[4] - right[4]) <= epsilon && Math.abs(left[5] - right[5]) <= epsilon && Math.abs(left[6] - right[6]) <= epsilon && Math.abs(left[7] - right[7]) <= epsilon && Math.abs(left[8] - right[8]) <= epsilon) ); }; /** * An immutable Matrix3 instance initialized to the identity matrix. * * @type {Matrix3} * @constant */ Matrix3.IDENTITY = Object.freeze( new Matrix3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0) ); /** * An immutable Matrix3 instance initialized to the zero matrix. * * @type {Matrix3} * @constant */ Matrix3.ZERO = Object.freeze( new Matrix3(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) ); /** * The index into Matrix3 for column 0, row 0. * * @type {Number} * @constant */ Matrix3.COLUMN0ROW0 = 0; /** * The index into Matrix3 for column 0, row 1. * * @type {Number} * @constant */ Matrix3.COLUMN0ROW1 = 1; /** * The index into Matrix3 for column 0, row 2. * * @type {Number} * @constant */ Matrix3.COLUMN0ROW2 = 2; /** * The index into Matrix3 for column 1, row 0. * * @type {Number} * @constant */ Matrix3.COLUMN1ROW0 = 3; /** * The index into Matrix3 for column 1, row 1. * * @type {Number} * @constant */ Matrix3.COLUMN1ROW1 = 4; /** * The index into Matrix3 for column 1, row 2. * * @type {Number} * @constant */ Matrix3.COLUMN1ROW2 = 5; /** * The index into Matrix3 for column 2, row 0. * * @type {Number} * @constant */ Matrix3.COLUMN2ROW0 = 6; /** * The index into Matrix3 for column 2, row 1. * * @type {Number} * @constant */ Matrix3.COLUMN2ROW1 = 7; /** * The index into Matrix3 for column 2, row 2. * * @type {Number} * @constant */ Matrix3.COLUMN2ROW2 = 8; Object.defineProperties(Matrix3.prototype, { /** * Gets the number of items in the collection. * @memberof Matrix3.prototype * * @type {Number} */ length: { get: function () { return Matrix3.packedLength; }, }, }); /** * Duplicates the provided Matrix3 instance. * * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. */ Matrix3.prototype.clone = function (result) { return Matrix3.clone(this, result); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix3} [right] The right hand side matrix. * @returns {Boolean} true if they are equal, false otherwise. */ Matrix3.prototype.equals = function (right) { return Matrix3.equals(this, right); }; /** * @private */ Matrix3.equalsArray = function (matrix, array, offset) { return ( matrix[0] === array[offset] && matrix[1] === array[offset + 1] && matrix[2] === array[offset + 2] && matrix[3] === array[offset + 3] && matrix[4] === array[offset + 4] && matrix[5] === array[offset + 5] && matrix[6] === array[offset + 6] && matrix[7] === array[offset + 7] && matrix[8] === array[offset + 8] ); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix3} [right] The right hand side matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Matrix3.prototype.equalsEpsilon = function (right, epsilon) { return Matrix3.equalsEpsilon(this, right, epsilon); }; /** * Creates a string representing this Matrix with each row being * on a separate line and in the format '(column0, column1, column2)'. * * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2)'. */ Matrix3.prototype.toString = function () { return ( `(${this[0]}, ${this[3]}, ${this[6]})\n` + `(${this[1]}, ${this[4]}, ${this[7]})\n` + `(${this[2]}, ${this[5]}, ${this[8]})` ); }; /** * A 4D Cartesian point. * @alias Cartesian4 * @constructor * * @param {Number} [x=0.0] The X component. * @param {Number} [y=0.0] The Y component. * @param {Number} [z=0.0] The Z component. * @param {Number} [w=0.0] The W component. * * @see Cartesian2 * @see Cartesian3 * @see Packable */ function Cartesian4(x, y, z, w) { /** * The X component. * @type {Number} * @default 0.0 */ this.x = when.defaultValue(x, 0.0); /** * The Y component. * @type {Number} * @default 0.0 */ this.y = when.defaultValue(y, 0.0); /** * The Z component. * @type {Number} * @default 0.0 */ this.z = when.defaultValue(z, 0.0); /** * The W component. * @type {Number} * @default 0.0 */ this.w = when.defaultValue(w, 0.0); } /** * Creates a Cartesian4 instance from x, y, z and w coordinates. * * @param {Number} x The x coordinate. * @param {Number} y The y coordinate. * @param {Number} z The z coordinate. * @param {Number} w The w coordinate. * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. */ Cartesian4.fromElements = function (x, y, z, w, result) { if (!when.defined(result)) { return new Cartesian4(x, y, z, w); } result.x = x; result.y = y; result.z = z; result.w = w; return result; }; /** * Creates a Cartesian4 instance from a {@link Color}. red, green, blue, * and alpha map to x, y, z, and w, respectively. * * @param {Color} color The source color. * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. */ Cartesian4.fromColor = function (color, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("color", color); //>>includeEnd('debug'); if (!when.defined(result)) { return new Cartesian4(color.red, color.green, color.blue, color.alpha); } result.x = color.red; result.y = color.green; result.z = color.blue; result.w = color.alpha; return result; }; /** * Duplicates a Cartesian4 instance. * * @param {Cartesian4} cartesian The Cartesian to duplicate. * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. (Returns undefined if cartesian is undefined) */ Cartesian4.clone = function (cartesian, result) { if (!when.defined(cartesian)) { return undefined; } if (!when.defined(result)) { return new Cartesian4(cartesian.x, cartesian.y, cartesian.z, cartesian.w); } result.x = cartesian.x; result.y = cartesian.y; result.z = cartesian.z; result.w = cartesian.w; return result; }; /** * The number of elements used to pack the object into an array. * @type {Number} */ Cartesian4.packedLength = 4; /** * Stores the provided instance into the provided array. * * @param {Cartesian4} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Cartesian4.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("value", value); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); array[startingIndex++] = value.x; array[startingIndex++] = value.y; array[startingIndex++] = value.z; array[startingIndex] = value.w; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Cartesian4} [result] The object into which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. */ Cartesian4.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new Cartesian4(); } result.x = array[startingIndex++]; result.y = array[startingIndex++]; result.z = array[startingIndex++]; result.w = array[startingIndex]; return result; }; /** * Flattens an array of Cartesian4s into an array of components. * * @param {Cartesian4[]} array The array of cartesians to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 4 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 4) elements. * @returns {Number[]} The packed array. */ Cartesian4.packArray = function (array, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); const length = array.length; const resultLength = length * 4; if (!when.defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { //>>includeStart('debug', pragmas.debug); throw new RuntimeError.DeveloperError( "If result is a typed array, it must have exactly array.length * 4 elements" ); //>>includeEnd('debug'); } else if (result.length !== resultLength) { result.length = resultLength; } for (let i = 0; i < length; ++i) { Cartesian4.pack(array[i], result, i * 4); } return result; }; /** * Unpacks an array of cartesian components into an array of Cartesian4s. * * @param {Number[]} array The array of components to unpack. * @param {Cartesian4[]} [result] The array onto which to store the result. * @returns {Cartesian4[]} The unpacked array. */ Cartesian4.unpackArray = function (array, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); RuntimeError.Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 4); if (array.length % 4 !== 0) { throw new RuntimeError.DeveloperError("array length must be a multiple of 4."); } //>>includeEnd('debug'); const length = array.length; if (!when.defined(result)) { result = new Array(length / 4); } else { result.length = length / 4; } for (let i = 0; i < length; i += 4) { const index = i / 4; result[index] = Cartesian4.unpack(array, i, result[index]); } return result; }; /** * Creates a Cartesian4 from four consecutive elements in an array. * @function * * @param {Number[]} array The array whose four consecutive elements correspond to the x, y, z, and w components, respectively. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component. * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. * * @example * // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0) * const v = [1.0, 2.0, 3.0, 4.0]; * const p = Cesium.Cartesian4.fromArray(v); * * // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0) using an offset into an array * const v2 = [0.0, 0.0, 1.0, 2.0, 3.0, 4.0]; * const p2 = Cesium.Cartesian4.fromArray(v2, 2); */ Cartesian4.fromArray = Cartesian4.unpack; /** * Computes the value of the maximum component for the supplied Cartesian. * * @param {Cartesian4} cartesian The cartesian to use. * @returns {Number} The value of the maximum component. */ Cartesian4.maximumComponent = function (cartesian) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return Math.max(cartesian.x, cartesian.y, cartesian.z, cartesian.w); }; /** * Computes the value of the minimum component for the supplied Cartesian. * * @param {Cartesian4} cartesian The cartesian to use. * @returns {Number} The value of the minimum component. */ Cartesian4.minimumComponent = function (cartesian) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return Math.min(cartesian.x, cartesian.y, cartesian.z, cartesian.w); }; /** * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians. * * @param {Cartesian4} first A cartesian to compare. * @param {Cartesian4} second A cartesian to compare. * @param {Cartesian4} result The object into which to store the result. * @returns {Cartesian4} A cartesian with the minimum components. */ Cartesian4.minimumByComponent = function (first, second, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("first", first); RuntimeError.Check.typeOf.object("second", second); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.min(first.x, second.x); result.y = Math.min(first.y, second.y); result.z = Math.min(first.z, second.z); result.w = Math.min(first.w, second.w); return result; }; /** * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians. * * @param {Cartesian4} first A cartesian to compare. * @param {Cartesian4} second A cartesian to compare. * @param {Cartesian4} result The object into which to store the result. * @returns {Cartesian4} A cartesian with the maximum components. */ Cartesian4.maximumByComponent = function (first, second, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("first", first); RuntimeError.Check.typeOf.object("second", second); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.max(first.x, second.x); result.y = Math.max(first.y, second.y); result.z = Math.max(first.z, second.z); result.w = Math.max(first.w, second.w); return result; }; /** * Computes the provided Cartesian's squared magnitude. * * @param {Cartesian4} cartesian The Cartesian instance whose squared magnitude is to be computed. * @returns {Number} The squared magnitude. */ Cartesian4.magnitudeSquared = function (cartesian) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return ( cartesian.x * cartesian.x + cartesian.y * cartesian.y + cartesian.z * cartesian.z + cartesian.w * cartesian.w ); }; /** * Computes the Cartesian's magnitude (length). * * @param {Cartesian4} cartesian The Cartesian instance whose magnitude is to be computed. * @returns {Number} The magnitude. */ Cartesian4.magnitude = function (cartesian) { return Math.sqrt(Cartesian4.magnitudeSquared(cartesian)); }; const distanceScratch$1 = new Cartesian4(); /** * Computes the 4-space distance between two points. * * @param {Cartesian4} left The first point to compute the distance from. * @param {Cartesian4} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 1.0 * const d = Cesium.Cartesian4.distance( * new Cesium.Cartesian4(1.0, 0.0, 0.0, 0.0), * new Cesium.Cartesian4(2.0, 0.0, 0.0, 0.0)); */ Cartesian4.distance = function (left, right) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian4.subtract(left, right, distanceScratch$1); return Cartesian4.magnitude(distanceScratch$1); }; /** * Computes the squared distance between two points. Comparing squared distances * using this function is more efficient than comparing distances using {@link Cartesian4#distance}. * * @param {Cartesian4} left The first point to compute the distance from. * @param {Cartesian4} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 4.0, not 2.0 * const d = Cesium.Cartesian4.distance( * new Cesium.Cartesian4(1.0, 0.0, 0.0, 0.0), * new Cesium.Cartesian4(3.0, 0.0, 0.0, 0.0)); */ Cartesian4.distanceSquared = function (left, right) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian4.subtract(left, right, distanceScratch$1); return Cartesian4.magnitudeSquared(distanceScratch$1); }; /** * Computes the normalized form of the supplied Cartesian. * * @param {Cartesian4} cartesian The Cartesian to be normalized. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.normalize = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const magnitude = Cartesian4.magnitude(cartesian); result.x = cartesian.x / magnitude; result.y = cartesian.y / magnitude; result.z = cartesian.z / magnitude; result.w = cartesian.w / magnitude; //>>includeStart('debug', pragmas.debug); if ( isNaN(result.x) || isNaN(result.y) || isNaN(result.z) || isNaN(result.w) ) { throw new RuntimeError.DeveloperError("normalized result is not a number"); } //>>includeEnd('debug'); return result; }; /** * Computes the dot (scalar) product of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @returns {Number} The dot product. */ Cartesian4.dot = function (left, right) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); //>>includeEnd('debug'); return ( left.x * right.x + left.y * right.y + left.z * right.z + left.w * right.w ); }; /** * Computes the componentwise product of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.multiplyComponents = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x * right.x; result.y = left.y * right.y; result.z = left.z * right.z; result.w = left.w * right.w; return result; }; /** * Computes the componentwise quotient of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.divideComponents = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x / right.x; result.y = left.y / right.y; result.z = left.z / right.z; result.w = left.w / right.w; return result; }; /** * Computes the componentwise sum of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.add = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x + right.x; result.y = left.y + right.y; result.z = left.z + right.z; result.w = left.w + right.w; return result; }; /** * Computes the componentwise difference of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.subtract = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x - right.x; result.y = left.y - right.y; result.z = left.z - right.z; result.w = left.w - right.w; return result; }; /** * Multiplies the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian4} cartesian The Cartesian to be scaled. * @param {Number} scalar The scalar to multiply with. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.multiplyByScalar = function (cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.number("scalar", scalar); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = cartesian.x * scalar; result.y = cartesian.y * scalar; result.z = cartesian.z * scalar; result.w = cartesian.w * scalar; return result; }; /** * Divides the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian4} cartesian The Cartesian to be divided. * @param {Number} scalar The scalar to divide by. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.divideByScalar = function (cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.number("scalar", scalar); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = cartesian.x / scalar; result.y = cartesian.y / scalar; result.z = cartesian.z / scalar; result.w = cartesian.w / scalar; return result; }; /** * Negates the provided Cartesian. * * @param {Cartesian4} cartesian The Cartesian to be negated. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.negate = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = -cartesian.x; result.y = -cartesian.y; result.z = -cartesian.z; result.w = -cartesian.w; return result; }; /** * Computes the absolute value of the provided Cartesian. * * @param {Cartesian4} cartesian The Cartesian whose absolute value is to be computed. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.abs = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.abs(cartesian.x); result.y = Math.abs(cartesian.y); result.z = Math.abs(cartesian.z); result.w = Math.abs(cartesian.w); return result; }; const lerpScratch$1 = new Cartesian4(); /** * Computes the linear interpolation or extrapolation at t using the provided cartesians. * * @param {Cartesian4} start The value corresponding to t at 0.0. * @param {Cartesian4}end The value corresponding to t at 1.0. * @param {Number} t The point along t at which to interpolate. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.lerp = function (start, end, t, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("start", start); RuntimeError.Check.typeOf.object("end", end); RuntimeError.Check.typeOf.number("t", t); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); Cartesian4.multiplyByScalar(end, t, lerpScratch$1); result = Cartesian4.multiplyByScalar(start, 1.0 - t, result); return Cartesian4.add(lerpScratch$1, result, result); }; const mostOrthogonalAxisScratch$1 = new Cartesian4(); /** * Returns the axis that is most orthogonal to the provided Cartesian. * * @param {Cartesian4} cartesian The Cartesian on which to find the most orthogonal axis. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The most orthogonal axis. */ Cartesian4.mostOrthogonalAxis = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const f = Cartesian4.normalize(cartesian, mostOrthogonalAxisScratch$1); Cartesian4.abs(f, f); if (f.x <= f.y) { if (f.x <= f.z) { if (f.x <= f.w) { result = Cartesian4.clone(Cartesian4.UNIT_X, result); } else { result = Cartesian4.clone(Cartesian4.UNIT_W, result); } } else if (f.z <= f.w) { result = Cartesian4.clone(Cartesian4.UNIT_Z, result); } else { result = Cartesian4.clone(Cartesian4.UNIT_W, result); } } else if (f.y <= f.z) { if (f.y <= f.w) { result = Cartesian4.clone(Cartesian4.UNIT_Y, result); } else { result = Cartesian4.clone(Cartesian4.UNIT_W, result); } } else if (f.z <= f.w) { result = Cartesian4.clone(Cartesian4.UNIT_Z, result); } else { result = Cartesian4.clone(Cartesian4.UNIT_W, result); } return result; }; /** * Compares the provided Cartesians componentwise and returns * true if they are equal, false otherwise. * * @param {Cartesian4} [left] The first Cartesian. * @param {Cartesian4} [right] The second Cartesian. * @returns {Boolean} true if left and right are equal, false otherwise. */ Cartesian4.equals = function (left, right) { return ( left === right || (when.defined(left) && when.defined(right) && left.x === right.x && left.y === right.y && left.z === right.z && left.w === right.w) ); }; /** * @private */ Cartesian4.equalsArray = function (cartesian, array, offset) { return ( cartesian.x === array[offset] && cartesian.y === array[offset + 1] && cartesian.z === array[offset + 2] && cartesian.w === array[offset + 3] ); }; /** * Compares the provided Cartesians componentwise and returns * true if they pass an absolute or relative tolerance test, * false otherwise. * * @param {Cartesian4} [left] The first Cartesian. * @param {Cartesian4} [right] The second Cartesian. * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Cartesian4.equalsEpsilon = function ( left, right, relativeEpsilon, absoluteEpsilon ) { return ( left === right || (when.defined(left) && when.defined(right) && ComponentDatatype.CesiumMath.equalsEpsilon( left.x, right.x, relativeEpsilon, absoluteEpsilon ) && ComponentDatatype.CesiumMath.equalsEpsilon( left.y, right.y, relativeEpsilon, absoluteEpsilon ) && ComponentDatatype.CesiumMath.equalsEpsilon( left.z, right.z, relativeEpsilon, absoluteEpsilon ) && ComponentDatatype.CesiumMath.equalsEpsilon( left.w, right.w, relativeEpsilon, absoluteEpsilon )) ); }; /** * An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 0.0). * * @type {Cartesian4} * @constant */ Cartesian4.ZERO = Object.freeze(new Cartesian4(0.0, 0.0, 0.0, 0.0)); /** * An immutable Cartesian4 instance initialized to (1.0, 1.0, 1.0, 1.0). * * @type {Cartesian4} * @constant */ Cartesian4.ONE = Object.freeze(new Cartesian4(1.0, 1.0, 1.0, 1.0)); /** * An immutable Cartesian4 instance initialized to (1.0, 0.0, 0.0, 0.0). * * @type {Cartesian4} * @constant */ Cartesian4.UNIT_X = Object.freeze(new Cartesian4(1.0, 0.0, 0.0, 0.0)); /** * An immutable Cartesian4 instance initialized to (0.0, 1.0, 0.0, 0.0). * * @type {Cartesian4} * @constant */ Cartesian4.UNIT_Y = Object.freeze(new Cartesian4(0.0, 1.0, 0.0, 0.0)); /** * An immutable Cartesian4 instance initialized to (0.0, 0.0, 1.0, 0.0). * * @type {Cartesian4} * @constant */ Cartesian4.UNIT_Z = Object.freeze(new Cartesian4(0.0, 0.0, 1.0, 0.0)); /** * An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 1.0). * * @type {Cartesian4} * @constant */ Cartesian4.UNIT_W = Object.freeze(new Cartesian4(0.0, 0.0, 0.0, 1.0)); /** * Duplicates this Cartesian4 instance. * * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. */ Cartesian4.prototype.clone = function (result) { return Cartesian4.clone(this, result); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * true if they are equal, false otherwise. * * @param {Cartesian4} [right] The right hand side Cartesian. * @returns {Boolean} true if they are equal, false otherwise. */ Cartesian4.prototype.equals = function (right) { return Cartesian4.equals(this, right); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * true if they pass an absolute or relative tolerance test, * false otherwise. * * @param {Cartesian4} [right] The right hand side Cartesian. * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Cartesian4.prototype.equalsEpsilon = function ( right, relativeEpsilon, absoluteEpsilon ) { return Cartesian4.equalsEpsilon( this, right, relativeEpsilon, absoluteEpsilon ); }; /** * Creates a string representing this Cartesian in the format '(x, y, z, w)'. * * @returns {String} A string representing the provided Cartesian in the format '(x, y, z, w)'. */ Cartesian4.prototype.toString = function () { return `(${this.x}, ${this.y}, ${this.z}, ${this.w})`; }; // scratchU8Array and scratchF32Array are views into the same buffer const scratchF32Array = new Float32Array(1); const scratchU8Array = new Uint8Array(scratchF32Array.buffer); const testU32 = new Uint32Array([0x11223344]); const testU8 = new Uint8Array(testU32.buffer); const littleEndian = testU8[0] === 0x44; /** * Packs an arbitrary floating point value to 4 values representable using uint8. * * @param {Number} value A floating point number. * @param {Cartesian4} [result] The Cartesian4 that will contain the packed float. * @returns {Cartesian4} A Cartesian4 representing the float packed to values in x, y, z, and w. */ Cartesian4.packFloat = function (value, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("value", value); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Cartesian4(); } // scratchU8Array and scratchF32Array are views into the same buffer scratchF32Array[0] = value; if (littleEndian) { result.x = scratchU8Array[0]; result.y = scratchU8Array[1]; result.z = scratchU8Array[2]; result.w = scratchU8Array[3]; } else { // convert from big-endian to little-endian result.x = scratchU8Array[3]; result.y = scratchU8Array[2]; result.z = scratchU8Array[1]; result.w = scratchU8Array[0]; } return result; }; /** * Unpacks a float packed using Cartesian4.packFloat. * * @param {Cartesian4} packedFloat A Cartesian4 containing a float packed to 4 values representable using uint8. * @returns {Number} The unpacked float. * @private */ Cartesian4.unpackFloat = function (packedFloat) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("packedFloat", packedFloat); //>>includeEnd('debug'); // scratchU8Array and scratchF32Array are views into the same buffer if (littleEndian) { scratchU8Array[0] = packedFloat.x; scratchU8Array[1] = packedFloat.y; scratchU8Array[2] = packedFloat.z; scratchU8Array[3] = packedFloat.w; } else { // convert from little-endian to big-endian scratchU8Array[0] = packedFloat.w; scratchU8Array[1] = packedFloat.z; scratchU8Array[2] = packedFloat.y; scratchU8Array[3] = packedFloat.x; } return scratchF32Array[0]; }; /** * A 4x4 matrix, indexable as a column-major order array. * Constructor parameters are in row-major order for code readability. * @alias Matrix4 * @constructor * @implements {ArrayLike} * * @param {Number} [column0Row0=0.0] The value for column 0, row 0. * @param {Number} [column1Row0=0.0] The value for column 1, row 0. * @param {Number} [column2Row0=0.0] The value for column 2, row 0. * @param {Number} [column3Row0=0.0] The value for column 3, row 0. * @param {Number} [column0Row1=0.0] The value for column 0, row 1. * @param {Number} [column1Row1=0.0] The value for column 1, row 1. * @param {Number} [column2Row1=0.0] The value for column 2, row 1. * @param {Number} [column3Row1=0.0] The value for column 3, row 1. * @param {Number} [column0Row2=0.0] The value for column 0, row 2. * @param {Number} [column1Row2=0.0] The value for column 1, row 2. * @param {Number} [column2Row2=0.0] The value for column 2, row 2. * @param {Number} [column3Row2=0.0] The value for column 3, row 2. * @param {Number} [column0Row3=0.0] The value for column 0, row 3. * @param {Number} [column1Row3=0.0] The value for column 1, row 3. * @param {Number} [column2Row3=0.0] The value for column 2, row 3. * @param {Number} [column3Row3=0.0] The value for column 3, row 3. * * @see Matrix4.fromArray * @see Matrix4.fromColumnMajorArray * @see Matrix4.fromRowMajorArray * @see Matrix4.fromRotationTranslation * @see Matrix4.fromTranslationQuaternionRotationScale * @see Matrix4.fromTranslationRotationScale * @see Matrix4.fromTranslation * @see Matrix4.fromScale * @see Matrix4.fromUniformScale * @see Matrix4.fromRotation * @see Matrix4.fromCamera * @see Matrix4.computePerspectiveFieldOfView * @see Matrix4.computeOrthographicOffCenter * @see Matrix4.computePerspectiveOffCenter * @see Matrix4.computeInfinitePerspectiveOffCenter * @see Matrix4.computeViewportTransformation * @see Matrix4.computeView * @see Matrix2 * @see Matrix3 * @see Packable */ function Matrix4( column0Row0, column1Row0, column2Row0, column3Row0, column0Row1, column1Row1, column2Row1, column3Row1, column0Row2, column1Row2, column2Row2, column3Row2, column0Row3, column1Row3, column2Row3, column3Row3 ) { this[0] = when.defaultValue(column0Row0, 0.0); this[1] = when.defaultValue(column0Row1, 0.0); this[2] = when.defaultValue(column0Row2, 0.0); this[3] = when.defaultValue(column0Row3, 0.0); this[4] = when.defaultValue(column1Row0, 0.0); this[5] = when.defaultValue(column1Row1, 0.0); this[6] = when.defaultValue(column1Row2, 0.0); this[7] = when.defaultValue(column1Row3, 0.0); this[8] = when.defaultValue(column2Row0, 0.0); this[9] = when.defaultValue(column2Row1, 0.0); this[10] = when.defaultValue(column2Row2, 0.0); this[11] = when.defaultValue(column2Row3, 0.0); this[12] = when.defaultValue(column3Row0, 0.0); this[13] = when.defaultValue(column3Row1, 0.0); this[14] = when.defaultValue(column3Row2, 0.0); this[15] = when.defaultValue(column3Row3, 0.0); } /** * The number of elements used to pack the object into an array. * @type {Number} */ Matrix4.packedLength = 16; /** * Stores the provided instance into the provided array. * * @param {Matrix4} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Matrix4.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("value", value); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); array[startingIndex++] = value[0]; array[startingIndex++] = value[1]; array[startingIndex++] = value[2]; array[startingIndex++] = value[3]; array[startingIndex++] = value[4]; array[startingIndex++] = value[5]; array[startingIndex++] = value[6]; array[startingIndex++] = value[7]; array[startingIndex++] = value[8]; array[startingIndex++] = value[9]; array[startingIndex++] = value[10]; array[startingIndex++] = value[11]; array[startingIndex++] = value[12]; array[startingIndex++] = value[13]; array[startingIndex++] = value[14]; array[startingIndex] = value[15]; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Matrix4} [result] The object into which to store the result. * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided. */ Matrix4.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new Matrix4(); } result[0] = array[startingIndex++]; result[1] = array[startingIndex++]; result[2] = array[startingIndex++]; result[3] = array[startingIndex++]; result[4] = array[startingIndex++]; result[5] = array[startingIndex++]; result[6] = array[startingIndex++]; result[7] = array[startingIndex++]; result[8] = array[startingIndex++]; result[9] = array[startingIndex++]; result[10] = array[startingIndex++]; result[11] = array[startingIndex++]; result[12] = array[startingIndex++]; result[13] = array[startingIndex++]; result[14] = array[startingIndex++]; result[15] = array[startingIndex]; return result; }; /** * Flattens an array of Matrix4s into an array of components. The components * are stored in column-major order. * * @param {Matrix4[]} array The array of matrices to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 16 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 16) elements. * @returns {Number[]} The packed array. */ Matrix4.packArray = function (array, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); const length = array.length; const resultLength = length * 16; if (!when.defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { //>>includeStart('debug', pragmas.debug); throw new RuntimeError.DeveloperError( "If result is a typed array, it must have exactly array.length * 16 elements" ); //>>includeEnd('debug'); } else if (result.length !== resultLength) { result.length = resultLength; } for (let i = 0; i < length; ++i) { Matrix4.pack(array[i], result, i * 16); } return result; }; /** * Unpacks an array of column-major matrix components into an array of Matrix4s. * * @param {Number[]} array The array of components to unpack. * @param {Matrix4[]} [result] The array onto which to store the result. * @returns {Matrix4[]} The unpacked array. */ Matrix4.unpackArray = function (array, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); RuntimeError.Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 16); if (array.length % 16 !== 0) { throw new RuntimeError.DeveloperError("array length must be a multiple of 16."); } //>>includeEnd('debug'); const length = array.length; if (!when.defined(result)) { result = new Array(length / 16); } else { result.length = length / 16; } for (let i = 0; i < length; i += 16) { const index = i / 16; result[index] = Matrix4.unpack(array, i, result[index]); } return result; }; /** * Duplicates a Matrix4 instance. * * @param {Matrix4} matrix The matrix to duplicate. * @param {Matrix4} [result] The object onto which to store the result. * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided. (Returns undefined if matrix is undefined) */ Matrix4.clone = function (matrix, result) { if (!when.defined(matrix)) { return undefined; } if (!when.defined(result)) { return new Matrix4( matrix[0], matrix[4], matrix[8], matrix[12], matrix[1], matrix[5], matrix[9], matrix[13], matrix[2], matrix[6], matrix[10], matrix[14], matrix[3], matrix[7], matrix[11], matrix[15] ); } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; result[9] = matrix[9]; result[10] = matrix[10]; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; /** * Creates a Matrix4 from 16 consecutive elements in an array. * @function * * @param {Number[]} array The array whose 16 consecutive elements correspond to the positions of the matrix. Assumes column-major order. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix. * @param {Matrix4} [result] The object onto which to store the result. * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided. * * @example * // Create the Matrix4: * // [1.0, 2.0, 3.0, 4.0] * // [1.0, 2.0, 3.0, 4.0] * // [1.0, 2.0, 3.0, 4.0] * // [1.0, 2.0, 3.0, 4.0] * * const v = [1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0]; * const m = Cesium.Matrix4.fromArray(v); * * // Create same Matrix4 with using an offset into an array * const v2 = [0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0]; * const m2 = Cesium.Matrix4.fromArray(v2, 2); */ Matrix4.fromArray = Matrix4.unpack; /** * Computes a Matrix4 instance from a column-major order array. * * @param {Number[]} values The column-major order array. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromColumnMajorArray = function (values, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("values", values); //>>includeEnd('debug'); return Matrix4.clone(values, result); }; /** * Computes a Matrix4 instance from a row-major order array. * The resulting matrix will be in column-major order. * * @param {Number[]} values The row-major order array. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromRowMajorArray = function (values, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("values", values); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix4( values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], values[8], values[9], values[10], values[11], values[12], values[13], values[14], values[15] ); } result[0] = values[0]; result[1] = values[4]; result[2] = values[8]; result[3] = values[12]; result[4] = values[1]; result[5] = values[5]; result[6] = values[9]; result[7] = values[13]; result[8] = values[2]; result[9] = values[6]; result[10] = values[10]; result[11] = values[14]; result[12] = values[3]; result[13] = values[7]; result[14] = values[11]; result[15] = values[15]; return result; }; /** * Computes a Matrix4 instance from a Matrix3 representing the rotation * and a Cartesian3 representing the translation. * * @param {Matrix3} rotation The upper left portion of the matrix representing the rotation. * @param {Cartesian3} [translation=Cartesian3.ZERO] The upper right portion of the matrix representing the translation. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromRotationTranslation = function (rotation, translation, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rotation", rotation); //>>includeEnd('debug'); translation = when.defaultValue(translation, Cartesian3.ZERO); if (!when.defined(result)) { return new Matrix4( rotation[0], rotation[3], rotation[6], translation.x, rotation[1], rotation[4], rotation[7], translation.y, rotation[2], rotation[5], rotation[8], translation.z, 0.0, 0.0, 0.0, 1.0 ); } result[0] = rotation[0]; result[1] = rotation[1]; result[2] = rotation[2]; result[3] = 0.0; result[4] = rotation[3]; result[5] = rotation[4]; result[6] = rotation[5]; result[7] = 0.0; result[8] = rotation[6]; result[9] = rotation[7]; result[10] = rotation[8]; result[11] = 0.0; result[12] = translation.x; result[13] = translation.y; result[14] = translation.z; result[15] = 1.0; return result; }; /** * Computes a Matrix4 instance from a translation, rotation, and scale (TRS) * representation with the rotation represented as a quaternion. * * @param {Cartesian3} translation The translation transformation. * @param {Quaternion} rotation The rotation transformation. * @param {Cartesian3} scale The non-uniform scale transformation. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. * * @example * const result = Cesium.Matrix4.fromTranslationQuaternionRotationScale( * new Cesium.Cartesian3(1.0, 2.0, 3.0), // translation * Cesium.Quaternion.IDENTITY, // rotation * new Cesium.Cartesian3(7.0, 8.0, 9.0), // scale * result); */ Matrix4.fromTranslationQuaternionRotationScale = function ( translation, rotation, scale, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("translation", translation); RuntimeError.Check.typeOf.object("rotation", rotation); RuntimeError.Check.typeOf.object("scale", scale); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Matrix4(); } const scaleX = scale.x; const scaleY = scale.y; const scaleZ = scale.z; const x2 = rotation.x * rotation.x; const xy = rotation.x * rotation.y; const xz = rotation.x * rotation.z; const xw = rotation.x * rotation.w; const y2 = rotation.y * rotation.y; const yz = rotation.y * rotation.z; const yw = rotation.y * rotation.w; const z2 = rotation.z * rotation.z; const zw = rotation.z * rotation.w; const w2 = rotation.w * rotation.w; const m00 = x2 - y2 - z2 + w2; const m01 = 2.0 * (xy - zw); const m02 = 2.0 * (xz + yw); const m10 = 2.0 * (xy + zw); const m11 = -x2 + y2 - z2 + w2; const m12 = 2.0 * (yz - xw); const m20 = 2.0 * (xz - yw); const m21 = 2.0 * (yz + xw); const m22 = -x2 - y2 + z2 + w2; result[0] = m00 * scaleX; result[1] = m10 * scaleX; result[2] = m20 * scaleX; result[3] = 0.0; result[4] = m01 * scaleY; result[5] = m11 * scaleY; result[6] = m21 * scaleY; result[7] = 0.0; result[8] = m02 * scaleZ; result[9] = m12 * scaleZ; result[10] = m22 * scaleZ; result[11] = 0.0; result[12] = translation.x; result[13] = translation.y; result[14] = translation.z; result[15] = 1.0; return result; }; /** * Creates a Matrix4 instance from a {@link TranslationRotationScale} instance. * * @param {TranslationRotationScale} translationRotationScale The instance. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromTranslationRotationScale = function ( translationRotationScale, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("translationRotationScale", translationRotationScale); //>>includeEnd('debug'); return Matrix4.fromTranslationQuaternionRotationScale( translationRotationScale.translation, translationRotationScale.rotation, translationRotationScale.scale, result ); }; /** * Creates a Matrix4 instance from a Cartesian3 representing the translation. * * @param {Cartesian3} translation The upper right portion of the matrix representing the translation. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. * * @see Matrix4.multiplyByTranslation */ Matrix4.fromTranslation = function (translation, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("translation", translation); //>>includeEnd('debug'); return Matrix4.fromRotationTranslation(Matrix3.IDENTITY, translation, result); }; /** * Computes a Matrix4 instance representing a non-uniform scale. * * @param {Cartesian3} scale The x, y, and z scale factors. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. * * @example * // Creates * // [7.0, 0.0, 0.0, 0.0] * // [0.0, 8.0, 0.0, 0.0] * // [0.0, 0.0, 9.0, 0.0] * // [0.0, 0.0, 0.0, 1.0] * const m = Cesium.Matrix4.fromScale(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */ Matrix4.fromScale = function (scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("scale", scale); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix4( scale.x, 0.0, 0.0, 0.0, 0.0, scale.y, 0.0, 0.0, 0.0, 0.0, scale.z, 0.0, 0.0, 0.0, 0.0, 1.0 ); } result[0] = scale.x; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = scale.y; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = scale.z; result[11] = 0.0; result[12] = 0.0; result[13] = 0.0; result[14] = 0.0; result[15] = 1.0; return result; }; /** * Computes a Matrix4 instance representing a uniform scale. * * @param {Number} scale The uniform scale factor. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. * * @example * // Creates * // [2.0, 0.0, 0.0, 0.0] * // [0.0, 2.0, 0.0, 0.0] * // [0.0, 0.0, 2.0, 0.0] * // [0.0, 0.0, 0.0, 1.0] * const m = Cesium.Matrix4.fromUniformScale(2.0); */ Matrix4.fromUniformScale = function (scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("scale", scale); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix4( scale, 0.0, 0.0, 0.0, 0.0, scale, 0.0, 0.0, 0.0, 0.0, scale, 0.0, 0.0, 0.0, 0.0, 1.0 ); } result[0] = scale; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = scale; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = scale; result[11] = 0.0; result[12] = 0.0; result[13] = 0.0; result[14] = 0.0; result[15] = 1.0; return result; }; /** * Creates a rotation matrix. * * @param {Matrix3} rotation The rotation matrix. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromRotation = function (rotation, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rotation", rotation); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Matrix4(); } result[0] = rotation[0]; result[1] = rotation[1]; result[2] = rotation[2]; result[3] = 0.0; result[4] = rotation[3]; result[5] = rotation[4]; result[6] = rotation[5]; result[7] = 0.0; result[8] = rotation[6]; result[9] = rotation[7]; result[10] = rotation[8]; result[11] = 0.0; result[12] = 0.0; result[13] = 0.0; result[14] = 0.0; result[15] = 1.0; return result; }; const fromCameraF = new Cartesian3(); const fromCameraR = new Cartesian3(); const fromCameraU = new Cartesian3(); /** * Computes a Matrix4 instance from a Camera. * * @param {Camera} camera The camera to use. * @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided. */ Matrix4.fromCamera = function (camera, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("camera", camera); //>>includeEnd('debug'); const position = camera.position; const direction = camera.direction; const up = camera.up; //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("camera.position", position); RuntimeError.Check.typeOf.object("camera.direction", direction); RuntimeError.Check.typeOf.object("camera.up", up); //>>includeEnd('debug'); Cartesian3.normalize(direction, fromCameraF); Cartesian3.normalize( Cartesian3.cross(fromCameraF, up, fromCameraR), fromCameraR ); Cartesian3.normalize( Cartesian3.cross(fromCameraR, fromCameraF, fromCameraU), fromCameraU ); const sX = fromCameraR.x; const sY = fromCameraR.y; const sZ = fromCameraR.z; const fX = fromCameraF.x; const fY = fromCameraF.y; const fZ = fromCameraF.z; const uX = fromCameraU.x; const uY = fromCameraU.y; const uZ = fromCameraU.z; const positionX = position.x; const positionY = position.y; const positionZ = position.z; const t0 = sX * -positionX + sY * -positionY + sZ * -positionZ; const t1 = uX * -positionX + uY * -positionY + uZ * -positionZ; const t2 = fX * positionX + fY * positionY + fZ * positionZ; // The code below this comment is an optimized // version of the commented lines. // Rather that create two matrices and then multiply, // we just bake in the multiplcation as part of creation. // const rotation = new Matrix4( // sX, sY, sZ, 0.0, // uX, uY, uZ, 0.0, // -fX, -fY, -fZ, 0.0, // 0.0, 0.0, 0.0, 1.0); // const translation = new Matrix4( // 1.0, 0.0, 0.0, -position.x, // 0.0, 1.0, 0.0, -position.y, // 0.0, 0.0, 1.0, -position.z, // 0.0, 0.0, 0.0, 1.0); // return rotation.multiply(translation); if (!when.defined(result)) { return new Matrix4( sX, sY, sZ, t0, uX, uY, uZ, t1, -fX, -fY, -fZ, t2, 0.0, 0.0, 0.0, 1.0 ); } result[0] = sX; result[1] = uX; result[2] = -fX; result[3] = 0.0; result[4] = sY; result[5] = uY; result[6] = -fY; result[7] = 0.0; result[8] = sZ; result[9] = uZ; result[10] = -fZ; result[11] = 0.0; result[12] = t0; result[13] = t1; result[14] = t2; result[15] = 1.0; return result; }; /** * Computes a Matrix4 instance representing a perspective transformation matrix. * * @param {Number} fovY The field of view along the Y axis in radians. * @param {Number} aspectRatio The aspect ratio. * @param {Number} near The distance to the near plane in meters. * @param {Number} far The distance to the far plane in meters. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. * * @exception {DeveloperError} fovY must be in (0, PI]. * @exception {DeveloperError} aspectRatio must be greater than zero. * @exception {DeveloperError} near must be greater than zero. * @exception {DeveloperError} far must be greater than zero. */ Matrix4.computePerspectiveFieldOfView = function ( fovY, aspectRatio, near, far, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number.greaterThan("fovY", fovY, 0.0); RuntimeError.Check.typeOf.number.lessThan("fovY", fovY, Math.PI); RuntimeError.Check.typeOf.number.greaterThan("near", near, 0.0); RuntimeError.Check.typeOf.number.greaterThan("far", far, 0.0); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const bottom = Math.tan(fovY * 0.5); const column1Row1 = 1.0 / bottom; const column0Row0 = column1Row1 / aspectRatio; const column2Row2 = (far + near) / (near - far); const column3Row2 = (2.0 * far * near) / (near - far); result[0] = column0Row0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = column1Row1; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = column2Row2; result[11] = -1.0; result[12] = 0.0; result[13] = 0.0; result[14] = column3Row2; result[15] = 0.0; return result; }; /** * Computes a Matrix4 instance representing an orthographic transformation matrix. * * @param {Number} left The number of meters to the left of the camera that will be in view. * @param {Number} right The number of meters to the right of the camera that will be in view. * @param {Number} bottom The number of meters below of the camera that will be in view. * @param {Number} top The number of meters above of the camera that will be in view. * @param {Number} near The distance to the near plane in meters. * @param {Number} far The distance to the far plane in meters. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. */ Matrix4.computeOrthographicOffCenter = function ( left, right, bottom, top, near, far, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("left", left); RuntimeError.Check.typeOf.number("right", right); RuntimeError.Check.typeOf.number("bottom", bottom); RuntimeError.Check.typeOf.number("top", top); RuntimeError.Check.typeOf.number("near", near); RuntimeError.Check.typeOf.number("far", far); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); let a = 1.0 / (right - left); let b = 1.0 / (top - bottom); let c = 1.0 / (far - near); const tx = -(right + left) * a; const ty = -(top + bottom) * b; const tz = -(far + near) * c; a *= 2.0; b *= 2.0; c *= -2.0; result[0] = a; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = b; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = c; result[11] = 0.0; result[12] = tx; result[13] = ty; result[14] = tz; result[15] = 1.0; return result; }; /** * Computes a Matrix4 instance representing an off center perspective transformation. * * @param {Number} left The number of meters to the left of the camera that will be in view. * @param {Number} right The number of meters to the right of the camera that will be in view. * @param {Number} bottom The number of meters below of the camera that will be in view. * @param {Number} top The number of meters above of the camera that will be in view. * @param {Number} near The distance to the near plane in meters. * @param {Number} far The distance to the far plane in meters. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. */ Matrix4.computePerspectiveOffCenter = function ( left, right, bottom, top, near, far, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("left", left); RuntimeError.Check.typeOf.number("right", right); RuntimeError.Check.typeOf.number("bottom", bottom); RuntimeError.Check.typeOf.number("top", top); RuntimeError.Check.typeOf.number("near", near); RuntimeError.Check.typeOf.number("far", far); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const column0Row0 = (2.0 * near) / (right - left); const column1Row1 = (2.0 * near) / (top - bottom); const column2Row0 = (right + left) / (right - left); const column2Row1 = (top + bottom) / (top - bottom); const column2Row2 = -(far + near) / (far - near); const column2Row3 = -1.0; const column3Row2 = (-2.0 * far * near) / (far - near); result[0] = column0Row0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = column1Row1; result[6] = 0.0; result[7] = 0.0; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = column2Row3; result[12] = 0.0; result[13] = 0.0; result[14] = column3Row2; result[15] = 0.0; return result; }; /** * Computes a Matrix4 instance representing an infinite off center perspective transformation. * * @param {Number} left The number of meters to the left of the camera that will be in view. * @param {Number} right The number of meters to the right of the camera that will be in view. * @param {Number} bottom The number of meters below of the camera that will be in view. * @param {Number} top The number of meters above of the camera that will be in view. * @param {Number} near The distance to the near plane in meters. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. */ Matrix4.computeInfinitePerspectiveOffCenter = function ( left, right, bottom, top, near, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("left", left); RuntimeError.Check.typeOf.number("right", right); RuntimeError.Check.typeOf.number("bottom", bottom); RuntimeError.Check.typeOf.number("top", top); RuntimeError.Check.typeOf.number("near", near); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const column0Row0 = (2.0 * near) / (right - left); const column1Row1 = (2.0 * near) / (top - bottom); const column2Row0 = (right + left) / (right - left); const column2Row1 = (top + bottom) / (top - bottom); const column2Row2 = -1.0; const column2Row3 = -1.0; const column3Row2 = -2.0 * near; result[0] = column0Row0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = column1Row1; result[6] = 0.0; result[7] = 0.0; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = column2Row3; result[12] = 0.0; result[13] = 0.0; result[14] = column3Row2; result[15] = 0.0; return result; }; /** * Computes a Matrix4 instance that transforms from normalized device coordinates to window coordinates. * * @param {Object} [viewport = { x : 0.0, y : 0.0, width : 0.0, height : 0.0 }] The viewport's corners as shown in Example 1. * @param {Number} [nearDepthRange=0.0] The near plane distance in window coordinates. * @param {Number} [farDepthRange=1.0] The far plane distance in window coordinates. * @param {Matrix4} [result] The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. * * @example * // Create viewport transformation using an explicit viewport and depth range. * const m = Cesium.Matrix4.computeViewportTransformation({ * x : 0.0, * y : 0.0, * width : 1024.0, * height : 768.0 * }, 0.0, 1.0, new Cesium.Matrix4()); */ Matrix4.computeViewportTransformation = function ( viewport, nearDepthRange, farDepthRange, result ) { if (!when.defined(result)) { result = new Matrix4(); } viewport = when.defaultValue(viewport, when.defaultValue.EMPTY_OBJECT); const x = when.defaultValue(viewport.x, 0.0); const y = when.defaultValue(viewport.y, 0.0); const width = when.defaultValue(viewport.width, 0.0); const height = when.defaultValue(viewport.height, 0.0); nearDepthRange = when.defaultValue(nearDepthRange, 0.0); farDepthRange = when.defaultValue(farDepthRange, 1.0); const halfWidth = width * 0.5; const halfHeight = height * 0.5; const halfDepth = (farDepthRange - nearDepthRange) * 0.5; const column0Row0 = halfWidth; const column1Row1 = halfHeight; const column2Row2 = halfDepth; const column3Row0 = x + halfWidth; const column3Row1 = y + halfHeight; const column3Row2 = nearDepthRange + halfDepth; const column3Row3 = 1.0; result[0] = column0Row0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = column1Row1; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = column2Row2; result[11] = 0.0; result[12] = column3Row0; result[13] = column3Row1; result[14] = column3Row2; result[15] = column3Row3; return result; }; /** * Computes a Matrix4 instance that transforms from world space to view space. * * @param {Cartesian3} position The position of the camera. * @param {Cartesian3} direction The forward direction. * @param {Cartesian3} up The up direction. * @param {Cartesian3} right The right direction. * @param {Matrix4} result The object in which the result will be stored. * @returns {Matrix4} The modified result parameter. */ Matrix4.computeView = function (position, direction, up, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("position", position); RuntimeError.Check.typeOf.object("direction", direction); RuntimeError.Check.typeOf.object("up", up); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = right.x; result[1] = up.x; result[2] = -direction.x; result[3] = 0.0; result[4] = right.y; result[5] = up.y; result[6] = -direction.y; result[7] = 0.0; result[8] = right.z; result[9] = up.z; result[10] = -direction.z; result[11] = 0.0; result[12] = -Cartesian3.dot(right, position); result[13] = -Cartesian3.dot(up, position); result[14] = Cartesian3.dot(direction, position); result[15] = 1.0; return result; }; /** * Computes an Array from the provided Matrix4 instance. * The array will be in column-major order. * * @param {Matrix4} matrix The matrix to use.. * @param {Number[]} [result] The Array onto which to store the result. * @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided. * * @example * //create an array from an instance of Matrix4 * // m = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * const a = Cesium.Matrix4.toArray(m); * * // m remains the same * //creates a = [10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0] */ Matrix4.toArray = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); if (!when.defined(result)) { return [ matrix[0], matrix[1], matrix[2], matrix[3], matrix[4], matrix[5], matrix[6], matrix[7], matrix[8], matrix[9], matrix[10], matrix[11], matrix[12], matrix[13], matrix[14], matrix[15], ]; } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; result[9] = matrix[9]; result[10] = matrix[10]; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; /** * Computes the array index of the element at the provided row and column. * * @param {Number} row The zero-based index of the row. * @param {Number} column The zero-based index of the column. * @returns {Number} The index of the element at the provided row and column. * * @exception {DeveloperError} row must be 0, 1, 2, or 3. * @exception {DeveloperError} column must be 0, 1, 2, or 3. * * @example * const myMatrix = new Cesium.Matrix4(); * const column1Row0Index = Cesium.Matrix4.getElementIndex(1, 0); * const column1Row0 = myMatrix[column1Row0Index]; * myMatrix[column1Row0Index] = 10.0; */ Matrix4.getElementIndex = function (column, row) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number.greaterThanOrEquals("row", row, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("row", row, 3); RuntimeError.Check.typeOf.number.greaterThanOrEquals("column", column, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("column", column, 3); //>>includeEnd('debug'); return column * 4 + row; }; /** * Retrieves a copy of the matrix column at the provided index as a Cartesian4 instance. * * @param {Matrix4} matrix The matrix to use. * @param {Number} index The zero-based index of the column to retrieve. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, 2, or 3. * * @example * //returns a Cartesian4 instance with values from the specified column * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * //Example 1: Creates an instance of Cartesian * const a = Cesium.Matrix4.getColumn(m, 2, new Cesium.Cartesian4()); * * @example * //Example 2: Sets values for Cartesian instance * const a = new Cesium.Cartesian4(); * Cesium.Matrix4.getColumn(m, 2, a); * * // a.x = 12.0; a.y = 16.0; a.z = 20.0; a.w = 24.0; */ Matrix4.getColumn = function (matrix, index, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number.greaterThanOrEquals("index", index, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("index", index, 3); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const startIndex = index * 4; const x = matrix[startIndex]; const y = matrix[startIndex + 1]; const z = matrix[startIndex + 2]; const w = matrix[startIndex + 3]; result.x = x; result.y = y; result.z = z; result.w = w; return result; }; /** * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian4 instance. * * @param {Matrix4} matrix The matrix to use. * @param {Number} index The zero-based index of the column to set. * @param {Cartesian4} cartesian The Cartesian whose values will be assigned to the specified column. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, 2, or 3. * * @example * //creates a new Matrix4 instance with new column values from the Cartesian4 instance * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * const a = Cesium.Matrix4.setColumn(m, 2, new Cesium.Cartesian4(99.0, 98.0, 97.0, 96.0), new Cesium.Matrix4()); * * // m remains the same * // a = [10.0, 11.0, 99.0, 13.0] * // [14.0, 15.0, 98.0, 17.0] * // [18.0, 19.0, 97.0, 21.0] * // [22.0, 23.0, 96.0, 25.0] */ Matrix4.setColumn = function (matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number.greaterThanOrEquals("index", index, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("index", index, 3); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result = Matrix4.clone(matrix, result); const startIndex = index * 4; result[startIndex] = cartesian.x; result[startIndex + 1] = cartesian.y; result[startIndex + 2] = cartesian.z; result[startIndex + 3] = cartesian.w; return result; }; /** * Retrieves a copy of the matrix row at the provided index as a Cartesian4 instance. * * @param {Matrix4} matrix The matrix to use. * @param {Number} index The zero-based index of the row to retrieve. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, 2, or 3. * * @example * //returns a Cartesian4 instance with values from the specified column * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * //Example 1: Returns an instance of Cartesian * const a = Cesium.Matrix4.getRow(m, 2, new Cesium.Cartesian4()); * * @example * //Example 2: Sets values for a Cartesian instance * const a = new Cesium.Cartesian4(); * Cesium.Matrix4.getRow(m, 2, a); * * // a.x = 18.0; a.y = 19.0; a.z = 20.0; a.w = 21.0; */ Matrix4.getRow = function (matrix, index, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number.greaterThanOrEquals("index", index, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("index", index, 3); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const x = matrix[index]; const y = matrix[index + 4]; const z = matrix[index + 8]; const w = matrix[index + 12]; result.x = x; result.y = y; result.z = z; result.w = w; return result; }; /** * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian4 instance. * * @param {Matrix4} matrix The matrix to use. * @param {Number} index The zero-based index of the row to set. * @param {Cartesian4} cartesian The Cartesian whose values will be assigned to the specified row. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, 2, or 3. * * @example * //create a new Matrix4 instance with new row values from the Cartesian4 instance * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * const a = Cesium.Matrix4.setRow(m, 2, new Cesium.Cartesian4(99.0, 98.0, 97.0, 96.0), new Cesium.Matrix4()); * * // m remains the same * // a = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [99.0, 98.0, 97.0, 96.0] * // [22.0, 23.0, 24.0, 25.0] */ Matrix4.setRow = function (matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number.greaterThanOrEquals("index", index, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("index", index, 3); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result = Matrix4.clone(matrix, result); result[index] = cartesian.x; result[index + 4] = cartesian.y; result[index + 8] = cartesian.z; result[index + 12] = cartesian.w; return result; }; /** * Computes a new matrix that replaces the translation in the rightmost column of the provided * matrix with the provided translation. This assumes the matrix is an affine transformation. * * @param {Matrix4} matrix The matrix to use. * @param {Cartesian3} translation The translation that replaces the translation of the provided matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.setTranslation = function (matrix, translation, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("translation", translation); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; result[9] = matrix[9]; result[10] = matrix[10]; result[11] = matrix[11]; result[12] = translation.x; result[13] = translation.y; result[14] = translation.z; result[15] = matrix[15]; return result; }; const scaleScratch1$1 = new Cartesian3(); /** * Computes a new matrix that replaces the scale with the provided scale. * This assumes the matrix is an affine transformation. * * @param {Matrix4} matrix The matrix to use. * @param {Cartesian3} scale The scale that replaces the scale of the provided matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @see Matrix4.setUniformScale * @see Matrix4.fromScale * @see Matrix4.fromUniformScale * @see Matrix4.multiplyByScale * @see Matrix4.multiplyByUniformScale * @see Matrix4.getScale */ Matrix4.setScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("scale", scale); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const existingScale = Matrix4.getScale(matrix, scaleScratch1$1); const scaleRatioX = scale.x / existingScale.x; const scaleRatioY = scale.y / existingScale.y; const scaleRatioZ = scale.z / existingScale.y; result[0] = matrix[0] * scaleRatioX; result[1] = matrix[1] * scaleRatioX; result[2] = matrix[2] * scaleRatioX; result[3] = matrix[3]; result[4] = matrix[4] * scaleRatioY; result[5] = matrix[5] * scaleRatioY; result[6] = matrix[6] * scaleRatioY; result[7] = matrix[7]; result[8] = matrix[8] * scaleRatioZ; result[9] = matrix[9] * scaleRatioZ; result[10] = matrix[10] * scaleRatioZ; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; const scaleScratch2$1 = new Cartesian3(); /** * Computes a new matrix that replaces the scale with the provided uniform scale. * This assumes the matrix is an affine transformation. * * @param {Matrix4} matrix The matrix to use. * @param {Number} scale The uniform scale that replaces the scale of the provided matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @see Matrix4.setScale * @see Matrix4.fromScale * @see Matrix4.fromUniformScale * @see Matrix4.multiplyByScale * @see Matrix4.multiplyByUniformScale * @see Matrix4.getScale */ Matrix4.setUniformScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number("scale", scale); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const existingScale = Matrix4.getScale(matrix, scaleScratch2$1); const scaleRatioX = scale / existingScale.x; const scaleRatioY = scale / existingScale.y; const scaleRatioZ = scale / existingScale.z; result[0] = matrix[0] * scaleRatioX; result[1] = matrix[1] * scaleRatioX; result[2] = matrix[2] * scaleRatioX; result[3] = matrix[3]; result[4] = matrix[4] * scaleRatioY; result[5] = matrix[5] * scaleRatioY; result[6] = matrix[6] * scaleRatioY; result[7] = matrix[7]; result[8] = matrix[8] * scaleRatioZ; result[9] = matrix[9] * scaleRatioZ; result[10] = matrix[10] * scaleRatioZ; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; const scratchColumn$1 = new Cartesian3(); /** * Extracts the non-uniform scale assuming the matrix is an affine transformation. * * @param {Matrix4} matrix The matrix. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter * * @see Matrix4.multiplyByScale * @see Matrix4.multiplyByUniformScale * @see Matrix4.fromScale * @see Matrix4.fromUniformScale * @see Matrix4.setScale * @see Matrix4.setUniformScale */ Matrix4.getScale = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Cartesian3.magnitude( Cartesian3.fromElements(matrix[0], matrix[1], matrix[2], scratchColumn$1) ); result.y = Cartesian3.magnitude( Cartesian3.fromElements(matrix[4], matrix[5], matrix[6], scratchColumn$1) ); result.z = Cartesian3.magnitude( Cartesian3.fromElements(matrix[8], matrix[9], matrix[10], scratchColumn$1) ); return result; }; const scaleScratch3$1 = new Cartesian3(); /** * Computes the maximum scale assuming the matrix is an affine transformation. * The maximum scale is the maximum length of the column vectors in the upper-left * 3x3 matrix. * * @param {Matrix4} matrix The matrix. * @returns {Number} The maximum scale. */ Matrix4.getMaximumScale = function (matrix) { Matrix4.getScale(matrix, scaleScratch3$1); return Cartesian3.maximumComponent(scaleScratch3$1); }; const scaleScratch4$1 = new Cartesian3(); /** * Sets the rotation assuming the matrix is an affine transformation. * * @param {Matrix4} matrix The matrix. * @param {Matrix4} rotation The rotation matrix. * @returns {Matrix4} The modified result parameter. * * @see Matrix4.fromRotation * @see Matrix4.getRotation */ Matrix4.setRotation = function (matrix, rotation, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const scale = Matrix4.getScale(matrix, scaleScratch4$1); result[0] = rotation[0] * scale.x; result[1] = rotation[1] * scale.x; result[2] = rotation[2] * scale.x; result[3] = matrix[3]; result[4] = rotation[3] * scale.y; result[5] = rotation[4] * scale.y; result[6] = rotation[5] * scale.y; result[7] = matrix[7]; result[8] = rotation[6] * scale.z; result[9] = rotation[7] * scale.z; result[10] = rotation[8] * scale.z; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; const scaleScratch5$1 = new Cartesian3(); /** * Extracts the rotation matrix assuming the matrix is an affine transformation. * * @param {Matrix4} matrix The matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @see Matrix4.setRotation * @see Matrix4.fromRotation */ Matrix4.getRotation = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const scale = Matrix4.getScale(matrix, scaleScratch5$1); result[0] = matrix[0] / scale.x; result[1] = matrix[1] / scale.x; result[2] = matrix[2] / scale.x; result[3] = matrix[4] / scale.y; result[4] = matrix[5] / scale.y; result[5] = matrix[6] / scale.y; result[6] = matrix[8] / scale.z; result[7] = matrix[9] / scale.z; result[8] = matrix[10] / scale.z; return result; }; /** * Computes the product of two matrices. * * @param {Matrix4} left The first matrix. * @param {Matrix4} right The second matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.multiply = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const left0 = left[0]; const left1 = left[1]; const left2 = left[2]; const left3 = left[3]; const left4 = left[4]; const left5 = left[5]; const left6 = left[6]; const left7 = left[7]; const left8 = left[8]; const left9 = left[9]; const left10 = left[10]; const left11 = left[11]; const left12 = left[12]; const left13 = left[13]; const left14 = left[14]; const left15 = left[15]; const right0 = right[0]; const right1 = right[1]; const right2 = right[2]; const right3 = right[3]; const right4 = right[4]; const right5 = right[5]; const right6 = right[6]; const right7 = right[7]; const right8 = right[8]; const right9 = right[9]; const right10 = right[10]; const right11 = right[11]; const right12 = right[12]; const right13 = right[13]; const right14 = right[14]; const right15 = right[15]; const column0Row0 = left0 * right0 + left4 * right1 + left8 * right2 + left12 * right3; const column0Row1 = left1 * right0 + left5 * right1 + left9 * right2 + left13 * right3; const column0Row2 = left2 * right0 + left6 * right1 + left10 * right2 + left14 * right3; const column0Row3 = left3 * right0 + left7 * right1 + left11 * right2 + left15 * right3; const column1Row0 = left0 * right4 + left4 * right5 + left8 * right6 + left12 * right7; const column1Row1 = left1 * right4 + left5 * right5 + left9 * right6 + left13 * right7; const column1Row2 = left2 * right4 + left6 * right5 + left10 * right6 + left14 * right7; const column1Row3 = left3 * right4 + left7 * right5 + left11 * right6 + left15 * right7; const column2Row0 = left0 * right8 + left4 * right9 + left8 * right10 + left12 * right11; const column2Row1 = left1 * right8 + left5 * right9 + left9 * right10 + left13 * right11; const column2Row2 = left2 * right8 + left6 * right9 + left10 * right10 + left14 * right11; const column2Row3 = left3 * right8 + left7 * right9 + left11 * right10 + left15 * right11; const column3Row0 = left0 * right12 + left4 * right13 + left8 * right14 + left12 * right15; const column3Row1 = left1 * right12 + left5 * right13 + left9 * right14 + left13 * right15; const column3Row2 = left2 * right12 + left6 * right13 + left10 * right14 + left14 * right15; const column3Row3 = left3 * right12 + left7 * right13 + left11 * right14 + left15 * right15; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = column0Row3; result[4] = column1Row0; result[5] = column1Row1; result[6] = column1Row2; result[7] = column1Row3; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = column2Row3; result[12] = column3Row0; result[13] = column3Row1; result[14] = column3Row2; result[15] = column3Row3; return result; }; /** * Computes the sum of two matrices. * * @param {Matrix4} left The first matrix. * @param {Matrix4} right The second matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.add = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = left[0] + right[0]; result[1] = left[1] + right[1]; result[2] = left[2] + right[2]; result[3] = left[3] + right[3]; result[4] = left[4] + right[4]; result[5] = left[5] + right[5]; result[6] = left[6] + right[6]; result[7] = left[7] + right[7]; result[8] = left[8] + right[8]; result[9] = left[9] + right[9]; result[10] = left[10] + right[10]; result[11] = left[11] + right[11]; result[12] = left[12] + right[12]; result[13] = left[13] + right[13]; result[14] = left[14] + right[14]; result[15] = left[15] + right[15]; return result; }; /** * Computes the difference of two matrices. * * @param {Matrix4} left The first matrix. * @param {Matrix4} right The second matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.subtract = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = left[0] - right[0]; result[1] = left[1] - right[1]; result[2] = left[2] - right[2]; result[3] = left[3] - right[3]; result[4] = left[4] - right[4]; result[5] = left[5] - right[5]; result[6] = left[6] - right[6]; result[7] = left[7] - right[7]; result[8] = left[8] - right[8]; result[9] = left[9] - right[9]; result[10] = left[10] - right[10]; result[11] = left[11] - right[11]; result[12] = left[12] - right[12]; result[13] = left[13] - right[13]; result[14] = left[14] - right[14]; result[15] = left[15] - right[15]; return result; }; /** * Computes the product of two matrices assuming the matrices are affine transformation matrices, * where the upper left 3x3 elements are any matrix, and * the upper three elements in the fourth column are the translation. * The bottom row is assumed to be [0, 0, 0, 1]. * The matrix is not verified to be in the proper form. * This method is faster than computing the product for general 4x4 * matrices using {@link Matrix4.multiply}. * * @param {Matrix4} left The first matrix. * @param {Matrix4} right The second matrix. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * const m1 = new Cesium.Matrix4(1.0, 6.0, 7.0, 0.0, 2.0, 5.0, 8.0, 0.0, 3.0, 4.0, 9.0, 0.0, 0.0, 0.0, 0.0, 1.0); * const m2 = Cesium.Transforms.eastNorthUpToFixedFrame(new Cesium.Cartesian3(1.0, 1.0, 1.0)); * const m3 = Cesium.Matrix4.multiplyTransformation(m1, m2, new Cesium.Matrix4()); */ Matrix4.multiplyTransformation = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const left0 = left[0]; const left1 = left[1]; const left2 = left[2]; const left4 = left[4]; const left5 = left[5]; const left6 = left[6]; const left8 = left[8]; const left9 = left[9]; const left10 = left[10]; const left12 = left[12]; const left13 = left[13]; const left14 = left[14]; const right0 = right[0]; const right1 = right[1]; const right2 = right[2]; const right4 = right[4]; const right5 = right[5]; const right6 = right[6]; const right8 = right[8]; const right9 = right[9]; const right10 = right[10]; const right12 = right[12]; const right13 = right[13]; const right14 = right[14]; const column0Row0 = left0 * right0 + left4 * right1 + left8 * right2; const column0Row1 = left1 * right0 + left5 * right1 + left9 * right2; const column0Row2 = left2 * right0 + left6 * right1 + left10 * right2; const column1Row0 = left0 * right4 + left4 * right5 + left8 * right6; const column1Row1 = left1 * right4 + left5 * right5 + left9 * right6; const column1Row2 = left2 * right4 + left6 * right5 + left10 * right6; const column2Row0 = left0 * right8 + left4 * right9 + left8 * right10; const column2Row1 = left1 * right8 + left5 * right9 + left9 * right10; const column2Row2 = left2 * right8 + left6 * right9 + left10 * right10; const column3Row0 = left0 * right12 + left4 * right13 + left8 * right14 + left12; const column3Row1 = left1 * right12 + left5 * right13 + left9 * right14 + left13; const column3Row2 = left2 * right12 + left6 * right13 + left10 * right14 + left14; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = 0.0; result[4] = column1Row0; result[5] = column1Row1; result[6] = column1Row2; result[7] = 0.0; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = 0.0; result[12] = column3Row0; result[13] = column3Row1; result[14] = column3Row2; result[15] = 1.0; return result; }; /** * Multiplies a transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0]) * by a 3x3 rotation matrix. This is an optimization * for Matrix4.multiply(m, Matrix4.fromRotationTranslation(rotation), m); with less allocations and arithmetic operations. * * @param {Matrix4} matrix The matrix on the left-hand side. * @param {Matrix3} rotation The 3x3 rotation matrix on the right-hand side. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromRotationTranslation(rotation), m); * Cesium.Matrix4.multiplyByMatrix3(m, rotation, m); */ Matrix4.multiplyByMatrix3 = function (matrix, rotation, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("rotation", rotation); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const left0 = matrix[0]; const left1 = matrix[1]; const left2 = matrix[2]; const left4 = matrix[4]; const left5 = matrix[5]; const left6 = matrix[6]; const left8 = matrix[8]; const left9 = matrix[9]; const left10 = matrix[10]; const right0 = rotation[0]; const right1 = rotation[1]; const right2 = rotation[2]; const right4 = rotation[3]; const right5 = rotation[4]; const right6 = rotation[5]; const right8 = rotation[6]; const right9 = rotation[7]; const right10 = rotation[8]; const column0Row0 = left0 * right0 + left4 * right1 + left8 * right2; const column0Row1 = left1 * right0 + left5 * right1 + left9 * right2; const column0Row2 = left2 * right0 + left6 * right1 + left10 * right2; const column1Row0 = left0 * right4 + left4 * right5 + left8 * right6; const column1Row1 = left1 * right4 + left5 * right5 + left9 * right6; const column1Row2 = left2 * right4 + left6 * right5 + left10 * right6; const column2Row0 = left0 * right8 + left4 * right9 + left8 * right10; const column2Row1 = left1 * right8 + left5 * right9 + left9 * right10; const column2Row2 = left2 * right8 + left6 * right9 + left10 * right10; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = 0.0; result[4] = column1Row0; result[5] = column1Row1; result[6] = column1Row2; result[7] = 0.0; result[8] = column2Row0; result[9] = column2Row1; result[10] = column2Row2; result[11] = 0.0; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; /** * Multiplies a transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0]) * by an implicit translation matrix defined by a {@link Cartesian3}. This is an optimization * for Matrix4.multiply(m, Matrix4.fromTranslation(position), m); with less allocations and arithmetic operations. * * @param {Matrix4} matrix The matrix on the left-hand side. * @param {Cartesian3} translation The translation on the right-hand side. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromTranslation(position), m); * Cesium.Matrix4.multiplyByTranslation(m, position, m); */ Matrix4.multiplyByTranslation = function (matrix, translation, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("translation", translation); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const x = translation.x; const y = translation.y; const z = translation.z; const tx = x * matrix[0] + y * matrix[4] + z * matrix[8] + matrix[12]; const ty = x * matrix[1] + y * matrix[5] + z * matrix[9] + matrix[13]; const tz = x * matrix[2] + y * matrix[6] + z * matrix[10] + matrix[14]; result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; result[9] = matrix[9]; result[10] = matrix[10]; result[11] = matrix[11]; result[12] = tx; result[13] = ty; result[14] = tz; result[15] = matrix[15]; return result; }; /** * Multiplies an affine transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0]) * by an implicit non-uniform scale matrix. This is an optimization * for Matrix4.multiply(m, Matrix4.fromUniformScale(scale), m);, where * m must be an affine matrix. * This function performs fewer allocations and arithmetic operations. * * @param {Matrix4} matrix The affine matrix on the left-hand side. * @param {Cartesian3} scale The non-uniform scale on the right-hand side. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * * @example * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromScale(scale), m); * Cesium.Matrix4.multiplyByScale(m, scale, m); * * @see Matrix4.multiplyByUniformScale * @see Matrix4.fromScale * @see Matrix4.fromUniformScale * @see Matrix4.setScale * @see Matrix4.setUniformScale * @see Matrix4.getScale */ Matrix4.multiplyByScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("scale", scale); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const scaleX = scale.x; const scaleY = scale.y; const scaleZ = scale.z; // Faster than Cartesian3.equals if (scaleX === 1.0 && scaleY === 1.0 && scaleZ === 1.0) { return Matrix4.clone(matrix, result); } result[0] = scaleX * matrix[0]; result[1] = scaleX * matrix[1]; result[2] = scaleX * matrix[2]; result[3] = matrix[3]; result[4] = scaleY * matrix[4]; result[5] = scaleY * matrix[5]; result[6] = scaleY * matrix[6]; result[7] = matrix[7]; result[8] = scaleZ * matrix[8]; result[9] = scaleZ * matrix[9]; result[10] = scaleZ * matrix[10]; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; /** * Computes the product of a matrix times a uniform scale, as if the scale were a scale matrix. * * @param {Matrix4} matrix The matrix on the left-hand side. * @param {Number} scale The uniform scale on the right-hand side. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromUniformScale(scale), m); * Cesium.Matrix4.multiplyByUniformScale(m, scale, m); * * @see Matrix4.multiplyByScale * @see Matrix4.fromScale * @see Matrix4.fromUniformScale * @see Matrix4.setScale * @see Matrix4.setUniformScale * @see Matrix4.getScale */ Matrix4.multiplyByUniformScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number("scale", scale); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scale; result[1] = matrix[1] * scale; result[2] = matrix[2] * scale; result[3] = matrix[3]; result[4] = matrix[4] * scale; result[5] = matrix[5] * scale; result[6] = matrix[6] * scale; result[7] = matrix[7]; result[8] = matrix[8] * scale; result[9] = matrix[9] * scale; result[10] = matrix[10] * scale; result[11] = matrix[11]; result[12] = matrix[12]; result[13] = matrix[13]; result[14] = matrix[14]; result[15] = matrix[15]; return result; }; /** * Computes the product of a matrix and a column vector. * * @param {Matrix4} matrix The matrix. * @param {Cartesian4} cartesian The vector. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Matrix4.multiplyByVector = function (matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const vX = cartesian.x; const vY = cartesian.y; const vZ = cartesian.z; const vW = cartesian.w; const x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ + matrix[12] * vW; const y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ + matrix[13] * vW; const z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ + matrix[14] * vW; const w = matrix[3] * vX + matrix[7] * vY + matrix[11] * vZ + matrix[15] * vW; result.x = x; result.y = y; result.z = z; result.w = w; return result; }; /** * Computes the product of a matrix and a {@link Cartesian3}. This is equivalent to calling {@link Matrix4.multiplyByVector} * with a {@link Cartesian4} with a w component of zero. * * @param {Matrix4} matrix The matrix. * @param {Cartesian3} cartesian The point. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @example * const p = new Cesium.Cartesian3(1.0, 2.0, 3.0); * const result = Cesium.Matrix4.multiplyByPointAsVector(matrix, p, new Cesium.Cartesian3()); * // A shortcut for * // Cartesian3 p = ... * // Cesium.Matrix4.multiplyByVector(matrix, new Cesium.Cartesian4(p.x, p.y, p.z, 0.0), result); */ Matrix4.multiplyByPointAsVector = function (matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const vX = cartesian.x; const vY = cartesian.y; const vZ = cartesian.z; const x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ; const y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ; const z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the product of a matrix and a {@link Cartesian3}. This is equivalent to calling {@link Matrix4.multiplyByVector} * with a {@link Cartesian4} with a w component of 1, but returns a {@link Cartesian3} instead of a {@link Cartesian4}. * * @param {Matrix4} matrix The matrix. * @param {Cartesian3} cartesian The point. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @example * const p = new Cesium.Cartesian3(1.0, 2.0, 3.0); * const result = Cesium.Matrix4.multiplyByPoint(matrix, p, new Cesium.Cartesian3()); */ Matrix4.multiplyByPoint = function (matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const vX = cartesian.x; const vY = cartesian.y; const vZ = cartesian.z; const x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ + matrix[12]; const y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ + matrix[13]; const z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ + matrix[14]; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the product of a matrix and a scalar. * * @param {Matrix4} matrix The matrix. * @param {Number} scalar The number to multiply by. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * //create a Matrix4 instance which is a scaled version of the supplied Matrix4 * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * const a = Cesium.Matrix4.multiplyByScalar(m, -2, new Cesium.Matrix4()); * * // m remains the same * // a = [-20.0, -22.0, -24.0, -26.0] * // [-28.0, -30.0, -32.0, -34.0] * // [-36.0, -38.0, -40.0, -42.0] * // [-44.0, -46.0, -48.0, -50.0] */ Matrix4.multiplyByScalar = function (matrix, scalar, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number("scalar", scalar); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scalar; result[1] = matrix[1] * scalar; result[2] = matrix[2] * scalar; result[3] = matrix[3] * scalar; result[4] = matrix[4] * scalar; result[5] = matrix[5] * scalar; result[6] = matrix[6] * scalar; result[7] = matrix[7] * scalar; result[8] = matrix[8] * scalar; result[9] = matrix[9] * scalar; result[10] = matrix[10] * scalar; result[11] = matrix[11] * scalar; result[12] = matrix[12] * scalar; result[13] = matrix[13] * scalar; result[14] = matrix[14] * scalar; result[15] = matrix[15] * scalar; return result; }; /** * Computes a negated copy of the provided matrix. * * @param {Matrix4} matrix The matrix to negate. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * //create a new Matrix4 instance which is a negation of a Matrix4 * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * const a = Cesium.Matrix4.negate(m, new Cesium.Matrix4()); * * // m remains the same * // a = [-10.0, -11.0, -12.0, -13.0] * // [-14.0, -15.0, -16.0, -17.0] * // [-18.0, -19.0, -20.0, -21.0] * // [-22.0, -23.0, -24.0, -25.0] */ Matrix4.negate = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = -matrix[0]; result[1] = -matrix[1]; result[2] = -matrix[2]; result[3] = -matrix[3]; result[4] = -matrix[4]; result[5] = -matrix[5]; result[6] = -matrix[6]; result[7] = -matrix[7]; result[8] = -matrix[8]; result[9] = -matrix[9]; result[10] = -matrix[10]; result[11] = -matrix[11]; result[12] = -matrix[12]; result[13] = -matrix[13]; result[14] = -matrix[14]; result[15] = -matrix[15]; return result; }; /** * Computes the transpose of the provided matrix. * * @param {Matrix4} matrix The matrix to transpose. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @example * //returns transpose of a Matrix4 * // m = [10.0, 11.0, 12.0, 13.0] * // [14.0, 15.0, 16.0, 17.0] * // [18.0, 19.0, 20.0, 21.0] * // [22.0, 23.0, 24.0, 25.0] * * const a = Cesium.Matrix4.transpose(m, new Cesium.Matrix4()); * * // m remains the same * // a = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] */ Matrix4.transpose = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const matrix1 = matrix[1]; const matrix2 = matrix[2]; const matrix3 = matrix[3]; const matrix6 = matrix[6]; const matrix7 = matrix[7]; const matrix11 = matrix[11]; result[0] = matrix[0]; result[1] = matrix[4]; result[2] = matrix[8]; result[3] = matrix[12]; result[4] = matrix1; result[5] = matrix[5]; result[6] = matrix[9]; result[7] = matrix[13]; result[8] = matrix2; result[9] = matrix6; result[10] = matrix[10]; result[11] = matrix[14]; result[12] = matrix3; result[13] = matrix7; result[14] = matrix11; result[15] = matrix[15]; return result; }; /** * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements. * * @param {Matrix4} matrix The matrix with signed elements. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.abs = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = Math.abs(matrix[0]); result[1] = Math.abs(matrix[1]); result[2] = Math.abs(matrix[2]); result[3] = Math.abs(matrix[3]); result[4] = Math.abs(matrix[4]); result[5] = Math.abs(matrix[5]); result[6] = Math.abs(matrix[6]); result[7] = Math.abs(matrix[7]); result[8] = Math.abs(matrix[8]); result[9] = Math.abs(matrix[9]); result[10] = Math.abs(matrix[10]); result[11] = Math.abs(matrix[11]); result[12] = Math.abs(matrix[12]); result[13] = Math.abs(matrix[13]); result[14] = Math.abs(matrix[14]); result[15] = Math.abs(matrix[15]); return result; }; /** * Compares the provided matrices componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix4} [left] The first matrix. * @param {Matrix4} [right] The second matrix. * @returns {Boolean} true if left and right are equal, false otherwise. * * @example * //compares two Matrix4 instances * * // a = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * * // b = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * * if(Cesium.Matrix4.equals(a,b)) { * console.log("Both matrices are equal"); * } else { * console.log("They are not equal"); * } * * //Prints "Both matrices are equal" on the console */ Matrix4.equals = function (left, right) { // Given that most matrices will be transformation matrices, the elements // are tested in order such that the test is likely to fail as early // as possible. I _think_ this is just as friendly to the L1 cache // as testing in index order. It is certainty faster in practice. return ( left === right || (when.defined(left) && when.defined(right) && // Translation left[12] === right[12] && left[13] === right[13] && left[14] === right[14] && // Rotation/scale left[0] === right[0] && left[1] === right[1] && left[2] === right[2] && left[4] === right[4] && left[5] === right[5] && left[6] === right[6] && left[8] === right[8] && left[9] === right[9] && left[10] === right[10] && // Bottom row left[3] === right[3] && left[7] === right[7] && left[11] === right[11] && left[15] === right[15]) ); }; /** * Compares the provided matrices componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix4} [left] The first matrix. * @param {Matrix4} [right] The second matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. * * @example * //compares two Matrix4 instances * * // a = [10.5, 14.5, 18.5, 22.5] * // [11.5, 15.5, 19.5, 23.5] * // [12.5, 16.5, 20.5, 24.5] * // [13.5, 17.5, 21.5, 25.5] * * // b = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * * if(Cesium.Matrix4.equalsEpsilon(a,b,0.1)){ * console.log("Difference between both the matrices is less than 0.1"); * } else { * console.log("Difference between both the matrices is not less than 0.1"); * } * * //Prints "Difference between both the matrices is not less than 0.1" on the console */ Matrix4.equalsEpsilon = function (left, right, epsilon) { epsilon = when.defaultValue(epsilon, 0); return ( left === right || (when.defined(left) && when.defined(right) && Math.abs(left[0] - right[0]) <= epsilon && Math.abs(left[1] - right[1]) <= epsilon && Math.abs(left[2] - right[2]) <= epsilon && Math.abs(left[3] - right[3]) <= epsilon && Math.abs(left[4] - right[4]) <= epsilon && Math.abs(left[5] - right[5]) <= epsilon && Math.abs(left[6] - right[6]) <= epsilon && Math.abs(left[7] - right[7]) <= epsilon && Math.abs(left[8] - right[8]) <= epsilon && Math.abs(left[9] - right[9]) <= epsilon && Math.abs(left[10] - right[10]) <= epsilon && Math.abs(left[11] - right[11]) <= epsilon && Math.abs(left[12] - right[12]) <= epsilon && Math.abs(left[13] - right[13]) <= epsilon && Math.abs(left[14] - right[14]) <= epsilon && Math.abs(left[15] - right[15]) <= epsilon) ); }; /** * Gets the translation portion of the provided matrix, assuming the matrix is an affine transformation matrix. * * @param {Matrix4} matrix The matrix to use. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Matrix4.getTranslation = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = matrix[12]; result.y = matrix[13]; result.z = matrix[14]; return result; }; /** * Gets the upper left 3x3 matrix of the provided matrix. * * @param {Matrix4} matrix The matrix to use. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @example * // returns a Matrix3 instance from a Matrix4 instance * * // m = [10.0, 14.0, 18.0, 22.0] * // [11.0, 15.0, 19.0, 23.0] * // [12.0, 16.0, 20.0, 24.0] * // [13.0, 17.0, 21.0, 25.0] * * const b = new Cesium.Matrix3(); * Cesium.Matrix4.getMatrix3(m,b); * * // b = [10.0, 14.0, 18.0] * // [11.0, 15.0, 19.0] * // [12.0, 16.0, 20.0] */ Matrix4.getMatrix3 = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[4]; result[4] = matrix[5]; result[5] = matrix[6]; result[6] = matrix[8]; result[7] = matrix[9]; result[8] = matrix[10]; return result; }; const scratchInverseRotation = new Matrix3(); const scratchMatrix3Zero = new Matrix3(); const scratchBottomRow = new Cartesian4(); const scratchExpectedBottomRow = new Cartesian4(0.0, 0.0, 0.0, 1.0); /** * Computes the inverse of the provided matrix using Cramers Rule. * If the determinant is zero, the matrix can not be inverted, and an exception is thrown. * If the matrix is a proper rigid transformation, it is more efficient * to invert it with {@link Matrix4.inverseTransformation}. * * @param {Matrix4} matrix The matrix to invert. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. * * @exception {RuntimeError} matrix is not invertible because its determinate is zero. */ Matrix4.inverse = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); // // Ported from: // ftp://download.intel.com/design/PentiumIII/sml/24504301.pdf // const src0 = matrix[0]; const src1 = matrix[4]; const src2 = matrix[8]; const src3 = matrix[12]; const src4 = matrix[1]; const src5 = matrix[5]; const src6 = matrix[9]; const src7 = matrix[13]; const src8 = matrix[2]; const src9 = matrix[6]; const src10 = matrix[10]; const src11 = matrix[14]; const src12 = matrix[3]; const src13 = matrix[7]; const src14 = matrix[11]; const src15 = matrix[15]; // calculate pairs for first 8 elements (cofactors) let tmp0 = src10 * src15; let tmp1 = src11 * src14; let tmp2 = src9 * src15; let tmp3 = src11 * src13; let tmp4 = src9 * src14; let tmp5 = src10 * src13; let tmp6 = src8 * src15; let tmp7 = src11 * src12; let tmp8 = src8 * src14; let tmp9 = src10 * src12; let tmp10 = src8 * src13; let tmp11 = src9 * src12; // calculate first 8 elements (cofactors) const dst0 = tmp0 * src5 + tmp3 * src6 + tmp4 * src7 - (tmp1 * src5 + tmp2 * src6 + tmp5 * src7); const dst1 = tmp1 * src4 + tmp6 * src6 + tmp9 * src7 - (tmp0 * src4 + tmp7 * src6 + tmp8 * src7); const dst2 = tmp2 * src4 + tmp7 * src5 + tmp10 * src7 - (tmp3 * src4 + tmp6 * src5 + tmp11 * src7); const dst3 = tmp5 * src4 + tmp8 * src5 + tmp11 * src6 - (tmp4 * src4 + tmp9 * src5 + tmp10 * src6); const dst4 = tmp1 * src1 + tmp2 * src2 + tmp5 * src3 - (tmp0 * src1 + tmp3 * src2 + tmp4 * src3); const dst5 = tmp0 * src0 + tmp7 * src2 + tmp8 * src3 - (tmp1 * src0 + tmp6 * src2 + tmp9 * src3); const dst6 = tmp3 * src0 + tmp6 * src1 + tmp11 * src3 - (tmp2 * src0 + tmp7 * src1 + tmp10 * src3); const dst7 = tmp4 * src0 + tmp9 * src1 + tmp10 * src2 - (tmp5 * src0 + tmp8 * src1 + tmp11 * src2); // calculate pairs for second 8 elements (cofactors) tmp0 = src2 * src7; tmp1 = src3 * src6; tmp2 = src1 * src7; tmp3 = src3 * src5; tmp4 = src1 * src6; tmp5 = src2 * src5; tmp6 = src0 * src7; tmp7 = src3 * src4; tmp8 = src0 * src6; tmp9 = src2 * src4; tmp10 = src0 * src5; tmp11 = src1 * src4; // calculate second 8 elements (cofactors) const dst8 = tmp0 * src13 + tmp3 * src14 + tmp4 * src15 - (tmp1 * src13 + tmp2 * src14 + tmp5 * src15); const dst9 = tmp1 * src12 + tmp6 * src14 + tmp9 * src15 - (tmp0 * src12 + tmp7 * src14 + tmp8 * src15); const dst10 = tmp2 * src12 + tmp7 * src13 + tmp10 * src15 - (tmp3 * src12 + tmp6 * src13 + tmp11 * src15); const dst11 = tmp5 * src12 + tmp8 * src13 + tmp11 * src14 - (tmp4 * src12 + tmp9 * src13 + tmp10 * src14); const dst12 = tmp2 * src10 + tmp5 * src11 + tmp1 * src9 - (tmp4 * src11 + tmp0 * src9 + tmp3 * src10); const dst13 = tmp8 * src11 + tmp0 * src8 + tmp7 * src10 - (tmp6 * src10 + tmp9 * src11 + tmp1 * src8); const dst14 = tmp6 * src9 + tmp11 * src11 + tmp3 * src8 - (tmp10 * src11 + tmp2 * src8 + tmp7 * src9); const dst15 = tmp10 * src10 + tmp4 * src8 + tmp9 * src9 - (tmp8 * src9 + tmp11 * src10 + tmp5 * src8); // calculate determinant let det = src0 * dst0 + src1 * dst1 + src2 * dst2 + src3 * dst3; if (Math.abs(det) < ComponentDatatype.CesiumMath.EPSILON21) { // Special case for a zero scale matrix that can occur, for example, // when a model's node has a [0, 0, 0] scale. if ( Matrix3.equalsEpsilon( Matrix4.getMatrix3(matrix, scratchInverseRotation), scratchMatrix3Zero, ComponentDatatype.CesiumMath.EPSILON7 ) && Cartesian4.equals( Matrix4.getRow(matrix, 3, scratchBottomRow), scratchExpectedBottomRow ) ) { result[0] = 0.0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = 0.0; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = 0.0; result[9] = 0.0; result[10] = 0.0; result[11] = 0.0; result[12] = -matrix[12]; result[13] = -matrix[13]; result[14] = -matrix[14]; result[15] = 1.0; return result; } throw new RuntimeError.RuntimeError( "matrix is not invertible because its determinate is zero." ); } // calculate matrix inverse det = 1.0 / det; result[0] = dst0 * det; result[1] = dst1 * det; result[2] = dst2 * det; result[3] = dst3 * det; result[4] = dst4 * det; result[5] = dst5 * det; result[6] = dst6 * det; result[7] = dst7 * det; result[8] = dst8 * det; result[9] = dst9 * det; result[10] = dst10 * det; result[11] = dst11 * det; result[12] = dst12 * det; result[13] = dst13 * det; result[14] = dst14 * det; result[15] = dst15 * det; return result; }; /** * Computes the inverse of the provided matrix assuming it is a proper rigid matrix, * where the upper left 3x3 elements are a rotation matrix, * and the upper three elements in the fourth column are the translation. * The bottom row is assumed to be [0, 0, 0, 1]. * The matrix is not verified to be in the proper form. * This method is faster than computing the inverse for a general 4x4 * matrix using {@link Matrix4.inverse}. * * @param {Matrix4} matrix The matrix to invert. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.inverseTransformation = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); //This function is an optimized version of the below 4 lines. //const rT = Matrix3.transpose(Matrix4.getMatrix3(matrix)); //const rTN = Matrix3.negate(rT); //const rTT = Matrix3.multiplyByVector(rTN, Matrix4.getTranslation(matrix)); //return Matrix4.fromRotationTranslation(rT, rTT, result); const matrix0 = matrix[0]; const matrix1 = matrix[1]; const matrix2 = matrix[2]; const matrix4 = matrix[4]; const matrix5 = matrix[5]; const matrix6 = matrix[6]; const matrix8 = matrix[8]; const matrix9 = matrix[9]; const matrix10 = matrix[10]; const vX = matrix[12]; const vY = matrix[13]; const vZ = matrix[14]; const x = -matrix0 * vX - matrix1 * vY - matrix2 * vZ; const y = -matrix4 * vX - matrix5 * vY - matrix6 * vZ; const z = -matrix8 * vX - matrix9 * vY - matrix10 * vZ; result[0] = matrix0; result[1] = matrix4; result[2] = matrix8; result[3] = 0.0; result[4] = matrix1; result[5] = matrix5; result[6] = matrix9; result[7] = 0.0; result[8] = matrix2; result[9] = matrix6; result[10] = matrix10; result[11] = 0.0; result[12] = x; result[13] = y; result[14] = z; result[15] = 1.0; return result; }; const scratchTransposeMatrix = new Matrix4(); /** * Computes the inverse transpose of a matrix. * * @param {Matrix4} matrix The matrix to transpose and invert. * @param {Matrix4} result The object onto which to store the result. * @returns {Matrix4} The modified result parameter. */ Matrix4.inverseTranspose = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); return Matrix4.inverse( Matrix4.transpose(matrix, scratchTransposeMatrix), result ); }; /** * An immutable Matrix4 instance initialized to the identity matrix. * * @type {Matrix4} * @constant */ Matrix4.IDENTITY = Object.freeze( new Matrix4( 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 ) ); /** * An immutable Matrix4 instance initialized to the zero matrix. * * @type {Matrix4} * @constant */ Matrix4.ZERO = Object.freeze( new Matrix4( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ) ); /** * The index into Matrix4 for column 0, row 0. * * @type {Number} * @constant */ Matrix4.COLUMN0ROW0 = 0; /** * The index into Matrix4 for column 0, row 1. * * @type {Number} * @constant */ Matrix4.COLUMN0ROW1 = 1; /** * The index into Matrix4 for column 0, row 2. * * @type {Number} * @constant */ Matrix4.COLUMN0ROW2 = 2; /** * The index into Matrix4 for column 0, row 3. * * @type {Number} * @constant */ Matrix4.COLUMN0ROW3 = 3; /** * The index into Matrix4 for column 1, row 0. * * @type {Number} * @constant */ Matrix4.COLUMN1ROW0 = 4; /** * The index into Matrix4 for column 1, row 1. * * @type {Number} * @constant */ Matrix4.COLUMN1ROW1 = 5; /** * The index into Matrix4 for column 1, row 2. * * @type {Number} * @constant */ Matrix4.COLUMN1ROW2 = 6; /** * The index into Matrix4 for column 1, row 3. * * @type {Number} * @constant */ Matrix4.COLUMN1ROW3 = 7; /** * The index into Matrix4 for column 2, row 0. * * @type {Number} * @constant */ Matrix4.COLUMN2ROW0 = 8; /** * The index into Matrix4 for column 2, row 1. * * @type {Number} * @constant */ Matrix4.COLUMN2ROW1 = 9; /** * The index into Matrix4 for column 2, row 2. * * @type {Number} * @constant */ Matrix4.COLUMN2ROW2 = 10; /** * The index into Matrix4 for column 2, row 3. * * @type {Number} * @constant */ Matrix4.COLUMN2ROW3 = 11; /** * The index into Matrix4 for column 3, row 0. * * @type {Number} * @constant */ Matrix4.COLUMN3ROW0 = 12; /** * The index into Matrix4 for column 3, row 1. * * @type {Number} * @constant */ Matrix4.COLUMN3ROW1 = 13; /** * The index into Matrix4 for column 3, row 2. * * @type {Number} * @constant */ Matrix4.COLUMN3ROW2 = 14; /** * The index into Matrix4 for column 3, row 3. * * @type {Number} * @constant */ Matrix4.COLUMN3ROW3 = 15; Object.defineProperties(Matrix4.prototype, { /** * Gets the number of items in the collection. * @memberof Matrix4.prototype * * @type {Number} */ length: { get: function () { return Matrix4.packedLength; }, }, }); /** * Duplicates the provided Matrix4 instance. * * @param {Matrix4} [result] The object onto which to store the result. * @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided. */ Matrix4.prototype.clone = function (result) { return Matrix4.clone(this, result); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix4} [right] The right hand side matrix. * @returns {Boolean} true if they are equal, false otherwise. */ Matrix4.prototype.equals = function (right) { return Matrix4.equals(this, right); }; /** * @private */ Matrix4.equalsArray = function (matrix, array, offset) { return ( matrix[0] === array[offset] && matrix[1] === array[offset + 1] && matrix[2] === array[offset + 2] && matrix[3] === array[offset + 3] && matrix[4] === array[offset + 4] && matrix[5] === array[offset + 5] && matrix[6] === array[offset + 6] && matrix[7] === array[offset + 7] && matrix[8] === array[offset + 8] && matrix[9] === array[offset + 9] && matrix[10] === array[offset + 10] && matrix[11] === array[offset + 11] && matrix[12] === array[offset + 12] && matrix[13] === array[offset + 13] && matrix[14] === array[offset + 14] && matrix[15] === array[offset + 15] ); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix4} [right] The right hand side matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Matrix4.prototype.equalsEpsilon = function (right, epsilon) { return Matrix4.equalsEpsilon(this, right, epsilon); }; /** * Computes a string representing this Matrix with each row being * on a separate line and in the format '(column0, column1, column2, column3)'. * * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2, column3)'. */ Matrix4.prototype.toString = function () { return ( `(${this[0]}, ${this[4]}, ${this[8]}, ${this[12]})\n` + `(${this[1]}, ${this[5]}, ${this[9]}, ${this[13]})\n` + `(${this[2]}, ${this[6]}, ${this[10]}, ${this[14]})\n` + `(${this[3]}, ${this[7]}, ${this[11]}, ${this[15]})` ); }; /** * A two dimensional region specified as longitude and latitude coordinates. * * @alias Rectangle * @constructor * * @param {Number} [west=0.0] The westernmost longitude, in radians, in the range [-Pi, Pi]. * @param {Number} [south=0.0] The southernmost latitude, in radians, in the range [-Pi/2, Pi/2]. * @param {Number} [east=0.0] The easternmost longitude, in radians, in the range [-Pi, Pi]. * @param {Number} [north=0.0] The northernmost latitude, in radians, in the range [-Pi/2, Pi/2]. * * @see Packable */ function Rectangle(west, south, east, north) { /** * The westernmost longitude in radians in the range [-Pi, Pi]. * * @type {Number} * @default 0.0 */ this.west = when.defaultValue(west, 0.0); /** * The southernmost latitude in radians in the range [-Pi/2, Pi/2]. * * @type {Number} * @default 0.0 */ this.south = when.defaultValue(south, 0.0); /** * The easternmost longitude in radians in the range [-Pi, Pi]. * * @type {Number} * @default 0.0 */ this.east = when.defaultValue(east, 0.0); /** * The northernmost latitude in radians in the range [-Pi/2, Pi/2]. * * @type {Number} * @default 0.0 */ this.north = when.defaultValue(north, 0.0); } Object.defineProperties(Rectangle.prototype, { /** * Gets the width of the rectangle in radians. * @memberof Rectangle.prototype * @type {Number} * @readonly */ width: { get: function () { return Rectangle.computeWidth(this); }, }, /** * Gets the height of the rectangle in radians. * @memberof Rectangle.prototype * @type {Number} * @readonly */ height: { get: function () { return Rectangle.computeHeight(this); }, }, }); /** * The number of elements used to pack the object into an array. * @type {Number} */ Rectangle.packedLength = 4; /** * Stores the provided instance into the provided array. * * @param {Rectangle} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Rectangle.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("value", value); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); array[startingIndex++] = value.west; array[startingIndex++] = value.south; array[startingIndex++] = value.east; array[startingIndex] = value.north; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Rectangle} [result] The object into which to store the result. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if one was not provided. */ Rectangle.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new Rectangle(); } result.west = array[startingIndex++]; result.south = array[startingIndex++]; result.east = array[startingIndex++]; result.north = array[startingIndex]; return result; }; /** * Computes the width of a rectangle in radians. * @param {Rectangle} rectangle The rectangle to compute the width of. * @returns {Number} The width. */ Rectangle.computeWidth = function (rectangle) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); //>>includeEnd('debug'); let east = rectangle.east; const west = rectangle.west; if (east < west) { east += ComponentDatatype.CesiumMath.TWO_PI; } return east - west; }; /** * Computes the height of a rectangle in radians. * @param {Rectangle} rectangle The rectangle to compute the height of. * @returns {Number} The height. */ Rectangle.computeHeight = function (rectangle) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); //>>includeEnd('debug'); return rectangle.north - rectangle.south; }; /** * Creates a rectangle given the boundary longitude and latitude in degrees. * * @param {Number} [west=0.0] The westernmost longitude in degrees in the range [-180.0, 180.0]. * @param {Number} [south=0.0] The southernmost latitude in degrees in the range [-90.0, 90.0]. * @param {Number} [east=0.0] The easternmost longitude in degrees in the range [-180.0, 180.0]. * @param {Number} [north=0.0] The northernmost latitude in degrees in the range [-90.0, 90.0]. * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. * * @example * const rectangle = Cesium.Rectangle.fromDegrees(0.0, 20.0, 10.0, 30.0); */ Rectangle.fromDegrees = function (west, south, east, north, result) { west = ComponentDatatype.CesiumMath.toRadians(when.defaultValue(west, 0.0)); south = ComponentDatatype.CesiumMath.toRadians(when.defaultValue(south, 0.0)); east = ComponentDatatype.CesiumMath.toRadians(when.defaultValue(east, 0.0)); north = ComponentDatatype.CesiumMath.toRadians(when.defaultValue(north, 0.0)); if (!when.defined(result)) { return new Rectangle(west, south, east, north); } result.west = west; result.south = south; result.east = east; result.north = north; return result; }; /** * Creates a rectangle given the boundary longitude and latitude in radians. * * @param {Number} [west=0.0] The westernmost longitude in radians in the range [-Math.PI, Math.PI]. * @param {Number} [south=0.0] The southernmost latitude in radians in the range [-Math.PI/2, Math.PI/2]. * @param {Number} [east=0.0] The easternmost longitude in radians in the range [-Math.PI, Math.PI]. * @param {Number} [north=0.0] The northernmost latitude in radians in the range [-Math.PI/2, Math.PI/2]. * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. * * @example * const rectangle = Cesium.Rectangle.fromRadians(0.0, Math.PI/4, Math.PI/8, 3*Math.PI/4); */ Rectangle.fromRadians = function (west, south, east, north, result) { if (!when.defined(result)) { return new Rectangle(west, south, east, north); } result.west = when.defaultValue(west, 0.0); result.south = when.defaultValue(south, 0.0); result.east = when.defaultValue(east, 0.0); result.north = when.defaultValue(north, 0.0); return result; }; /** * Creates the smallest possible Rectangle that encloses all positions in the provided array. * * @param {Cartographic[]} cartographics The list of Cartographic instances. * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. */ Rectangle.fromCartographicArray = function (cartographics, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("cartographics", cartographics); //>>includeEnd('debug'); let west = Number.MAX_VALUE; let east = -Number.MAX_VALUE; let westOverIDL = Number.MAX_VALUE; let eastOverIDL = -Number.MAX_VALUE; let south = Number.MAX_VALUE; let north = -Number.MAX_VALUE; for (let i = 0, len = cartographics.length; i < len; i++) { const position = cartographics[i]; west = Math.min(west, position.longitude); east = Math.max(east, position.longitude); south = Math.min(south, position.latitude); north = Math.max(north, position.latitude); const lonAdjusted = position.longitude >= 0 ? position.longitude : position.longitude + ComponentDatatype.CesiumMath.TWO_PI; westOverIDL = Math.min(westOverIDL, lonAdjusted); eastOverIDL = Math.max(eastOverIDL, lonAdjusted); } if (east - west > eastOverIDL - westOverIDL) { west = westOverIDL; east = eastOverIDL; if (east > ComponentDatatype.CesiumMath.PI) { east = east - ComponentDatatype.CesiumMath.TWO_PI; } if (west > ComponentDatatype.CesiumMath.PI) { west = west - ComponentDatatype.CesiumMath.TWO_PI; } } if (!when.defined(result)) { return new Rectangle(west, south, east, north); } result.west = west; result.south = south; result.east = east; result.north = north; return result; }; /** * Creates the smallest possible Rectangle that encloses all positions in the provided array. * * @param {Cartesian3[]} cartesians The list of Cartesian instances. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid the cartesians are on. * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. */ Rectangle.fromCartesianArray = function (cartesians, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("cartesians", cartesians); //>>includeEnd('debug'); ellipsoid = when.defaultValue(ellipsoid, Ellipsoid.WGS84); let west = Number.MAX_VALUE; let east = -Number.MAX_VALUE; let westOverIDL = Number.MAX_VALUE; let eastOverIDL = -Number.MAX_VALUE; let south = Number.MAX_VALUE; let north = -Number.MAX_VALUE; for (let i = 0, len = cartesians.length; i < len; i++) { const position = ellipsoid.cartesianToCartographic(cartesians[i]); west = Math.min(west, position.longitude); east = Math.max(east, position.longitude); south = Math.min(south, position.latitude); north = Math.max(north, position.latitude); const lonAdjusted = position.longitude >= 0 ? position.longitude : position.longitude + ComponentDatatype.CesiumMath.TWO_PI; westOverIDL = Math.min(westOverIDL, lonAdjusted); eastOverIDL = Math.max(eastOverIDL, lonAdjusted); } if (east - west > eastOverIDL - westOverIDL) { west = westOverIDL; east = eastOverIDL; if (east > ComponentDatatype.CesiumMath.PI) { east = east - ComponentDatatype.CesiumMath.TWO_PI; } if (west > ComponentDatatype.CesiumMath.PI) { west = west - ComponentDatatype.CesiumMath.TWO_PI; } } if (!when.defined(result)) { return new Rectangle(west, south, east, north); } result.west = west; result.south = south; result.east = east; result.north = north; return result; }; /** * Duplicates a Rectangle. * * @param {Rectangle} rectangle The rectangle to clone. * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. (Returns undefined if rectangle is undefined) */ Rectangle.clone = function (rectangle, result) { if (!when.defined(rectangle)) { return undefined; } if (!when.defined(result)) { return new Rectangle( rectangle.west, rectangle.south, rectangle.east, rectangle.north ); } result.west = rectangle.west; result.south = rectangle.south; result.east = rectangle.east; result.north = rectangle.north; return result; }; /** * Compares the provided Rectangles componentwise and returns * true if they pass an absolute or relative tolerance test, * false otherwise. * * @param {Rectangle} [left] The first Rectangle. * @param {Rectangle} [right] The second Rectangle. * @param {Number} [absoluteEpsilon=0] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Rectangle.equalsEpsilon = function (left, right, absoluteEpsilon) { absoluteEpsilon = when.defaultValue(absoluteEpsilon, 0); return ( left === right || (when.defined(left) && when.defined(right) && Math.abs(left.west - right.west) <= absoluteEpsilon && Math.abs(left.south - right.south) <= absoluteEpsilon && Math.abs(left.east - right.east) <= absoluteEpsilon && Math.abs(left.north - right.north) <= absoluteEpsilon) ); }; /** * Duplicates this Rectangle. * * @param {Rectangle} [result] The object onto which to store the result. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. */ Rectangle.prototype.clone = function (result) { return Rectangle.clone(this, result); }; /** * Compares the provided Rectangle with this Rectangle componentwise and returns * true if they are equal, false otherwise. * * @param {Rectangle} [other] The Rectangle to compare. * @returns {Boolean} true if the Rectangles are equal, false otherwise. */ Rectangle.prototype.equals = function (other) { return Rectangle.equals(this, other); }; /** * Compares the provided rectangles and returns true if they are equal, * false otherwise. * * @param {Rectangle} [left] The first Rectangle. * @param {Rectangle} [right] The second Rectangle. * @returns {Boolean} true if left and right are equal; otherwise false. */ Rectangle.equals = function (left, right) { return ( left === right || (when.defined(left) && when.defined(right) && left.west === right.west && left.south === right.south && left.east === right.east && left.north === right.north) ); }; /** * Compares the provided Rectangle with this Rectangle componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Rectangle} [other] The Rectangle to compare. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if the Rectangles are within the provided epsilon, false otherwise. */ Rectangle.prototype.equalsEpsilon = function (other, epsilon) { return Rectangle.equalsEpsilon(this, other, epsilon); }; /** * Checks a Rectangle's properties and throws if they are not in valid ranges. * * @param {Rectangle} rectangle The rectangle to validate * * @exception {DeveloperError} north must be in the interval [-Pi/2, Pi/2]. * @exception {DeveloperError} south must be in the interval [-Pi/2, Pi/2]. * @exception {DeveloperError} east must be in the interval [-Pi, Pi]. * @exception {DeveloperError} west must be in the interval [-Pi, Pi]. */ Rectangle.validate = function (rectangle) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); const north = rectangle.north; RuntimeError.Check.typeOf.number.greaterThanOrEquals( "north", north, -ComponentDatatype.CesiumMath.PI_OVER_TWO ); RuntimeError.Check.typeOf.number.lessThanOrEquals("north", north, ComponentDatatype.CesiumMath.PI_OVER_TWO); const south = rectangle.south; RuntimeError.Check.typeOf.number.greaterThanOrEquals( "south", south, -ComponentDatatype.CesiumMath.PI_OVER_TWO ); RuntimeError.Check.typeOf.number.lessThanOrEquals("south", south, ComponentDatatype.CesiumMath.PI_OVER_TWO); const west = rectangle.west; RuntimeError.Check.typeOf.number.greaterThanOrEquals("west", west, -Math.PI); RuntimeError.Check.typeOf.number.lessThanOrEquals("west", west, Math.PI); const east = rectangle.east; RuntimeError.Check.typeOf.number.greaterThanOrEquals("east", east, -Math.PI); RuntimeError.Check.typeOf.number.lessThanOrEquals("east", east, Math.PI); //>>includeEnd('debug'); }; /** * Computes the southwest corner of a rectangle. * * @param {Rectangle} rectangle The rectangle for which to find the corner * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided. */ Rectangle.southwest = function (rectangle, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); //>>includeEnd('debug'); if (!when.defined(result)) { return new Cartographic(rectangle.west, rectangle.south); } result.longitude = rectangle.west; result.latitude = rectangle.south; result.height = 0.0; return result; }; /** * Computes the northwest corner of a rectangle. * * @param {Rectangle} rectangle The rectangle for which to find the corner * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided. */ Rectangle.northwest = function (rectangle, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); //>>includeEnd('debug'); if (!when.defined(result)) { return new Cartographic(rectangle.west, rectangle.north); } result.longitude = rectangle.west; result.latitude = rectangle.north; result.height = 0.0; return result; }; /** * Computes the northeast corner of a rectangle. * * @param {Rectangle} rectangle The rectangle for which to find the corner * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided. */ Rectangle.northeast = function (rectangle, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); //>>includeEnd('debug'); if (!when.defined(result)) { return new Cartographic(rectangle.east, rectangle.north); } result.longitude = rectangle.east; result.latitude = rectangle.north; result.height = 0.0; return result; }; /** * Computes the southeast corner of a rectangle. * * @param {Rectangle} rectangle The rectangle for which to find the corner * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided. */ Rectangle.southeast = function (rectangle, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); //>>includeEnd('debug'); if (!when.defined(result)) { return new Cartographic(rectangle.east, rectangle.south); } result.longitude = rectangle.east; result.latitude = rectangle.south; result.height = 0.0; return result; }; /** * Computes the center of a rectangle. * * @param {Rectangle} rectangle The rectangle for which to find the center * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided. */ Rectangle.center = function (rectangle, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); //>>includeEnd('debug'); let east = rectangle.east; const west = rectangle.west; if (east < west) { east += ComponentDatatype.CesiumMath.TWO_PI; } const longitude = ComponentDatatype.CesiumMath.negativePiToPi((west + east) * 0.5); const latitude = (rectangle.south + rectangle.north) * 0.5; if (!when.defined(result)) { return new Cartographic(longitude, latitude); } result.longitude = longitude; result.latitude = latitude; result.height = 0.0; return result; }; /** * Computes the intersection of two rectangles. This function assumes that the rectangle's coordinates are * latitude and longitude in radians and produces a correct intersection, taking into account the fact that * the same angle can be represented with multiple values as well as the wrapping of longitude at the * anti-meridian. For a simple intersection that ignores these factors and can be used with projected * coordinates, see {@link Rectangle.simpleIntersection}. * * @param {Rectangle} rectangle On rectangle to find an intersection * @param {Rectangle} otherRectangle Another rectangle to find an intersection * @param {Rectangle} [result] The object onto which to store the result. * @returns {Rectangle|undefined} The modified result parameter, a new Rectangle instance if none was provided or undefined if there is no intersection. */ Rectangle.intersection = function (rectangle, otherRectangle, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); RuntimeError.Check.typeOf.object("otherRectangle", otherRectangle); //>>includeEnd('debug'); let rectangleEast = rectangle.east; let rectangleWest = rectangle.west; let otherRectangleEast = otherRectangle.east; let otherRectangleWest = otherRectangle.west; if (rectangleEast < rectangleWest && otherRectangleEast > 0.0) { rectangleEast += ComponentDatatype.CesiumMath.TWO_PI; } else if (otherRectangleEast < otherRectangleWest && rectangleEast > 0.0) { otherRectangleEast += ComponentDatatype.CesiumMath.TWO_PI; } if (rectangleEast < rectangleWest && otherRectangleWest < 0.0) { otherRectangleWest += ComponentDatatype.CesiumMath.TWO_PI; } else if (otherRectangleEast < otherRectangleWest && rectangleWest < 0.0) { rectangleWest += ComponentDatatype.CesiumMath.TWO_PI; } const west = ComponentDatatype.CesiumMath.negativePiToPi( Math.max(rectangleWest, otherRectangleWest) ); const east = ComponentDatatype.CesiumMath.negativePiToPi( Math.min(rectangleEast, otherRectangleEast) ); if ( (rectangle.west < rectangle.east || otherRectangle.west < otherRectangle.east) && east <= west ) { return undefined; } const south = Math.max(rectangle.south, otherRectangle.south); const north = Math.min(rectangle.north, otherRectangle.north); if (south >= north) { return undefined; } if (!when.defined(result)) { return new Rectangle(west, south, east, north); } result.west = west; result.south = south; result.east = east; result.north = north; return result; }; /** * Computes a simple intersection of two rectangles. Unlike {@link Rectangle.intersection}, this function * does not attempt to put the angular coordinates into a consistent range or to account for crossing the * anti-meridian. As such, it can be used for rectangles where the coordinates are not simply latitude * and longitude (i.e. projected coordinates). * * @param {Rectangle} rectangle On rectangle to find an intersection * @param {Rectangle} otherRectangle Another rectangle to find an intersection * @param {Rectangle} [result] The object onto which to store the result. * @returns {Rectangle|undefined} The modified result parameter, a new Rectangle instance if none was provided or undefined if there is no intersection. */ Rectangle.simpleIntersection = function (rectangle, otherRectangle, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); RuntimeError.Check.typeOf.object("otherRectangle", otherRectangle); //>>includeEnd('debug'); const west = Math.max(rectangle.west, otherRectangle.west); const south = Math.max(rectangle.south, otherRectangle.south); const east = Math.min(rectangle.east, otherRectangle.east); const north = Math.min(rectangle.north, otherRectangle.north); if (south >= north || west >= east) { return undefined; } if (!when.defined(result)) { return new Rectangle(west, south, east, north); } result.west = west; result.south = south; result.east = east; result.north = north; return result; }; /** * Computes a rectangle that is the union of two rectangles. * * @param {Rectangle} rectangle A rectangle to enclose in rectangle. * @param {Rectangle} otherRectangle A rectangle to enclose in a rectangle. * @param {Rectangle} [result] The object onto which to store the result. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. */ Rectangle.union = function (rectangle, otherRectangle, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); RuntimeError.Check.typeOf.object("otherRectangle", otherRectangle); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Rectangle(); } let rectangleEast = rectangle.east; let rectangleWest = rectangle.west; let otherRectangleEast = otherRectangle.east; let otherRectangleWest = otherRectangle.west; if (rectangleEast < rectangleWest && otherRectangleEast > 0.0) { rectangleEast += ComponentDatatype.CesiumMath.TWO_PI; } else if (otherRectangleEast < otherRectangleWest && rectangleEast > 0.0) { otherRectangleEast += ComponentDatatype.CesiumMath.TWO_PI; } if (rectangleEast < rectangleWest && otherRectangleWest < 0.0) { otherRectangleWest += ComponentDatatype.CesiumMath.TWO_PI; } else if (otherRectangleEast < otherRectangleWest && rectangleWest < 0.0) { rectangleWest += ComponentDatatype.CesiumMath.TWO_PI; } const west = ComponentDatatype.CesiumMath.negativePiToPi( Math.min(rectangleWest, otherRectangleWest) ); const east = ComponentDatatype.CesiumMath.negativePiToPi( Math.max(rectangleEast, otherRectangleEast) ); result.west = west; result.south = Math.min(rectangle.south, otherRectangle.south); result.east = east; result.north = Math.max(rectangle.north, otherRectangle.north); return result; }; /** * Computes a rectangle by enlarging the provided rectangle until it contains the provided cartographic. * * @param {Rectangle} rectangle A rectangle to expand. * @param {Cartographic} cartographic A cartographic to enclose in a rectangle. * @param {Rectangle} [result] The object onto which to store the result. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if one was not provided. */ Rectangle.expand = function (rectangle, cartographic, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); RuntimeError.Check.typeOf.object("cartographic", cartographic); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Rectangle(); } result.west = Math.min(rectangle.west, cartographic.longitude); result.south = Math.min(rectangle.south, cartographic.latitude); result.east = Math.max(rectangle.east, cartographic.longitude); result.north = Math.max(rectangle.north, cartographic.latitude); return result; }; /** * Returns true if the cartographic is on or inside the rectangle, false otherwise. * * @param {Rectangle} rectangle The rectangle * @param {Cartographic} cartographic The cartographic to test. * @returns {Boolean} true if the provided cartographic is inside the rectangle, false otherwise. */ Rectangle.contains = function (rectangle, cartographic) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); RuntimeError.Check.typeOf.object("cartographic", cartographic); //>>includeEnd('debug'); let longitude = cartographic.longitude; const latitude = cartographic.latitude; const west = rectangle.west; let east = rectangle.east; if (east < west) { east += ComponentDatatype.CesiumMath.TWO_PI; if (longitude < 0.0) { longitude += ComponentDatatype.CesiumMath.TWO_PI; } } return ( (longitude > west || ComponentDatatype.CesiumMath.equalsEpsilon(longitude, west, ComponentDatatype.CesiumMath.EPSILON14)) && (longitude < east || ComponentDatatype.CesiumMath.equalsEpsilon(longitude, east, ComponentDatatype.CesiumMath.EPSILON14)) && latitude >= rectangle.south && latitude <= rectangle.north ); }; const subsampleLlaScratch = new Cartographic(); /** * Samples a rectangle so that it includes a list of Cartesian points suitable for passing to * {@link BoundingSphere#fromPoints}. Sampling is necessary to account * for rectangles that cover the poles or cross the equator. * * @param {Rectangle} rectangle The rectangle to subsample. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid to use. * @param {Number} [surfaceHeight=0.0] The height of the rectangle above the ellipsoid. * @param {Cartesian3[]} [result] The array of Cartesians onto which to store the result. * @returns {Cartesian3[]} The modified result parameter or a new Array of Cartesians instances if none was provided. */ Rectangle.subsample = function (rectangle, ellipsoid, surfaceHeight, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); //>>includeEnd('debug'); ellipsoid = when.defaultValue(ellipsoid, Ellipsoid.WGS84); surfaceHeight = when.defaultValue(surfaceHeight, 0.0); if (!when.defined(result)) { result = []; } let length = 0; const north = rectangle.north; const south = rectangle.south; const east = rectangle.east; const west = rectangle.west; const lla = subsampleLlaScratch; lla.height = surfaceHeight; lla.longitude = west; lla.latitude = north; result[length] = ellipsoid.cartographicToCartesian(lla, result[length]); length++; lla.longitude = east; result[length] = ellipsoid.cartographicToCartesian(lla, result[length]); length++; lla.latitude = south; result[length] = ellipsoid.cartographicToCartesian(lla, result[length]); length++; lla.longitude = west; result[length] = ellipsoid.cartographicToCartesian(lla, result[length]); length++; if (north < 0.0) { lla.latitude = north; } else if (south > 0.0) { lla.latitude = south; } else { lla.latitude = 0.0; } for (let i = 1; i < 8; ++i) { lla.longitude = -Math.PI + i * ComponentDatatype.CesiumMath.PI_OVER_TWO; if (Rectangle.contains(rectangle, lla)) { result[length] = ellipsoid.cartographicToCartesian(lla, result[length]); length++; } } if (lla.latitude === 0.0) { lla.longitude = west; result[length] = ellipsoid.cartographicToCartesian(lla, result[length]); length++; lla.longitude = east; result[length] = ellipsoid.cartographicToCartesian(lla, result[length]); length++; } result.length = length; return result; }; /** * Computes a subsection of a rectangle from normalized coordinates in the range [0.0, 1.0]. * * @param {Rectangle} rectangle The rectangle to subsection. * @param {Number} westLerp The west interpolation factor in the range [0.0, 1.0]. Must be less than or equal to eastLerp. * @param {Number} southLerp The south interpolation factor in the range [0.0, 1.0]. Must be less than or equal to northLerp. * @param {Number} eastLerp The east interpolation factor in the range [0.0, 1.0]. Must be greater than or equal to westLerp. * @param {Number} northLerp The north interpolation factor in the range [0.0, 1.0]. Must be greater than or equal to southLerp. * @param {Rectangle} [result] The object onto which to store the result. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. */ Rectangle.subsection = function ( rectangle, westLerp, southLerp, eastLerp, northLerp, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); RuntimeError.Check.typeOf.number.greaterThanOrEquals("westLerp", westLerp, 0.0); RuntimeError.Check.typeOf.number.lessThanOrEquals("westLerp", westLerp, 1.0); RuntimeError.Check.typeOf.number.greaterThanOrEquals("southLerp", southLerp, 0.0); RuntimeError.Check.typeOf.number.lessThanOrEquals("southLerp", southLerp, 1.0); RuntimeError.Check.typeOf.number.greaterThanOrEquals("eastLerp", eastLerp, 0.0); RuntimeError.Check.typeOf.number.lessThanOrEquals("eastLerp", eastLerp, 1.0); RuntimeError.Check.typeOf.number.greaterThanOrEquals("northLerp", northLerp, 0.0); RuntimeError.Check.typeOf.number.lessThanOrEquals("northLerp", northLerp, 1.0); RuntimeError.Check.typeOf.number.lessThanOrEquals("westLerp", westLerp, eastLerp); RuntimeError.Check.typeOf.number.lessThanOrEquals("southLerp", southLerp, northLerp); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Rectangle(); } // This function doesn't use CesiumMath.lerp because it has floating point precision problems // when the start and end values are the same but the t changes. if (rectangle.west <= rectangle.east) { const width = rectangle.east - rectangle.west; result.west = rectangle.west + westLerp * width; result.east = rectangle.west + eastLerp * width; } else { const width = ComponentDatatype.CesiumMath.TWO_PI + rectangle.east - rectangle.west; result.west = ComponentDatatype.CesiumMath.negativePiToPi(rectangle.west + westLerp * width); result.east = ComponentDatatype.CesiumMath.negativePiToPi(rectangle.west + eastLerp * width); } const height = rectangle.north - rectangle.south; result.south = rectangle.south + southLerp * height; result.north = rectangle.south + northLerp * height; // Fix floating point precision problems when t = 1 if (westLerp === 1.0) { result.west = rectangle.east; } if (eastLerp === 1.0) { result.east = rectangle.east; } if (southLerp === 1.0) { result.south = rectangle.north; } if (northLerp === 1.0) { result.north = rectangle.north; } return result; }; /** * The largest possible rectangle. * * @type {Rectangle} * @constant */ Rectangle.MAX_VALUE = Object.freeze( new Rectangle( -Math.PI, -ComponentDatatype.CesiumMath.PI_OVER_TWO, Math.PI, ComponentDatatype.CesiumMath.PI_OVER_TWO ) ); /** * A 2D Cartesian point. * @alias Cartesian2 * @constructor * * @param {Number} [x=0.0] The X component. * @param {Number} [y=0.0] The Y component. * * @see Cartesian3 * @see Cartesian4 * @see Packable */ function Cartesian2(x, y) { /** * The X component. * @type {Number} * @default 0.0 */ this.x = when.defaultValue(x, 0.0); /** * The Y component. * @type {Number} * @default 0.0 */ this.y = when.defaultValue(y, 0.0); } /** * Creates a Cartesian2 instance from x and y coordinates. * * @param {Number} x The x coordinate. * @param {Number} y The y coordinate. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */ Cartesian2.fromElements = function (x, y, result) { if (!when.defined(result)) { return new Cartesian2(x, y); } result.x = x; result.y = y; return result; }; /** * Duplicates a Cartesian2 instance. * * @param {Cartesian2} cartesian The Cartesian to duplicate. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. (Returns undefined if cartesian is undefined) */ Cartesian2.clone = function (cartesian, result) { if (!when.defined(cartesian)) { return undefined; } if (!when.defined(result)) { return new Cartesian2(cartesian.x, cartesian.y); } result.x = cartesian.x; result.y = cartesian.y; return result; }; /** * Creates a Cartesian2 instance from an existing Cartesian3. This simply takes the * x and y properties of the Cartesian3 and drops z. * @function * * @param {Cartesian3} cartesian The Cartesian3 instance to create a Cartesian2 instance from. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */ Cartesian2.fromCartesian3 = Cartesian2.clone; /** * Creates a Cartesian2 instance from an existing Cartesian4. This simply takes the * x and y properties of the Cartesian4 and drops z and w. * @function * * @param {Cartesian4} cartesian The Cartesian4 instance to create a Cartesian2 instance from. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */ Cartesian2.fromCartesian4 = Cartesian2.clone; /** * The number of elements used to pack the object into an array. * @type {Number} */ Cartesian2.packedLength = 2; /** * Stores the provided instance into the provided array. * * @param {Cartesian2} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Cartesian2.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("value", value); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); array[startingIndex++] = value.x; array[startingIndex] = value.y; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Cartesian2} [result] The object into which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */ Cartesian2.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new Cartesian2(); } result.x = array[startingIndex++]; result.y = array[startingIndex]; return result; }; /** * Flattens an array of Cartesian2s into an array of components. * * @param {Cartesian2[]} array The array of cartesians to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 2 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 2) elements. * @returns {Number[]} The packed array. */ Cartesian2.packArray = function (array, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); const length = array.length; const resultLength = length * 2; if (!when.defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { //>>includeStart('debug', pragmas.debug); throw new RuntimeError.DeveloperError( "If result is a typed array, it must have exactly array.length * 2 elements" ); //>>includeEnd('debug'); } else if (result.length !== resultLength) { result.length = resultLength; } for (let i = 0; i < length; ++i) { Cartesian2.pack(array[i], result, i * 2); } return result; }; /** * Unpacks an array of cartesian components into an array of Cartesian2s. * * @param {Number[]} array The array of components to unpack. * @param {Cartesian2[]} [result] The array onto which to store the result. * @returns {Cartesian2[]} The unpacked array. */ Cartesian2.unpackArray = function (array, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); RuntimeError.Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 2); if (array.length % 2 !== 0) { throw new RuntimeError.DeveloperError("array length must be a multiple of 2."); } //>>includeEnd('debug'); const length = array.length; if (!when.defined(result)) { result = new Array(length / 2); } else { result.length = length / 2; } for (let i = 0; i < length; i += 2) { const index = i / 2; result[index] = Cartesian2.unpack(array, i, result[index]); } return result; }; /** * Creates a Cartesian2 from two consecutive elements in an array. * @function * * @param {Number[]} array The array whose two consecutive elements correspond to the x and y components, respectively. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. * * @example * // Create a Cartesian2 with (1.0, 2.0) * const v = [1.0, 2.0]; * const p = Cesium.Cartesian2.fromArray(v); * * // Create a Cartesian2 with (1.0, 2.0) using an offset into an array * const v2 = [0.0, 0.0, 1.0, 2.0]; * const p2 = Cesium.Cartesian2.fromArray(v2, 2); */ Cartesian2.fromArray = Cartesian2.unpack; /** * Computes the value of the maximum component for the supplied Cartesian. * * @param {Cartesian2} cartesian The cartesian to use. * @returns {Number} The value of the maximum component. */ Cartesian2.maximumComponent = function (cartesian) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return Math.max(cartesian.x, cartesian.y); }; /** * Computes the value of the minimum component for the supplied Cartesian. * * @param {Cartesian2} cartesian The cartesian to use. * @returns {Number} The value of the minimum component. */ Cartesian2.minimumComponent = function (cartesian) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return Math.min(cartesian.x, cartesian.y); }; /** * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians. * * @param {Cartesian2} first A cartesian to compare. * @param {Cartesian2} second A cartesian to compare. * @param {Cartesian2} result The object into which to store the result. * @returns {Cartesian2} A cartesian with the minimum components. */ Cartesian2.minimumByComponent = function (first, second, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("first", first); RuntimeError.Check.typeOf.object("second", second); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.min(first.x, second.x); result.y = Math.min(first.y, second.y); return result; }; /** * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians. * * @param {Cartesian2} first A cartesian to compare. * @param {Cartesian2} second A cartesian to compare. * @param {Cartesian2} result The object into which to store the result. * @returns {Cartesian2} A cartesian with the maximum components. */ Cartesian2.maximumByComponent = function (first, second, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("first", first); RuntimeError.Check.typeOf.object("second", second); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.max(first.x, second.x); result.y = Math.max(first.y, second.y); return result; }; /** * Computes the provided Cartesian's squared magnitude. * * @param {Cartesian2} cartesian The Cartesian instance whose squared magnitude is to be computed. * @returns {Number} The squared magnitude. */ Cartesian2.magnitudeSquared = function (cartesian) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); //>>includeEnd('debug'); return cartesian.x * cartesian.x + cartesian.y * cartesian.y; }; /** * Computes the Cartesian's magnitude (length). * * @param {Cartesian2} cartesian The Cartesian instance whose magnitude is to be computed. * @returns {Number} The magnitude. */ Cartesian2.magnitude = function (cartesian) { return Math.sqrt(Cartesian2.magnitudeSquared(cartesian)); }; const distanceScratch = new Cartesian2(); /** * Computes the distance between two points. * * @param {Cartesian2} left The first point to compute the distance from. * @param {Cartesian2} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 1.0 * const d = Cesium.Cartesian2.distance(new Cesium.Cartesian2(1.0, 0.0), new Cesium.Cartesian2(2.0, 0.0)); */ Cartesian2.distance = function (left, right) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian2.subtract(left, right, distanceScratch); return Cartesian2.magnitude(distanceScratch); }; /** * Computes the squared distance between two points. Comparing squared distances * using this function is more efficient than comparing distances using {@link Cartesian2#distance}. * * @param {Cartesian2} left The first point to compute the distance from. * @param {Cartesian2} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 4.0, not 2.0 * const d = Cesium.Cartesian2.distance(new Cesium.Cartesian2(1.0, 0.0), new Cesium.Cartesian2(3.0, 0.0)); */ Cartesian2.distanceSquared = function (left, right) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian2.subtract(left, right, distanceScratch); return Cartesian2.magnitudeSquared(distanceScratch); }; /** * Computes the normalized form of the supplied Cartesian. * * @param {Cartesian2} cartesian The Cartesian to be normalized. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.normalize = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const magnitude = Cartesian2.magnitude(cartesian); result.x = cartesian.x / magnitude; result.y = cartesian.y / magnitude; //>>includeStart('debug', pragmas.debug); if (isNaN(result.x) || isNaN(result.y)) { throw new RuntimeError.DeveloperError("normalized result is not a number"); } //>>includeEnd('debug'); return result; }; /** * Computes the dot (scalar) product of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @returns {Number} The dot product. */ Cartesian2.dot = function (left, right) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); //>>includeEnd('debug'); return left.x * right.x + left.y * right.y; }; /** * Computes the magnitude of the cross product that would result from implicitly setting the Z coordinate of the input vectors to 0 * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @returns {Number} The cross product. */ Cartesian2.cross = function (left, right) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); //>>includeEnd('debug'); return left.x * right.y - left.y * right.x; }; /** * Computes the componentwise product of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.multiplyComponents = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x * right.x; result.y = left.y * right.y; return result; }; /** * Computes the componentwise quotient of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.divideComponents = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x / right.x; result.y = left.y / right.y; return result; }; /** * Computes the componentwise sum of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.add = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x + right.x; result.y = left.y + right.y; return result; }; /** * Computes the componentwise difference of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.subtract = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = left.x - right.x; result.y = left.y - right.y; return result; }; /** * Multiplies the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian2} cartesian The Cartesian to be scaled. * @param {Number} scalar The scalar to multiply with. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.multiplyByScalar = function (cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.number("scalar", scalar); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = cartesian.x * scalar; result.y = cartesian.y * scalar; return result; }; /** * Divides the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian2} cartesian The Cartesian to be divided. * @param {Number} scalar The scalar to divide by. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.divideByScalar = function (cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.number("scalar", scalar); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = cartesian.x / scalar; result.y = cartesian.y / scalar; return result; }; /** * Negates the provided Cartesian. * * @param {Cartesian2} cartesian The Cartesian to be negated. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.negate = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = -cartesian.x; result.y = -cartesian.y; return result; }; /** * Computes the absolute value of the provided Cartesian. * * @param {Cartesian2} cartesian The Cartesian whose absolute value is to be computed. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.abs = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Math.abs(cartesian.x); result.y = Math.abs(cartesian.y); return result; }; const lerpScratch = new Cartesian2(); /** * Computes the linear interpolation or extrapolation at t using the provided cartesians. * * @param {Cartesian2} start The value corresponding to t at 0.0. * @param {Cartesian2} end The value corresponding to t at 1.0. * @param {Number} t The point along t at which to interpolate. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.lerp = function (start, end, t, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("start", start); RuntimeError.Check.typeOf.object("end", end); RuntimeError.Check.typeOf.number("t", t); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); Cartesian2.multiplyByScalar(end, t, lerpScratch); result = Cartesian2.multiplyByScalar(start, 1.0 - t, result); return Cartesian2.add(lerpScratch, result, result); }; const angleBetweenScratch = new Cartesian2(); const angleBetweenScratch2 = new Cartesian2(); /** * Returns the angle, in radians, between the provided Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @returns {Number} The angle between the Cartesians. */ Cartesian2.angleBetween = function (left, right) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); //>>includeEnd('debug'); Cartesian2.normalize(left, angleBetweenScratch); Cartesian2.normalize(right, angleBetweenScratch2); return ComponentDatatype.CesiumMath.acosClamped( Cartesian2.dot(angleBetweenScratch, angleBetweenScratch2) ); }; const mostOrthogonalAxisScratch = new Cartesian2(); /** * Returns the axis that is most orthogonal to the provided Cartesian. * * @param {Cartesian2} cartesian The Cartesian on which to find the most orthogonal axis. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The most orthogonal axis. */ Cartesian2.mostOrthogonalAxis = function (cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const f = Cartesian2.normalize(cartesian, mostOrthogonalAxisScratch); Cartesian2.abs(f, f); if (f.x <= f.y) { result = Cartesian2.clone(Cartesian2.UNIT_X, result); } else { result = Cartesian2.clone(Cartesian2.UNIT_Y, result); } return result; }; /** * Compares the provided Cartesians componentwise and returns * true if they are equal, false otherwise. * * @param {Cartesian2} [left] The first Cartesian. * @param {Cartesian2} [right] The second Cartesian. * @returns {Boolean} true if left and right are equal, false otherwise. */ Cartesian2.equals = function (left, right) { return ( left === right || (when.defined(left) && when.defined(right) && left.x === right.x && left.y === right.y) ); }; /** * @private */ Cartesian2.equalsArray = function (cartesian, array, offset) { return cartesian.x === array[offset] && cartesian.y === array[offset + 1]; }; /** * Compares the provided Cartesians componentwise and returns * true if they pass an absolute or relative tolerance test, * false otherwise. * * @param {Cartesian2} [left] The first Cartesian. * @param {Cartesian2} [right] The second Cartesian. * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Cartesian2.equalsEpsilon = function ( left, right, relativeEpsilon, absoluteEpsilon ) { return ( left === right || (when.defined(left) && when.defined(right) && ComponentDatatype.CesiumMath.equalsEpsilon( left.x, right.x, relativeEpsilon, absoluteEpsilon ) && ComponentDatatype.CesiumMath.equalsEpsilon( left.y, right.y, relativeEpsilon, absoluteEpsilon )) ); }; /** * An immutable Cartesian2 instance initialized to (0.0, 0.0). * * @type {Cartesian2} * @constant */ Cartesian2.ZERO = Object.freeze(new Cartesian2(0.0, 0.0)); /** * An immutable Cartesian2 instance initialized to (1.0, 1.0). * * @type {Cartesian2} * @constant */ Cartesian2.ONE = Object.freeze(new Cartesian2(1.0, 1.0)); /** * An immutable Cartesian2 instance initialized to (1.0, 0.0). * * @type {Cartesian2} * @constant */ Cartesian2.UNIT_X = Object.freeze(new Cartesian2(1.0, 0.0)); /** * An immutable Cartesian2 instance initialized to (0.0, 1.0). * * @type {Cartesian2} * @constant */ Cartesian2.UNIT_Y = Object.freeze(new Cartesian2(0.0, 1.0)); /** * Duplicates this Cartesian2 instance. * * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */ Cartesian2.prototype.clone = function (result) { return Cartesian2.clone(this, result); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * true if they are equal, false otherwise. * * @param {Cartesian2} [right] The right hand side Cartesian. * @returns {Boolean} true if they are equal, false otherwise. */ Cartesian2.prototype.equals = function (right) { return Cartesian2.equals(this, right); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * true if they pass an absolute or relative tolerance test, * false otherwise. * * @param {Cartesian2} [right] The right hand side Cartesian. * @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Cartesian2.prototype.equalsEpsilon = function ( right, relativeEpsilon, absoluteEpsilon ) { return Cartesian2.equalsEpsilon( this, right, relativeEpsilon, absoluteEpsilon ); }; /** * Creates a string representing this Cartesian in the format '(x, y)'. * * @returns {String} A string representing the provided Cartesian in the format '(x, y)'. */ Cartesian2.prototype.toString = function () { return `(${this.x}, ${this.y})`; }; /** * A 2x2 matrix, indexable as a column-major order array. * Constructor parameters are in row-major order for code readability. * @alias Matrix2 * @constructor * @implements {ArrayLike} * * @param {Number} [column0Row0=0.0] The value for column 0, row 0. * @param {Number} [column1Row0=0.0] The value for column 1, row 0. * @param {Number} [column0Row1=0.0] The value for column 0, row 1. * @param {Number} [column1Row1=0.0] The value for column 1, row 1. * * @see Matrix2.fromArray * @see Matrix2.fromColumnMajorArray * @see Matrix2.fromRowMajorArray * @see Matrix2.fromScale * @see Matrix2.fromUniformScale * @see Matrix2.fromRotation * @see Matrix3 * @see Matrix4 */ function Matrix2(column0Row0, column1Row0, column0Row1, column1Row1) { this[0] = when.defaultValue(column0Row0, 0.0); this[1] = when.defaultValue(column0Row1, 0.0); this[2] = when.defaultValue(column1Row0, 0.0); this[3] = when.defaultValue(column1Row1, 0.0); } /** * The number of elements used to pack the object into an array. * @type {Number} */ Matrix2.packedLength = 4; /** * Stores the provided instance into the provided array. * * @param {Matrix2} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Matrix2.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("value", value); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); array[startingIndex++] = value[0]; array[startingIndex++] = value[1]; array[startingIndex++] = value[2]; array[startingIndex++] = value[3]; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Matrix2} [result] The object into which to store the result. * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided. */ Matrix2.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new Matrix2(); } result[0] = array[startingIndex++]; result[1] = array[startingIndex++]; result[2] = array[startingIndex++]; result[3] = array[startingIndex++]; return result; }; /** * Flattens an array of Matrix2s into an array of components. The components * are stored in column-major order. * * @param {Matrix2[]} array The array of matrices to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 4 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 4) elements. * @returns {Number[]} The packed array. */ Matrix2.packArray = function (array, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); const length = array.length; const resultLength = length * 4; if (!when.defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { //>>includeStart('debug', pragmas.debug); throw new RuntimeError.DeveloperError( "If result is a typed array, it must have exactly array.length * 4 elements" ); //>>includeEnd('debug'); } else if (result.length !== resultLength) { result.length = resultLength; } for (let i = 0; i < length; ++i) { Matrix2.pack(array[i], result, i * 4); } return result; }; /** * Unpacks an array of column-major matrix components into an array of Matrix2s. * * @param {Number[]} array The array of components to unpack. * @param {Matrix2[]} [result] The array onto which to store the result. * @returns {Matrix2[]} The unpacked array. */ Matrix2.unpackArray = function (array, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); RuntimeError.Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 4); if (array.length % 4 !== 0) { throw new RuntimeError.DeveloperError("array length must be a multiple of 4."); } //>>includeEnd('debug'); const length = array.length; if (!when.defined(result)) { result = new Array(length / 4); } else { result.length = length / 4; } for (let i = 0; i < length; i += 4) { const index = i / 4; result[index] = Matrix2.unpack(array, i, result[index]); } return result; }; /** * Duplicates a Matrix2 instance. * * @param {Matrix2} matrix The matrix to duplicate. * @param {Matrix2} [result] The object onto which to store the result. * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided. (Returns undefined if matrix is undefined) */ Matrix2.clone = function (matrix, result) { if (!when.defined(matrix)) { return undefined; } if (!when.defined(result)) { return new Matrix2(matrix[0], matrix[2], matrix[1], matrix[3]); } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; return result; }; /** * Creates a Matrix2 from 4 consecutive elements in an array. * * @param {Number[]} array The array whose 4 consecutive elements correspond to the positions of the matrix. Assumes column-major order. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix. * @param {Matrix2} [result] The object onto which to store the result. * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided. * * @example * // Create the Matrix2: * // [1.0, 2.0] * // [1.0, 2.0] * * const v = [1.0, 1.0, 2.0, 2.0]; * const m = Cesium.Matrix2.fromArray(v); * * // Create same Matrix2 with using an offset into an array * const v2 = [0.0, 0.0, 1.0, 1.0, 2.0, 2.0]; * const m2 = Cesium.Matrix2.fromArray(v2, 2); */ Matrix2.fromArray = Matrix2.unpack; /** * Creates a Matrix2 instance from a column-major order array. * * @param {Number[]} values The column-major order array. * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided. */ Matrix2.fromColumnMajorArray = function (values, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("values", values); //>>includeEnd('debug'); return Matrix2.clone(values, result); }; /** * Creates a Matrix2 instance from a row-major order array. * The resulting matrix will be in column-major order. * * @param {Number[]} values The row-major order array. * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided. */ Matrix2.fromRowMajorArray = function (values, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("values", values); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix2(values[0], values[1], values[2], values[3]); } result[0] = values[0]; result[1] = values[2]; result[2] = values[1]; result[3] = values[3]; return result; }; /** * Computes a Matrix2 instance representing a non-uniform scale. * * @param {Cartesian2} scale The x and y scale factors. * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided. * * @example * // Creates * // [7.0, 0.0] * // [0.0, 8.0] * const m = Cesium.Matrix2.fromScale(new Cesium.Cartesian2(7.0, 8.0)); */ Matrix2.fromScale = function (scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("scale", scale); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix2(scale.x, 0.0, 0.0, scale.y); } result[0] = scale.x; result[1] = 0.0; result[2] = 0.0; result[3] = scale.y; return result; }; /** * Computes a Matrix2 instance representing a uniform scale. * * @param {Number} scale The uniform scale factor. * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided. * * @example * // Creates * // [2.0, 0.0] * // [0.0, 2.0] * const m = Cesium.Matrix2.fromUniformScale(2.0); */ Matrix2.fromUniformScale = function (scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("scale", scale); //>>includeEnd('debug'); if (!when.defined(result)) { return new Matrix2(scale, 0.0, 0.0, scale); } result[0] = scale; result[1] = 0.0; result[2] = 0.0; result[3] = scale; return result; }; /** * Creates a rotation matrix. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix2} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix2} The modified result parameter, or a new Matrix2 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise. * const p = new Cesium.Cartesian2(5, 6); * const m = Cesium.Matrix2.fromRotation(Cesium.Math.toRadians(45.0)); * const rotated = Cesium.Matrix2.multiplyByVector(m, p, new Cesium.Cartesian2()); */ Matrix2.fromRotation = function (angle, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number("angle", angle); //>>includeEnd('debug'); const cosAngle = Math.cos(angle); const sinAngle = Math.sin(angle); if (!when.defined(result)) { return new Matrix2(cosAngle, -sinAngle, sinAngle, cosAngle); } result[0] = cosAngle; result[1] = sinAngle; result[2] = -sinAngle; result[3] = cosAngle; return result; }; /** * Creates an Array from the provided Matrix2 instance. * The array will be in column-major order. * * @param {Matrix2} matrix The matrix to use.. * @param {Number[]} [result] The Array onto which to store the result. * @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided. */ Matrix2.toArray = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); //>>includeEnd('debug'); if (!when.defined(result)) { return [matrix[0], matrix[1], matrix[2], matrix[3]]; } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; return result; }; /** * Computes the array index of the element at the provided row and column. * * @param {Number} row The zero-based index of the row. * @param {Number} column The zero-based index of the column. * @returns {Number} The index of the element at the provided row and column. * * @exception {DeveloperError} row must be 0 or 1. * @exception {DeveloperError} column must be 0 or 1. * * @example * const myMatrix = new Cesium.Matrix2(); * const column1Row0Index = Cesium.Matrix2.getElementIndex(1, 0); * const column1Row0 = myMatrix[column1Row0Index] * myMatrix[column1Row0Index] = 10.0; */ Matrix2.getElementIndex = function (column, row) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.number.greaterThanOrEquals("row", row, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("row", row, 1); RuntimeError.Check.typeOf.number.greaterThanOrEquals("column", column, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("column", column, 1); //>>includeEnd('debug'); return column * 2 + row; }; /** * Retrieves a copy of the matrix column at the provided index as a Cartesian2 instance. * * @param {Matrix2} matrix The matrix to use. * @param {Number} index The zero-based index of the column to retrieve. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. * * @exception {DeveloperError} index must be 0 or 1. */ Matrix2.getColumn = function (matrix, index, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number.greaterThanOrEquals("index", index, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("index", index, 1); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const startIndex = index * 2; const x = matrix[startIndex]; const y = matrix[startIndex + 1]; result.x = x; result.y = y; return result; }; /** * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian2 instance. * * @param {Matrix2} matrix The matrix to use. * @param {Number} index The zero-based index of the column to set. * @param {Cartesian2} cartesian The Cartesian whose values will be assigned to the specified column. * @param {Cartesian2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. * * @exception {DeveloperError} index must be 0 or 1. */ Matrix2.setColumn = function (matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number.greaterThanOrEquals("index", index, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("index", index, 1); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result = Matrix2.clone(matrix, result); const startIndex = index * 2; result[startIndex] = cartesian.x; result[startIndex + 1] = cartesian.y; return result; }; /** * Retrieves a copy of the matrix row at the provided index as a Cartesian2 instance. * * @param {Matrix2} matrix The matrix to use. * @param {Number} index The zero-based index of the row to retrieve. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. * * @exception {DeveloperError} index must be 0 or 1. */ Matrix2.getRow = function (matrix, index, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number.greaterThanOrEquals("index", index, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("index", index, 1); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const x = matrix[index]; const y = matrix[index + 2]; result.x = x; result.y = y; return result; }; /** * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian2 instance. * * @param {Matrix2} matrix The matrix to use. * @param {Number} index The zero-based index of the row to set. * @param {Cartesian2} cartesian The Cartesian whose values will be assigned to the specified row. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. * * @exception {DeveloperError} index must be 0 or 1. */ Matrix2.setRow = function (matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number.greaterThanOrEquals("index", index, 0); RuntimeError.Check.typeOf.number.lessThanOrEquals("index", index, 1); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result = Matrix2.clone(matrix, result); result[index] = cartesian.x; result[index + 2] = cartesian.y; return result; }; const scaleScratch1 = new Cartesian2(); /** * Computes a new matrix that replaces the scale with the provided scale. * This assumes the matrix is an affine transformation. * * @param {Matrix2} matrix The matrix to use. * @param {Cartesian2} scale The scale that replaces the scale of the provided matrix. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. * * @see Matrix2.setUniformScale * @see Matrix2.fromScale * @see Matrix2.fromUniformScale * @see Matrix2.multiplyByScale * @see Matrix2.multiplyByUniformScale * @see Matrix2.getScale */ Matrix2.setScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("scale", scale); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const existingScale = Matrix2.getScale(matrix, scaleScratch1); const scaleRatioX = scale.x / existingScale.x; const scaleRatioY = scale.y / existingScale.y; result[0] = matrix[0] * scaleRatioX; result[1] = matrix[1] * scaleRatioX; result[2] = matrix[2] * scaleRatioY; result[3] = matrix[3] * scaleRatioY; return result; }; const scaleScratch2 = new Cartesian2(); /** * Computes a new matrix that replaces the scale with the provided uniform scale. * This assumes the matrix is an affine transformation. * * @param {Matrix2} matrix The matrix to use. * @param {Number} scale The uniform scale that replaces the scale of the provided matrix. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. * * @see Matrix2.setScale * @see Matrix2.fromScale * @see Matrix2.fromUniformScale * @see Matrix2.multiplyByScale * @see Matrix2.multiplyByUniformScale * @see Matrix2.getScale */ Matrix2.setUniformScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number("scale", scale); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const existingScale = Matrix2.getScale(matrix, scaleScratch2); const scaleRatioX = scale / existingScale.x; const scaleRatioY = scale / existingScale.y; result[0] = matrix[0] * scaleRatioX; result[1] = matrix[1] * scaleRatioX; result[2] = matrix[2] * scaleRatioY; result[3] = matrix[3] * scaleRatioY; return result; }; const scratchColumn = new Cartesian2(); /** * Extracts the non-uniform scale assuming the matrix is an affine transformation. * * @param {Matrix2} matrix The matrix. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. * * @see Matrix2.multiplyByScale * @see Matrix2.multiplyByUniformScale * @see Matrix2.fromScale * @see Matrix2.fromUniformScale * @see Matrix2.setScale * @see Matrix2.setUniformScale */ Matrix2.getScale = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result.x = Cartesian2.magnitude( Cartesian2.fromElements(matrix[0], matrix[1], scratchColumn) ); result.y = Cartesian2.magnitude( Cartesian2.fromElements(matrix[2], matrix[3], scratchColumn) ); return result; }; const scaleScratch3 = new Cartesian2(); /** * Computes the maximum scale assuming the matrix is an affine transformation. * The maximum scale is the maximum length of the column vectors. * * @param {Matrix2} matrix The matrix. * @returns {Number} The maximum scale. */ Matrix2.getMaximumScale = function (matrix) { Matrix2.getScale(matrix, scaleScratch3); return Cartesian2.maximumComponent(scaleScratch3); }; const scaleScratch4 = new Cartesian2(); /** * Sets the rotation assuming the matrix is an affine transformation. * * @param {Matrix2} matrix The matrix. * @param {Matrix2} rotation The rotation matrix. * @returns {Matrix2} The modified result parameter. * * @see Matrix2.fromRotation * @see Matrix2.getRotation */ Matrix2.setRotation = function (matrix, rotation, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const scale = Matrix2.getScale(matrix, scaleScratch4); result[0] = rotation[0] * scale.x; result[1] = rotation[1] * scale.x; result[2] = rotation[2] * scale.y; result[3] = rotation[3] * scale.y; return result; }; const scaleScratch5 = new Cartesian2(); /** * Extracts the rotation matrix assuming the matrix is an affine transformation. * * @param {Matrix2} matrix The matrix. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. * * @see Matrix2.setRotation * @see Matrix2.fromRotation */ Matrix2.getRotation = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const scale = Matrix2.getScale(matrix, scaleScratch5); result[0] = matrix[0] / scale.x; result[1] = matrix[1] / scale.x; result[2] = matrix[2] / scale.y; result[3] = matrix[3] / scale.y; return result; }; /** * Computes the product of two matrices. * * @param {Matrix2} left The first matrix. * @param {Matrix2} right The second matrix. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. */ Matrix2.multiply = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const column0Row0 = left[0] * right[0] + left[2] * right[1]; const column1Row0 = left[0] * right[2] + left[2] * right[3]; const column0Row1 = left[1] * right[0] + left[3] * right[1]; const column1Row1 = left[1] * right[2] + left[3] * right[3]; result[0] = column0Row0; result[1] = column0Row1; result[2] = column1Row0; result[3] = column1Row1; return result; }; /** * Computes the sum of two matrices. * * @param {Matrix2} left The first matrix. * @param {Matrix2} right The second matrix. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. */ Matrix2.add = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = left[0] + right[0]; result[1] = left[1] + right[1]; result[2] = left[2] + right[2]; result[3] = left[3] + right[3]; return result; }; /** * Computes the difference of two matrices. * * @param {Matrix2} left The first matrix. * @param {Matrix2} right The second matrix. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. */ Matrix2.subtract = function (left, right, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = left[0] - right[0]; result[1] = left[1] - right[1]; result[2] = left[2] - right[2]; result[3] = left[3] - right[3]; return result; }; /** * Computes the product of a matrix and a column vector. * * @param {Matrix2} matrix The matrix. * @param {Cartesian2} cartesian The column. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Matrix2.multiplyByVector = function (matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("cartesian", cartesian); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const x = matrix[0] * cartesian.x + matrix[2] * cartesian.y; const y = matrix[1] * cartesian.x + matrix[3] * cartesian.y; result.x = x; result.y = y; return result; }; /** * Computes the product of a matrix and a scalar. * * @param {Matrix2} matrix The matrix. * @param {Number} scalar The number to multiply by. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. */ Matrix2.multiplyByScalar = function (matrix, scalar, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number("scalar", scalar); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scalar; result[1] = matrix[1] * scalar; result[2] = matrix[2] * scalar; result[3] = matrix[3] * scalar; return result; }; /** * Computes the product of a matrix times a (non-uniform) scale, as if the scale were a scale matrix. * * @param {Matrix2} matrix The matrix on the left-hand side. * @param {Number} scale The non-uniform scale on the right-hand side. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. * * * @example * // Instead of Cesium.Matrix2.multiply(m, Cesium.Matrix2.fromScale(scale), m); * Cesium.Matrix2.multiplyByScale(m, scale, m); * * @see Matrix2.multiplyByUniformScale * @see Matrix2.fromScale * @see Matrix2.fromUniformScale * @see Matrix2.setScale * @see Matrix2.setUniformScale * @see Matrix2.getScale */ Matrix2.multiplyByScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("scale", scale); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scale.x; result[1] = matrix[1] * scale.x; result[2] = matrix[2] * scale.y; result[3] = matrix[3] * scale.y; return result; }; /** * Computes the product of a matrix times a uniform scale, as if the scale were a scale matrix. * * @param {Matrix2} matrix The matrix on the left-hand side. * @param {Number} scale The uniform scale on the right-hand side. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. * * @example * // Instead of Cesium.Matrix2.multiply(m, Cesium.Matrix2.fromUniformScale(scale), m); * Cesium.Matrix2.multiplyByUniformScale(m, scale, m); * * @see Matrix2.multiplyByScale * @see Matrix2.fromScale * @see Matrix2.fromUniformScale * @see Matrix2.setScale * @see Matrix2.setUniformScale * @see Matrix2.getScale */ Matrix2.multiplyByUniformScale = function (matrix, scale, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.number("scale", scale); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = matrix[0] * scale; result[1] = matrix[1] * scale; result[2] = matrix[2] * scale; result[3] = matrix[3] * scale; return result; }; /** * Creates a negated copy of the provided matrix. * * @param {Matrix2} matrix The matrix to negate. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. */ Matrix2.negate = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = -matrix[0]; result[1] = -matrix[1]; result[2] = -matrix[2]; result[3] = -matrix[3]; return result; }; /** * Computes the transpose of the provided matrix. * * @param {Matrix2} matrix The matrix to transpose. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. */ Matrix2.transpose = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); const column0Row0 = matrix[0]; const column0Row1 = matrix[2]; const column1Row0 = matrix[1]; const column1Row1 = matrix[3]; result[0] = column0Row0; result[1] = column0Row1; result[2] = column1Row0; result[3] = column1Row1; return result; }; /** * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements. * * @param {Matrix2} matrix The matrix with signed elements. * @param {Matrix2} result The object onto which to store the result. * @returns {Matrix2} The modified result parameter. */ Matrix2.abs = function (matrix, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("matrix", matrix); RuntimeError.Check.typeOf.object("result", result); //>>includeEnd('debug'); result[0] = Math.abs(matrix[0]); result[1] = Math.abs(matrix[1]); result[2] = Math.abs(matrix[2]); result[3] = Math.abs(matrix[3]); return result; }; /** * Compares the provided matrices componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix2} [left] The first matrix. * @param {Matrix2} [right] The second matrix. * @returns {Boolean} true if left and right are equal, false otherwise. */ Matrix2.equals = function (left, right) { return ( left === right || (when.defined(left) && when.defined(right) && left[0] === right[0] && left[1] === right[1] && left[2] === right[2] && left[3] === right[3]) ); }; /** * @private */ Matrix2.equalsArray = function (matrix, array, offset) { return ( matrix[0] === array[offset] && matrix[1] === array[offset + 1] && matrix[2] === array[offset + 2] && matrix[3] === array[offset + 3] ); }; /** * Compares the provided matrices componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix2} [left] The first matrix. * @param {Matrix2} [right] The second matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if left and right are within the provided epsilon, false otherwise. */ Matrix2.equalsEpsilon = function (left, right, epsilon) { epsilon = when.defaultValue(epsilon, 0); return ( left === right || (when.defined(left) && when.defined(right) && Math.abs(left[0] - right[0]) <= epsilon && Math.abs(left[1] - right[1]) <= epsilon && Math.abs(left[2] - right[2]) <= epsilon && Math.abs(left[3] - right[3]) <= epsilon) ); }; /** * An immutable Matrix2 instance initialized to the identity matrix. * * @type {Matrix2} * @constant */ Matrix2.IDENTITY = Object.freeze(new Matrix2(1.0, 0.0, 0.0, 1.0)); /** * An immutable Matrix2 instance initialized to the zero matrix. * * @type {Matrix2} * @constant */ Matrix2.ZERO = Object.freeze(new Matrix2(0.0, 0.0, 0.0, 0.0)); /** * The index into Matrix2 for column 0, row 0. * * @type {Number} * @constant * * @example * const matrix = new Cesium.Matrix2(); * matrix[Cesium.Matrix2.COLUMN0ROW0] = 5.0; // set column 0, row 0 to 5.0 */ Matrix2.COLUMN0ROW0 = 0; /** * The index into Matrix2 for column 0, row 1. * * @type {Number} * @constant * * @example * const matrix = new Cesium.Matrix2(); * matrix[Cesium.Matrix2.COLUMN0ROW1] = 5.0; // set column 0, row 1 to 5.0 */ Matrix2.COLUMN0ROW1 = 1; /** * The index into Matrix2 for column 1, row 0. * * @type {Number} * @constant * * @example * const matrix = new Cesium.Matrix2(); * matrix[Cesium.Matrix2.COLUMN1ROW0] = 5.0; // set column 1, row 0 to 5.0 */ Matrix2.COLUMN1ROW0 = 2; /** * The index into Matrix2 for column 1, row 1. * * @type {Number} * @constant * * @example * const matrix = new Cesium.Matrix2(); * matrix[Cesium.Matrix2.COLUMN1ROW1] = 5.0; // set column 1, row 1 to 5.0 */ Matrix2.COLUMN1ROW1 = 3; Object.defineProperties(Matrix2.prototype, { /** * Gets the number of items in the collection. * @memberof Matrix2.prototype * * @type {Number} */ length: { get: function () { return Matrix2.packedLength; }, }, }); /** * Duplicates the provided Matrix2 instance. * * @param {Matrix2} [result] The object onto which to store the result. * @returns {Matrix2} The modified result parameter or a new Matrix2 instance if one was not provided. */ Matrix2.prototype.clone = function (result) { return Matrix2.clone(this, result); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are equal, false otherwise. * * @param {Matrix2} [right] The right hand side matrix. * @returns {Boolean} true if they are equal, false otherwise. */ Matrix2.prototype.equals = function (right) { return Matrix2.equals(this, right); }; /** * Compares this matrix to the provided matrix componentwise and returns * true if they are within the provided epsilon, * false otherwise. * * @param {Matrix2} [right] The right hand side matrix. * @param {Number} [epsilon=0] The epsilon to use for equality testing. * @returns {Boolean} true if they are within the provided epsilon, false otherwise. */ Matrix2.prototype.equalsEpsilon = function (right, epsilon) { return Matrix2.equalsEpsilon(this, right, epsilon); }; /** * Creates a string representing this Matrix with each row being * on a separate line and in the format '(column0, column1)'. * * @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1)'. */ Matrix2.prototype.toString = function () { return `(${this[0]}, ${this[2]})\n` + `(${this[1]}, ${this[3]})`; }; exports.Cartesian2 = Cartesian2; exports.Cartesian3 = Cartesian3; exports.Cartesian4 = Cartesian4; exports.Cartographic = Cartographic; exports.Ellipsoid = Ellipsoid; exports.Matrix2 = Matrix2; exports.Matrix3 = Matrix3; exports.Matrix4 = Matrix4; exports.Rectangle = Rectangle; })); //# sourceMappingURL=Matrix2-265d9610.js.map