/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['exports', './AttributeCompression-442278a0', './Matrix2-265d9610', './RuntimeError-5b082e8f', './when-4bbc8319', './ComponentDatatype-aad54330', './Transforms-8b90e17c', './EncodedCartesian3-da8f96bc', './GeometryAttribute-4bcb785f', './IndexDatatype-6739e544', './IntersectionTests-596e31ec', './Plane-616c9c0a'], (function (exports, AttributeCompression, Matrix2, RuntimeError, when, ComponentDatatype, Transforms, EncodedCartesian3, GeometryAttribute, IndexDatatype, IntersectionTests, Plane) { 'use strict'; const scratchCartesian1 = new Matrix2.Cartesian3(); const scratchCartesian2$1 = new Matrix2.Cartesian3(); const scratchCartesian3$1 = new Matrix2.Cartesian3(); /** * Computes the barycentric coordinates for a point with respect to a triangle. * * @function * * @param {Cartesian2|Cartesian3} point The point to test. * @param {Cartesian2|Cartesian3} p0 The first point of the triangle, corresponding to the barycentric x-axis. * @param {Cartesian2|Cartesian3} p1 The second point of the triangle, corresponding to the barycentric y-axis. * @param {Cartesian2|Cartesian3} p2 The third point of the triangle, corresponding to the barycentric z-axis. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3|undefined} The modified result parameter or a new Cartesian3 instance if one was not provided. If the triangle is degenerate the function will return undefined. * * @example * // Returns Cartesian3.UNIT_X * const p = new Cesium.Cartesian3(-1.0, 0.0, 0.0); * const b = Cesium.barycentricCoordinates(p, * new Cesium.Cartesian3(-1.0, 0.0, 0.0), * new Cesium.Cartesian3( 1.0, 0.0, 0.0), * new Cesium.Cartesian3( 0.0, 1.0, 1.0)); */ function barycentricCoordinates(point, p0, p1, p2, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("point", point); RuntimeError.Check.defined("p0", p0); RuntimeError.Check.defined("p1", p1); RuntimeError.Check.defined("p2", p2); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Matrix2.Cartesian3(); } // Implementation based on http://www.blackpawn.com/texts/pointinpoly/default.html. let v0; let v1; let v2; let dot00; let dot01; let dot02; let dot11; let dot12; if (!when.defined(p0.z)) { if (Matrix2.Cartesian2.equalsEpsilon(point, p0, ComponentDatatype.CesiumMath.EPSILON14)) { return Matrix2.Cartesian3.clone(Matrix2.Cartesian3.UNIT_X, result); } if (Matrix2.Cartesian2.equalsEpsilon(point, p1, ComponentDatatype.CesiumMath.EPSILON14)) { return Matrix2.Cartesian3.clone(Matrix2.Cartesian3.UNIT_Y, result); } if (Matrix2.Cartesian2.equalsEpsilon(point, p2, ComponentDatatype.CesiumMath.EPSILON14)) { return Matrix2.Cartesian3.clone(Matrix2.Cartesian3.UNIT_Z, result); } v0 = Matrix2.Cartesian2.subtract(p1, p0, scratchCartesian1); v1 = Matrix2.Cartesian2.subtract(p2, p0, scratchCartesian2$1); v2 = Matrix2.Cartesian2.subtract(point, p0, scratchCartesian3$1); dot00 = Matrix2.Cartesian2.dot(v0, v0); dot01 = Matrix2.Cartesian2.dot(v0, v1); dot02 = Matrix2.Cartesian2.dot(v0, v2); dot11 = Matrix2.Cartesian2.dot(v1, v1); dot12 = Matrix2.Cartesian2.dot(v1, v2); } else { if (Matrix2.Cartesian3.equalsEpsilon(point, p0, ComponentDatatype.CesiumMath.EPSILON14)) { return Matrix2.Cartesian3.clone(Matrix2.Cartesian3.UNIT_X, result); } if (Matrix2.Cartesian3.equalsEpsilon(point, p1, ComponentDatatype.CesiumMath.EPSILON14)) { return Matrix2.Cartesian3.clone(Matrix2.Cartesian3.UNIT_Y, result); } if (Matrix2.Cartesian3.equalsEpsilon(point, p2, ComponentDatatype.CesiumMath.EPSILON14)) { return Matrix2.Cartesian3.clone(Matrix2.Cartesian3.UNIT_Z, result); } v0 = Matrix2.Cartesian3.subtract(p1, p0, scratchCartesian1); v1 = Matrix2.Cartesian3.subtract(p2, p0, scratchCartesian2$1); v2 = Matrix2.Cartesian3.subtract(point, p0, scratchCartesian3$1); dot00 = Matrix2.Cartesian3.dot(v0, v0); dot01 = Matrix2.Cartesian3.dot(v0, v1); dot02 = Matrix2.Cartesian3.dot(v0, v2); dot11 = Matrix2.Cartesian3.dot(v1, v1); dot12 = Matrix2.Cartesian3.dot(v1, v2); } result.y = dot11 * dot02 - dot01 * dot12; result.z = dot00 * dot12 - dot01 * dot02; const q = dot00 * dot11 - dot01 * dot01; // Triangle is degenerate if (q === 0) { return undefined; } result.y /= q; result.z /= q; result.x = 1.0 - result.y - result.z; return result; } /** * Encapsulates an algorithm to optimize triangles for the post * vertex-shader cache. This is based on the 2007 SIGGRAPH paper * 'Fast Triangle Reordering for Vertex Locality and Reduced Overdraw.' * The runtime is linear but several passes are made. * * @namespace Tipsify * * @see * Fast Triangle Reordering for Vertex Locality and Reduced Overdraw * by Sander, Nehab, and Barczak * * @private */ const Tipsify = {}; /** * Calculates the average cache miss ratio (ACMR) for a given set of indices. * * @param {Object} options Object with the following properties: * @param {Number[]} options.indices Lists triads of numbers corresponding to the indices of the vertices * in the vertex buffer that define the geometry's triangles. * @param {Number} [options.maximumIndex] The maximum value of the elements in args.indices. * If not supplied, this value will be computed. * @param {Number} [options.cacheSize=24] The number of vertices that can be stored in the cache at any one time. * @returns {Number} The average cache miss ratio (ACMR). * * @exception {DeveloperError} indices length must be a multiple of three. * @exception {DeveloperError} cacheSize must be greater than two. * * @example * const indices = [0, 1, 2, 3, 4, 5]; * const maxIndex = 5; * const cacheSize = 3; * const acmr = Cesium.Tipsify.calculateACMR({indices : indices, maxIndex : maxIndex, cacheSize : cacheSize}); */ Tipsify.calculateACMR = function (options) { options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT); const indices = options.indices; let maximumIndex = options.maximumIndex; const cacheSize = when.defaultValue(options.cacheSize, 24); //>>includeStart('debug', pragmas.debug); if (!when.defined(indices)) { throw new RuntimeError.DeveloperError("indices is required."); } //>>includeEnd('debug'); const numIndices = indices.length; //>>includeStart('debug', pragmas.debug); if (numIndices < 3 || numIndices % 3 !== 0) { throw new RuntimeError.DeveloperError("indices length must be a multiple of three."); } if (maximumIndex <= 0) { throw new RuntimeError.DeveloperError("maximumIndex must be greater than zero."); } if (cacheSize < 3) { throw new RuntimeError.DeveloperError("cacheSize must be greater than two."); } //>>includeEnd('debug'); // Compute the maximumIndex if not given if (!when.defined(maximumIndex)) { maximumIndex = 0; let currentIndex = 0; let intoIndices = indices[currentIndex]; while (currentIndex < numIndices) { if (intoIndices > maximumIndex) { maximumIndex = intoIndices; } ++currentIndex; intoIndices = indices[currentIndex]; } } // Vertex time stamps const vertexTimeStamps = []; for (let i = 0; i < maximumIndex + 1; i++) { vertexTimeStamps[i] = 0; } // Cache processing let s = cacheSize + 1; for (let j = 0; j < numIndices; ++j) { if (s - vertexTimeStamps[indices[j]] > cacheSize) { vertexTimeStamps[indices[j]] = s; ++s; } } return (s - cacheSize + 1) / (numIndices / 3); }; /** * Optimizes triangles for the post-vertex shader cache. * * @param {Object} options Object with the following properties: * @param {Number[]} options.indices Lists triads of numbers corresponding to the indices of the vertices * in the vertex buffer that define the geometry's triangles. * @param {Number} [options.maximumIndex] The maximum value of the elements in args.indices. * If not supplied, this value will be computed. * @param {Number} [options.cacheSize=24] The number of vertices that can be stored in the cache at any one time. * @returns {Number[]} A list of the input indices in an optimized order. * * @exception {DeveloperError} indices length must be a multiple of three. * @exception {DeveloperError} cacheSize must be greater than two. * * @example * const indices = [0, 1, 2, 3, 4, 5]; * const maxIndex = 5; * const cacheSize = 3; * const reorderedIndices = Cesium.Tipsify.tipsify({indices : indices, maxIndex : maxIndex, cacheSize : cacheSize}); */ Tipsify.tipsify = function (options) { options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT); const indices = options.indices; const maximumIndex = options.maximumIndex; const cacheSize = when.defaultValue(options.cacheSize, 24); let cursor; function skipDeadEnd(vertices, deadEnd, indices, maximumIndexPlusOne) { while (deadEnd.length >= 1) { // while the stack is not empty const d = deadEnd[deadEnd.length - 1]; // top of the stack deadEnd.splice(deadEnd.length - 1, 1); // pop the stack if (vertices[d].numLiveTriangles > 0) { return d; } } while (cursor < maximumIndexPlusOne) { if (vertices[cursor].numLiveTriangles > 0) { ++cursor; return cursor - 1; } ++cursor; } return -1; } function getNextVertex( indices, cacheSize, oneRing, vertices, s, deadEnd, maximumIndexPlusOne ) { let n = -1; let p; let m = -1; let itOneRing = 0; while (itOneRing < oneRing.length) { const index = oneRing[itOneRing]; if (vertices[index].numLiveTriangles) { p = 0; if ( s - vertices[index].timeStamp + 2 * vertices[index].numLiveTriangles <= cacheSize ) { p = s - vertices[index].timeStamp; } if (p > m || m === -1) { m = p; n = index; } } ++itOneRing; } if (n === -1) { return skipDeadEnd(vertices, deadEnd, indices, maximumIndexPlusOne); } return n; } //>>includeStart('debug', pragmas.debug); if (!when.defined(indices)) { throw new RuntimeError.DeveloperError("indices is required."); } //>>includeEnd('debug'); const numIndices = indices.length; //>>includeStart('debug', pragmas.debug); if (numIndices < 3 || numIndices % 3 !== 0) { throw new RuntimeError.DeveloperError("indices length must be a multiple of three."); } if (maximumIndex <= 0) { throw new RuntimeError.DeveloperError("maximumIndex must be greater than zero."); } if (cacheSize < 3) { throw new RuntimeError.DeveloperError("cacheSize must be greater than two."); } //>>includeEnd('debug'); // Determine maximum index let maximumIndexPlusOne = 0; let currentIndex = 0; let intoIndices = indices[currentIndex]; const endIndex = numIndices; if (when.defined(maximumIndex)) { maximumIndexPlusOne = maximumIndex + 1; } else { while (currentIndex < endIndex) { if (intoIndices > maximumIndexPlusOne) { maximumIndexPlusOne = intoIndices; } ++currentIndex; intoIndices = indices[currentIndex]; } if (maximumIndexPlusOne === -1) { return 0; } ++maximumIndexPlusOne; } // Vertices const vertices = []; let i; for (i = 0; i < maximumIndexPlusOne; i++) { vertices[i] = { numLiveTriangles: 0, timeStamp: 0, vertexTriangles: [], }; } currentIndex = 0; let triangle = 0; while (currentIndex < endIndex) { vertices[indices[currentIndex]].vertexTriangles.push(triangle); ++vertices[indices[currentIndex]].numLiveTriangles; vertices[indices[currentIndex + 1]].vertexTriangles.push(triangle); ++vertices[indices[currentIndex + 1]].numLiveTriangles; vertices[indices[currentIndex + 2]].vertexTriangles.push(triangle); ++vertices[indices[currentIndex + 2]].numLiveTriangles; ++triangle; currentIndex += 3; } // Starting index let f = 0; // Time Stamp let s = cacheSize + 1; cursor = 1; // Process let oneRing = []; const deadEnd = []; //Stack let vertex; let intoVertices; let currentOutputIndex = 0; const outputIndices = []; const numTriangles = numIndices / 3; const triangleEmitted = []; for (i = 0; i < numTriangles; i++) { triangleEmitted[i] = false; } let index; let limit; while (f !== -1) { oneRing = []; intoVertices = vertices[f]; limit = intoVertices.vertexTriangles.length; for (let k = 0; k < limit; ++k) { triangle = intoVertices.vertexTriangles[k]; if (!triangleEmitted[triangle]) { triangleEmitted[triangle] = true; currentIndex = triangle + triangle + triangle; for (let j = 0; j < 3; ++j) { // Set this index as a possible next index index = indices[currentIndex]; oneRing.push(index); deadEnd.push(index); // Output index outputIndices[currentOutputIndex] = index; ++currentOutputIndex; // Cache processing vertex = vertices[index]; --vertex.numLiveTriangles; if (s - vertex.timeStamp > cacheSize) { vertex.timeStamp = s; ++s; } ++currentIndex; } } } f = getNextVertex( indices, cacheSize, oneRing, vertices, s, deadEnd, maximumIndexPlusOne ); } return outputIndices; }; /** * Content pipeline functions for geometries. * * @namespace GeometryPipeline * * @see Geometry */ const GeometryPipeline = {}; function addTriangle(lines, index, i0, i1, i2) { lines[index++] = i0; lines[index++] = i1; lines[index++] = i1; lines[index++] = i2; lines[index++] = i2; lines[index] = i0; } function trianglesToLines(triangles) { const count = triangles.length; const size = (count / 3) * 6; const lines = IndexDatatype.IndexDatatype.createTypedArray(count, size); let index = 0; for (let i = 0; i < count; i += 3, index += 6) { addTriangle(lines, index, triangles[i], triangles[i + 1], triangles[i + 2]); } return lines; } function triangleStripToLines(triangles) { const count = triangles.length; if (count >= 3) { const size = (count - 2) * 6; const lines = IndexDatatype.IndexDatatype.createTypedArray(count, size); addTriangle(lines, 0, triangles[0], triangles[1], triangles[2]); let index = 6; for (let i = 3; i < count; ++i, index += 6) { addTriangle( lines, index, triangles[i - 1], triangles[i], triangles[i - 2] ); } return lines; } return new Uint16Array(); } function triangleFanToLines(triangles) { if (triangles.length > 0) { const count = triangles.length - 1; const size = (count - 1) * 6; const lines = IndexDatatype.IndexDatatype.createTypedArray(count, size); const base = triangles[0]; let index = 0; for (let i = 1; i < count; ++i, index += 6) { addTriangle(lines, index, base, triangles[i], triangles[i + 1]); } return lines; } return new Uint16Array(); } /** * Converts a geometry's triangle indices to line indices. If the geometry has an indices * and its primitiveType is TRIANGLES, TRIANGLE_STRIP, * TRIANGLE_FAN, it is converted to LINES; otherwise, the geometry is not changed. *

* This is commonly used to create a wireframe geometry for visual debugging. *

* * @param {Geometry} geometry The geometry to modify. * @returns {Geometry} The modified geometry argument, with its triangle indices converted to lines. * * @exception {DeveloperError} geometry.primitiveType must be TRIANGLES, TRIANGLE_STRIP, or TRIANGLE_FAN. * * @example * geometry = Cesium.GeometryPipeline.toWireframe(geometry); */ GeometryPipeline.toWireframe = function (geometry) { //>>includeStart('debug', pragmas.debug); if (!when.defined(geometry)) { throw new RuntimeError.DeveloperError("geometry is required."); } //>>includeEnd('debug'); const indices = geometry.indices; if (when.defined(indices)) { switch (geometry.primitiveType) { case GeometryAttribute.PrimitiveType.TRIANGLES: geometry.indices = trianglesToLines(indices); break; case GeometryAttribute.PrimitiveType.TRIANGLE_STRIP: geometry.indices = triangleStripToLines(indices); break; case GeometryAttribute.PrimitiveType.TRIANGLE_FAN: geometry.indices = triangleFanToLines(indices); break; //>>includeStart('debug', pragmas.debug); default: throw new RuntimeError.DeveloperError( "geometry.primitiveType must be TRIANGLES, TRIANGLE_STRIP, or TRIANGLE_FAN." ); //>>includeEnd('debug'); } geometry.primitiveType = GeometryAttribute.PrimitiveType.LINES; } return geometry; }; /** * Creates a new {@link Geometry} with LINES representing the provided * attribute (attributeName) for the provided geometry. This is used to * visualize vector attributes like normals, tangents, and bitangents. * * @param {Geometry} geometry The Geometry instance with the attribute. * @param {String} [attributeName='normal'] The name of the attribute. * @param {Number} [length=10000.0] The length of each line segment in meters. This can be negative to point the vector in the opposite direction. * @returns {Geometry} A new Geometry instance with line segments for the vector. * * @exception {DeveloperError} geometry.attributes must have an attribute with the same name as the attributeName parameter. * * @example * const geometry = Cesium.GeometryPipeline.createLineSegmentsForVectors(instance.geometry, 'bitangent', 100000.0); */ GeometryPipeline.createLineSegmentsForVectors = function ( geometry, attributeName, length ) { attributeName = when.defaultValue(attributeName, "normal"); //>>includeStart('debug', pragmas.debug); if (!when.defined(geometry)) { throw new RuntimeError.DeveloperError("geometry is required."); } if (!when.defined(geometry.attributes.position)) { throw new RuntimeError.DeveloperError("geometry.attributes.position is required."); } if (!when.defined(geometry.attributes[attributeName])) { throw new RuntimeError.DeveloperError( `geometry.attributes must have an attribute with the same name as the attributeName parameter, ${attributeName}.` ); } //>>includeEnd('debug'); length = when.defaultValue(length, 10000.0); const positions = geometry.attributes.position.values; const vectors = geometry.attributes[attributeName].values; const positionsLength = positions.length; const newPositions = new Float64Array(2 * positionsLength); let j = 0; for (let i = 0; i < positionsLength; i += 3) { newPositions[j++] = positions[i]; newPositions[j++] = positions[i + 1]; newPositions[j++] = positions[i + 2]; newPositions[j++] = positions[i] + vectors[i] * length; newPositions[j++] = positions[i + 1] + vectors[i + 1] * length; newPositions[j++] = positions[i + 2] + vectors[i + 2] * length; } let newBoundingSphere; const bs = geometry.boundingSphere; if (when.defined(bs)) { newBoundingSphere = new Transforms.BoundingSphere(bs.center, bs.radius + length); } return new GeometryAttribute.Geometry({ attributes: { position: new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: newPositions, }), }, primitiveType: GeometryAttribute.PrimitiveType.LINES, boundingSphere: newBoundingSphere, }); }; /** * Creates an object that maps attribute names to unique locations (indices) * for matching vertex attributes and shader programs. * * @param {Geometry} geometry The geometry, which is not modified, to create the object for. * @returns {Object} An object with attribute name / index pairs. * * @example * const attributeLocations = Cesium.GeometryPipeline.createAttributeLocations(geometry); * // Example output * // { * // 'position' : 0, * // 'normal' : 1 * // } */ GeometryPipeline.createAttributeLocations = function (geometry) { //>>includeStart('debug', pragmas.debug); if (!when.defined(geometry)) { throw new RuntimeError.DeveloperError("geometry is required."); } //>>includeEnd('debug') // There can be a WebGL performance hit when attribute 0 is disabled, so // assign attribute locations to well-known attributes. const semantics = [ "position", "positionHigh", "positionLow", // From VertexFormat.position - after 2D projection and high-precision encoding "position3DHigh", "position3DLow", "position2DHigh", "position2DLow", // From Primitive "pickColor", // From VertexFormat "normal", "st", "tangent", "bitangent", // For shadow volumes "extrudeDirection", // From compressing texture coordinates and normals "compressedAttributes", ]; const attributes = geometry.attributes; const indices = {}; let j = 0; let i; const len = semantics.length; // Attribute locations for well-known attributes for (i = 0; i < len; ++i) { const semantic = semantics[i]; if (when.defined(attributes[semantic])) { indices[semantic] = j++; } } // Locations for custom attributes for (const name in attributes) { if (attributes.hasOwnProperty(name) && !when.defined(indices[name])) { indices[name] = j++; } } return indices; }; /** * Reorders a geometry's attributes and indices to achieve better performance from the GPU's pre-vertex-shader cache. * * @param {Geometry} geometry The geometry to modify. * @returns {Geometry} The modified geometry argument, with its attributes and indices reordered for the GPU's pre-vertex-shader cache. * * @exception {DeveloperError} Each attribute array in geometry.attributes must have the same number of attributes. * * * @example * geometry = Cesium.GeometryPipeline.reorderForPreVertexCache(geometry); * * @see GeometryPipeline.reorderForPostVertexCache */ GeometryPipeline.reorderForPreVertexCache = function (geometry) { //>>includeStart('debug', pragmas.debug); if (!when.defined(geometry)) { throw new RuntimeError.DeveloperError("geometry is required."); } //>>includeEnd('debug'); const numVertices = GeometryAttribute.Geometry.computeNumberOfVertices(geometry); const indices = geometry.indices; if (when.defined(indices)) { const indexCrossReferenceOldToNew = new Int32Array(numVertices); for (let i = 0; i < numVertices; i++) { indexCrossReferenceOldToNew[i] = -1; } // Construct cross reference and reorder indices const indicesIn = indices; const numIndices = indicesIn.length; const indicesOut = IndexDatatype.IndexDatatype.createTypedArray(numVertices, numIndices); let intoIndicesIn = 0; let intoIndicesOut = 0; let nextIndex = 0; let tempIndex; while (intoIndicesIn < numIndices) { tempIndex = indexCrossReferenceOldToNew[indicesIn[intoIndicesIn]]; if (tempIndex !== -1) { indicesOut[intoIndicesOut] = tempIndex; } else { tempIndex = indicesIn[intoIndicesIn]; indexCrossReferenceOldToNew[tempIndex] = nextIndex; indicesOut[intoIndicesOut] = nextIndex; ++nextIndex; } ++intoIndicesIn; ++intoIndicesOut; } geometry.indices = indicesOut; // Reorder attributes const attributes = geometry.attributes; for (const property in attributes) { if ( attributes.hasOwnProperty(property) && when.defined(attributes[property]) && when.defined(attributes[property].values) ) { const attribute = attributes[property]; const elementsIn = attribute.values; let intoElementsIn = 0; const numComponents = attribute.componentsPerAttribute; const elementsOut = ComponentDatatype.ComponentDatatype.createTypedArray( attribute.componentDatatype, nextIndex * numComponents ); while (intoElementsIn < numVertices) { const temp = indexCrossReferenceOldToNew[intoElementsIn]; if (temp !== -1) { for (let j = 0; j < numComponents; j++) { elementsOut[numComponents * temp + j] = elementsIn[numComponents * intoElementsIn + j]; } } ++intoElementsIn; } attribute.values = elementsOut; } } } return geometry; }; /** * Reorders a geometry's indices to achieve better performance from the GPU's * post vertex-shader cache by using the Tipsify algorithm. If the geometry primitiveType * is not TRIANGLES or the geometry does not have an indices, this function has no effect. * * @param {Geometry} geometry The geometry to modify. * @param {Number} [cacheCapacity=24] The number of vertices that can be held in the GPU's vertex cache. * @returns {Geometry} The modified geometry argument, with its indices reordered for the post-vertex-shader cache. * * @exception {DeveloperError} cacheCapacity must be greater than two. * * * @example * geometry = Cesium.GeometryPipeline.reorderForPostVertexCache(geometry); * * @see GeometryPipeline.reorderForPreVertexCache * @see {@link http://gfx.cs.princ0eton.edu/pubs/Sander_2007_%3ETR/tipsy.pdf|Fast Triangle Reordering for Vertex Locality and Reduced Overdraw} * by Sander, Nehab, and Barczak */ GeometryPipeline.reorderForPostVertexCache = function ( geometry, cacheCapacity ) { //>>includeStart('debug', pragmas.debug); if (!when.defined(geometry)) { throw new RuntimeError.DeveloperError("geometry is required."); } //>>includeEnd('debug'); const indices = geometry.indices; if (geometry.primitiveType === GeometryAttribute.PrimitiveType.TRIANGLES && when.defined(indices)) { const numIndices = indices.length; let maximumIndex = 0; for (let j = 0; j < numIndices; j++) { if (indices[j] > maximumIndex) { maximumIndex = indices[j]; } } geometry.indices = Tipsify.tipsify({ indices: indices, maximumIndex: maximumIndex, cacheSize: cacheCapacity, }); } return geometry; }; function copyAttributesDescriptions(attributes) { const newAttributes = {}; for (const attribute in attributes) { if ( attributes.hasOwnProperty(attribute) && when.defined(attributes[attribute]) && when.defined(attributes[attribute].values) ) { const attr = attributes[attribute]; newAttributes[attribute] = new GeometryAttribute.GeometryAttribute({ componentDatatype: attr.componentDatatype, componentsPerAttribute: attr.componentsPerAttribute, normalize: attr.normalize, values: [], }); } } return newAttributes; } function copyVertex(destinationAttributes, sourceAttributes, index) { for (const attribute in sourceAttributes) { if ( sourceAttributes.hasOwnProperty(attribute) && when.defined(sourceAttributes[attribute]) && when.defined(sourceAttributes[attribute].values) ) { const attr = sourceAttributes[attribute]; for (let k = 0; k < attr.componentsPerAttribute; ++k) { destinationAttributes[attribute].values.push( attr.values[index * attr.componentsPerAttribute + k] ); } } } } /** * Splits a geometry into multiple geometries, if necessary, to ensure that indices in the * indices fit into unsigned shorts. This is used to meet the WebGL requirements * when unsigned int indices are not supported. *

* If the geometry does not have any indices, this function has no effect. *

* * @param {Geometry} geometry The geometry to be split into multiple geometries. * @returns {Geometry[]} An array of geometries, each with indices that fit into unsigned shorts. * * @exception {DeveloperError} geometry.primitiveType must equal to PrimitiveType.TRIANGLES, PrimitiveType.LINES, or PrimitiveType.POINTS * @exception {DeveloperError} All geometry attribute lists must have the same number of attributes. * * @example * const geometries = Cesium.GeometryPipeline.fitToUnsignedShortIndices(geometry); */ GeometryPipeline.fitToUnsignedShortIndices = function (geometry) { //>>includeStart('debug', pragmas.debug); if (!when.defined(geometry)) { throw new RuntimeError.DeveloperError("geometry is required."); } if ( when.defined(geometry.indices) && geometry.primitiveType !== GeometryAttribute.PrimitiveType.TRIANGLES && geometry.primitiveType !== GeometryAttribute.PrimitiveType.LINES && geometry.primitiveType !== GeometryAttribute.PrimitiveType.POINTS ) { throw new RuntimeError.DeveloperError( "geometry.primitiveType must equal to PrimitiveType.TRIANGLES, PrimitiveType.LINES, or PrimitiveType.POINTS." ); } //>>includeEnd('debug'); const geometries = []; // If there's an index list and more than 64K attributes, it is possible that // some indices are outside the range of unsigned short [0, 64K - 1] const numberOfVertices = GeometryAttribute.Geometry.computeNumberOfVertices(geometry); if ( when.defined(geometry.indices) && numberOfVertices >= ComponentDatatype.CesiumMath.SIXTY_FOUR_KILOBYTES ) { let oldToNewIndex = []; let newIndices = []; let currentIndex = 0; let newAttributes = copyAttributesDescriptions(geometry.attributes); const originalIndices = geometry.indices; const numberOfIndices = originalIndices.length; let indicesPerPrimitive; if (geometry.primitiveType === GeometryAttribute.PrimitiveType.TRIANGLES) { indicesPerPrimitive = 3; } else if (geometry.primitiveType === GeometryAttribute.PrimitiveType.LINES) { indicesPerPrimitive = 2; } else if (geometry.primitiveType === GeometryAttribute.PrimitiveType.POINTS) { indicesPerPrimitive = 1; } for (let j = 0; j < numberOfIndices; j += indicesPerPrimitive) { for (let k = 0; k < indicesPerPrimitive; ++k) { const x = originalIndices[j + k]; let i = oldToNewIndex[x]; if (!when.defined(i)) { i = currentIndex++; oldToNewIndex[x] = i; copyVertex(newAttributes, geometry.attributes, x); } newIndices.push(i); } if ( currentIndex + indicesPerPrimitive >= ComponentDatatype.CesiumMath.SIXTY_FOUR_KILOBYTES ) { geometries.push( new GeometryAttribute.Geometry({ attributes: newAttributes, indices: newIndices, primitiveType: geometry.primitiveType, boundingSphere: geometry.boundingSphere, boundingSphereCV: geometry.boundingSphereCV, }) ); // Reset for next vertex-array oldToNewIndex = []; newIndices = []; currentIndex = 0; newAttributes = copyAttributesDescriptions(geometry.attributes); } } if (newIndices.length !== 0) { geometries.push( new GeometryAttribute.Geometry({ attributes: newAttributes, indices: newIndices, primitiveType: geometry.primitiveType, boundingSphere: geometry.boundingSphere, boundingSphereCV: geometry.boundingSphereCV, }) ); } } else { // No need to split into multiple geometries geometries.push(geometry); } return geometries; }; const scratchProjectTo2DCartesian3 = new Matrix2.Cartesian3(); const scratchProjectTo2DCartographic = new Matrix2.Cartographic(); /** * Projects a geometry's 3D position attribute to 2D, replacing the position * attribute with separate position3D and position2D attributes. *

* If the geometry does not have a position, this function has no effect. *

* * @param {Geometry} geometry The geometry to modify. * @param {String} attributeName The name of the attribute. * @param {String} attributeName3D The name of the attribute in 3D. * @param {String} attributeName2D The name of the attribute in 2D. * @param {Object} [projection=new GeographicProjection()] The projection to use. * @returns {Geometry} The modified geometry argument with position3D and position2D attributes. * * @exception {DeveloperError} geometry must have attribute matching the attributeName argument. * @exception {DeveloperError} The attribute componentDatatype must be ComponentDatatype.DOUBLE. * @exception {DeveloperError} Could not project a point to 2D. * * @example * geometry = Cesium.GeometryPipeline.projectTo2D(geometry, 'position', 'position3D', 'position2D'); */ GeometryPipeline.projectTo2D = function ( geometry, attributeName, attributeName3D, attributeName2D, projection ) { //>>includeStart('debug', pragmas.debug); if (!when.defined(geometry)) { throw new RuntimeError.DeveloperError("geometry is required."); } if (!when.defined(attributeName)) { throw new RuntimeError.DeveloperError("attributeName is required."); } if (!when.defined(attributeName3D)) { throw new RuntimeError.DeveloperError("attributeName3D is required."); } if (!when.defined(attributeName2D)) { throw new RuntimeError.DeveloperError("attributeName2D is required."); } if (!when.defined(geometry.attributes[attributeName])) { throw new RuntimeError.DeveloperError( `geometry must have attribute matching the attributeName argument: ${attributeName}.` ); } if ( geometry.attributes[attributeName].componentDatatype !== ComponentDatatype.ComponentDatatype.DOUBLE ) { throw new RuntimeError.DeveloperError( "The attribute componentDatatype must be ComponentDatatype.DOUBLE." ); } //>>includeEnd('debug'); const attribute = geometry.attributes[attributeName]; projection = when.defined(projection) ? projection : new Transforms.GeographicProjection(); const ellipsoid = projection.ellipsoid; // Project original values to 2D. const values3D = attribute.values; const projectedValues = new Float64Array(values3D.length); let index = 0; for (let i = 0; i < values3D.length; i += 3) { const value = Matrix2.Cartesian3.fromArray( values3D, i, scratchProjectTo2DCartesian3 ); const lonLat = ellipsoid.cartesianToCartographic( value, scratchProjectTo2DCartographic ); //>>includeStart('debug', pragmas.debug); if (!when.defined(lonLat)) { throw new RuntimeError.DeveloperError( `Could not project point (${value.x}, ${value.y}, ${value.z}) to 2D.` ); } //>>includeEnd('debug'); const projectedLonLat = projection.project( lonLat, scratchProjectTo2DCartesian3 ); projectedValues[index++] = projectedLonLat.x; projectedValues[index++] = projectedLonLat.y; projectedValues[index++] = projectedLonLat.z; } // Rename original cartesians to WGS84 cartesians. geometry.attributes[attributeName3D] = attribute; // Replace original cartesians with 2D projected cartesians geometry.attributes[attributeName2D] = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: projectedValues, }); delete geometry.attributes[attributeName]; return geometry; }; const encodedResult = { high: 0.0, low: 0.0, }; /** * Encodes floating-point geometry attribute values as two separate attributes to improve * rendering precision. *

* This is commonly used to create high-precision position vertex attributes. *

* * @param {Geometry} geometry The geometry to modify. * @param {String} attributeName The name of the attribute. * @param {String} attributeHighName The name of the attribute for the encoded high bits. * @param {String} attributeLowName The name of the attribute for the encoded low bits. * @returns {Geometry} The modified geometry argument, with its encoded attribute. * * @exception {DeveloperError} geometry must have attribute matching the attributeName argument. * @exception {DeveloperError} The attribute componentDatatype must be ComponentDatatype.DOUBLE. * * @example * geometry = Cesium.GeometryPipeline.encodeAttribute(geometry, 'position3D', 'position3DHigh', 'position3DLow'); */ GeometryPipeline.encodeAttribute = function ( geometry, attributeName, attributeHighName, attributeLowName ) { //>>includeStart('debug', pragmas.debug); if (!when.defined(geometry)) { throw new RuntimeError.DeveloperError("geometry is required."); } if (!when.defined(attributeName)) { throw new RuntimeError.DeveloperError("attributeName is required."); } if (!when.defined(attributeHighName)) { throw new RuntimeError.DeveloperError("attributeHighName is required."); } if (!when.defined(attributeLowName)) { throw new RuntimeError.DeveloperError("attributeLowName is required."); } if (!when.defined(geometry.attributes[attributeName])) { throw new RuntimeError.DeveloperError( `geometry must have attribute matching the attributeName argument: ${attributeName}.` ); } if ( geometry.attributes[attributeName].componentDatatype !== ComponentDatatype.ComponentDatatype.DOUBLE ) { throw new RuntimeError.DeveloperError( "The attribute componentDatatype must be ComponentDatatype.DOUBLE." ); } //>>includeEnd('debug'); const attribute = geometry.attributes[attributeName]; const values = attribute.values; const length = values.length; const highValues = new Float32Array(length); const lowValues = new Float32Array(length); for (let i = 0; i < length; ++i) { EncodedCartesian3.EncodedCartesian3.encode(values[i], encodedResult); highValues[i] = encodedResult.high; lowValues[i] = encodedResult.low; } const componentsPerAttribute = attribute.componentsPerAttribute; geometry.attributes[attributeHighName] = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: componentsPerAttribute, values: highValues, }); geometry.attributes[attributeLowName] = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: componentsPerAttribute, values: lowValues, }); delete geometry.attributes[attributeName]; return geometry; }; let scratchCartesian3 = new Matrix2.Cartesian3(); function transformPoint(matrix, attribute) { if (when.defined(attribute)) { const values = attribute.values; const length = values.length; for (let i = 0; i < length; i += 3) { Matrix2.Cartesian3.unpack(values, i, scratchCartesian3); Matrix2.Matrix4.multiplyByPoint(matrix, scratchCartesian3, scratchCartesian3); Matrix2.Cartesian3.pack(scratchCartesian3, values, i); } } } function transformVector(matrix, attribute) { if (when.defined(attribute)) { const values = attribute.values; const length = values.length; for (let i = 0; i < length; i += 3) { Matrix2.Cartesian3.unpack(values, i, scratchCartesian3); Matrix2.Matrix3.multiplyByVector(matrix, scratchCartesian3, scratchCartesian3); scratchCartesian3 = Matrix2.Cartesian3.normalize( scratchCartesian3, scratchCartesian3 ); Matrix2.Cartesian3.pack(scratchCartesian3, values, i); } } } const inverseTranspose = new Matrix2.Matrix4(); const normalMatrix = new Matrix2.Matrix3(); /** * Transforms a geometry instance to world coordinates. This changes * the instance's modelMatrix to {@link Matrix4.IDENTITY} and transforms the * following attributes if they are present: position, normal, * tangent, and bitangent. * * @param {GeometryInstance} instance The geometry instance to modify. * @returns {GeometryInstance} The modified instance argument, with its attributes transforms to world coordinates. * * @example * Cesium.GeometryPipeline.transformToWorldCoordinates(instance); */ GeometryPipeline.transformToWorldCoordinates = function (instance) { //>>includeStart('debug', pragmas.debug); if (!when.defined(instance)) { throw new RuntimeError.DeveloperError("instance is required."); } //>>includeEnd('debug'); const modelMatrix = instance.modelMatrix; if (Matrix2.Matrix4.equals(modelMatrix, Matrix2.Matrix4.IDENTITY)) { // Already in world coordinates return instance; } const attributes = instance.geometry.attributes; // Transform attributes in known vertex formats transformPoint(modelMatrix, attributes.position); transformPoint(modelMatrix, attributes.prevPosition); transformPoint(modelMatrix, attributes.nextPosition); if ( when.defined(attributes.normal) || when.defined(attributes.tangent) || when.defined(attributes.bitangent) ) { Matrix2.Matrix4.inverse(modelMatrix, inverseTranspose); Matrix2.Matrix4.transpose(inverseTranspose, inverseTranspose); Matrix2.Matrix4.getMatrix3(inverseTranspose, normalMatrix); transformVector(normalMatrix, attributes.normal); transformVector(normalMatrix, attributes.tangent); transformVector(normalMatrix, attributes.bitangent); } const boundingSphere = instance.geometry.boundingSphere; if (when.defined(boundingSphere)) { instance.geometry.boundingSphere = Transforms.BoundingSphere.transform( boundingSphere, modelMatrix, boundingSphere ); } instance.modelMatrix = Matrix2.Matrix4.clone(Matrix2.Matrix4.IDENTITY); return instance; }; function findAttributesInAllGeometries(instances, propertyName) { const length = instances.length; const attributesInAllGeometries = {}; const attributes0 = instances[0][propertyName].attributes; let name; for (name in attributes0) { if ( attributes0.hasOwnProperty(name) && when.defined(attributes0[name]) && when.defined(attributes0[name].values) ) { const attribute = attributes0[name]; let numberOfComponents = attribute.values.length; let inAllGeometries = true; // Does this same attribute exist in all geometries? for (let i = 1; i < length; ++i) { const otherAttribute = instances[i][propertyName].attributes[name]; if ( !when.defined(otherAttribute) || attribute.componentDatatype !== otherAttribute.componentDatatype || attribute.componentsPerAttribute !== otherAttribute.componentsPerAttribute || attribute.normalize !== otherAttribute.normalize ) { inAllGeometries = false; break; } numberOfComponents += otherAttribute.values.length; } if (inAllGeometries) { attributesInAllGeometries[name] = new GeometryAttribute.GeometryAttribute({ componentDatatype: attribute.componentDatatype, componentsPerAttribute: attribute.componentsPerAttribute, normalize: attribute.normalize, values: ComponentDatatype.ComponentDatatype.createTypedArray( attribute.componentDatatype, numberOfComponents ), }); } } } return attributesInAllGeometries; } const tempScratch = new Matrix2.Cartesian3(); function combineGeometries(instances, propertyName) { const length = instances.length; let name; let i; let j; let k; const m = instances[0].modelMatrix; const haveIndices = when.defined(instances[0][propertyName].indices); const primitiveType = instances[0][propertyName].primitiveType; //>>includeStart('debug', pragmas.debug); for (i = 1; i < length; ++i) { if (!Matrix2.Matrix4.equals(instances[i].modelMatrix, m)) { throw new RuntimeError.DeveloperError("All instances must have the same modelMatrix."); } if (when.defined(instances[i][propertyName].indices) !== haveIndices) { throw new RuntimeError.DeveloperError( "All instance geometries must have an indices or not have one." ); } if (instances[i][propertyName].primitiveType !== primitiveType) { throw new RuntimeError.DeveloperError( "All instance geometries must have the same primitiveType." ); } } //>>includeEnd('debug'); // Find subset of attributes in all geometries const attributes = findAttributesInAllGeometries(instances, propertyName); let values; let sourceValues; let sourceValuesLength; // Combine attributes from each geometry into a single typed array for (name in attributes) { if (attributes.hasOwnProperty(name)) { values = attributes[name].values; k = 0; for (i = 0; i < length; ++i) { sourceValues = instances[i][propertyName].attributes[name].values; sourceValuesLength = sourceValues.length; for (j = 0; j < sourceValuesLength; ++j) { values[k++] = sourceValues[j]; } } } } // Combine index lists let indices; if (haveIndices) { let numberOfIndices = 0; for (i = 0; i < length; ++i) { numberOfIndices += instances[i][propertyName].indices.length; } const numberOfVertices = GeometryAttribute.Geometry.computeNumberOfVertices( new GeometryAttribute.Geometry({ attributes: attributes, primitiveType: GeometryAttribute.PrimitiveType.POINTS, }) ); const destIndices = IndexDatatype.IndexDatatype.createTypedArray( numberOfVertices, numberOfIndices ); let destOffset = 0; let offset = 0; for (i = 0; i < length; ++i) { const sourceIndices = instances[i][propertyName].indices; const sourceIndicesLen = sourceIndices.length; for (k = 0; k < sourceIndicesLen; ++k) { destIndices[destOffset++] = offset + sourceIndices[k]; } offset += GeometryAttribute.Geometry.computeNumberOfVertices(instances[i][propertyName]); } indices = destIndices; } // Create bounding sphere that includes all instances let center = new Matrix2.Cartesian3(); let radius = 0.0; let bs; for (i = 0; i < length; ++i) { bs = instances[i][propertyName].boundingSphere; if (!when.defined(bs)) { // If any geometries have an undefined bounding sphere, then so does the combined geometry center = undefined; break; } Matrix2.Cartesian3.add(bs.center, center, center); } if (when.defined(center)) { Matrix2.Cartesian3.divideByScalar(center, length, center); for (i = 0; i < length; ++i) { bs = instances[i][propertyName].boundingSphere; const tempRadius = Matrix2.Cartesian3.magnitude( Matrix2.Cartesian3.subtract(bs.center, center, tempScratch) ) + bs.radius; if (tempRadius > radius) { radius = tempRadius; } } } return new GeometryAttribute.Geometry({ attributes: attributes, indices: indices, primitiveType: primitiveType, boundingSphere: when.defined(center) ? new Transforms.BoundingSphere(center, radius) : undefined, }); } /** * Combines geometry from several {@link GeometryInstance} objects into one geometry. * This concatenates the attributes, concatenates and adjusts the indices, and creates * a bounding sphere encompassing all instances. *

* If the instances do not have the same attributes, a subset of attributes common * to all instances is used, and the others are ignored. *

*

* This is used by {@link Primitive} to efficiently render a large amount of static data. *

* * @private * * @param {GeometryInstance[]} [instances] The array of {@link GeometryInstance} objects whose geometry will be combined. * @returns {Geometry} A single geometry created from the provided geometry instances. * * @exception {DeveloperError} All instances must have the same modelMatrix. * @exception {DeveloperError} All instance geometries must have an indices or not have one. * @exception {DeveloperError} All instance geometries must have the same primitiveType. * * * @example * for (let i = 0; i < instances.length; ++i) { * Cesium.GeometryPipeline.transformToWorldCoordinates(instances[i]); * } * const geometries = Cesium.GeometryPipeline.combineInstances(instances); * * @see GeometryPipeline.transformToWorldCoordinates */ GeometryPipeline.combineInstances = function (instances) { //>>includeStart('debug', pragmas.debug); if (!when.defined(instances) || instances.length < 1) { throw new RuntimeError.DeveloperError( "instances is required and must have length greater than zero." ); } //>>includeEnd('debug'); const instanceGeometry = []; const instanceSplitGeometry = []; const length = instances.length; for (let i = 0; i < length; ++i) { const instance = instances[i]; if (when.defined(instance.geometry)) { instanceGeometry.push(instance); } else if ( when.defined(instance.westHemisphereGeometry) && when.defined(instance.eastHemisphereGeometry) ) { instanceSplitGeometry.push(instance); } } const geometries = []; if (instanceGeometry.length > 0) { geometries.push(combineGeometries(instanceGeometry, "geometry")); } if (instanceSplitGeometry.length > 0) { geometries.push( combineGeometries(instanceSplitGeometry, "westHemisphereGeometry") ); geometries.push( combineGeometries(instanceSplitGeometry, "eastHemisphereGeometry") ); } return geometries; }; const normal = new Matrix2.Cartesian3(); const v0 = new Matrix2.Cartesian3(); const v1 = new Matrix2.Cartesian3(); const v2 = new Matrix2.Cartesian3(); /** * Computes per-vertex normals for a geometry containing TRIANGLES by averaging the normals of * all triangles incident to the vertex. The result is a new normal attribute added to the geometry. * This assumes a counter-clockwise winding order. * * @param {Geometry} geometry The geometry to modify. * @returns {Geometry} The modified geometry argument with the computed normal attribute. * * @exception {DeveloperError} geometry.indices length must be greater than 0 and be a multiple of 3. * @exception {DeveloperError} geometry.primitiveType must be {@link PrimitiveType.TRIANGLES}. * * @example * Cesium.GeometryPipeline.computeNormal(geometry); */ GeometryPipeline.computeNormal = function (geometry) { //>>includeStart('debug', pragmas.debug); if (!when.defined(geometry)) { throw new RuntimeError.DeveloperError("geometry is required."); } if ( !when.defined(geometry.attributes.position) || !when.defined(geometry.attributes.position.values) ) { throw new RuntimeError.DeveloperError( "geometry.attributes.position.values is required." ); } if (!when.defined(geometry.indices)) { throw new RuntimeError.DeveloperError("geometry.indices is required."); } if (geometry.indices.length < 2 || geometry.indices.length % 3 !== 0) { throw new RuntimeError.DeveloperError( "geometry.indices length must be greater than 0 and be a multiple of 3." ); } if (geometry.primitiveType !== GeometryAttribute.PrimitiveType.TRIANGLES) { throw new RuntimeError.DeveloperError( "geometry.primitiveType must be PrimitiveType.TRIANGLES." ); } //>>includeEnd('debug'); const indices = geometry.indices; const attributes = geometry.attributes; const vertices = attributes.position.values; const numVertices = attributes.position.values.length / 3; const numIndices = indices.length; const normalsPerVertex = new Array(numVertices); const normalsPerTriangle = new Array(numIndices / 3); const normalIndices = new Array(numIndices); let i; for (i = 0; i < numVertices; i++) { normalsPerVertex[i] = { indexOffset: 0, count: 0, currentCount: 0, }; } let j = 0; for (i = 0; i < numIndices; i += 3) { const i0 = indices[i]; const i1 = indices[i + 1]; const i2 = indices[i + 2]; const i03 = i0 * 3; const i13 = i1 * 3; const i23 = i2 * 3; v0.x = vertices[i03]; v0.y = vertices[i03 + 1]; v0.z = vertices[i03 + 2]; v1.x = vertices[i13]; v1.y = vertices[i13 + 1]; v1.z = vertices[i13 + 2]; v2.x = vertices[i23]; v2.y = vertices[i23 + 1]; v2.z = vertices[i23 + 2]; normalsPerVertex[i0].count++; normalsPerVertex[i1].count++; normalsPerVertex[i2].count++; Matrix2.Cartesian3.subtract(v1, v0, v1); Matrix2.Cartesian3.subtract(v2, v0, v2); normalsPerTriangle[j] = Matrix2.Cartesian3.cross(v1, v2, new Matrix2.Cartesian3()); j++; } let indexOffset = 0; for (i = 0; i < numVertices; i++) { normalsPerVertex[i].indexOffset += indexOffset; indexOffset += normalsPerVertex[i].count; } j = 0; let vertexNormalData; for (i = 0; i < numIndices; i += 3) { vertexNormalData = normalsPerVertex[indices[i]]; let index = vertexNormalData.indexOffset + vertexNormalData.currentCount; normalIndices[index] = j; vertexNormalData.currentCount++; vertexNormalData = normalsPerVertex[indices[i + 1]]; index = vertexNormalData.indexOffset + vertexNormalData.currentCount; normalIndices[index] = j; vertexNormalData.currentCount++; vertexNormalData = normalsPerVertex[indices[i + 2]]; index = vertexNormalData.indexOffset + vertexNormalData.currentCount; normalIndices[index] = j; vertexNormalData.currentCount++; j++; } const normalValues = new Float32Array(numVertices * 3); for (i = 0; i < numVertices; i++) { const i3 = i * 3; vertexNormalData = normalsPerVertex[i]; Matrix2.Cartesian3.clone(Matrix2.Cartesian3.ZERO, normal); if (vertexNormalData.count > 0) { for (j = 0; j < vertexNormalData.count; j++) { Matrix2.Cartesian3.add( normal, normalsPerTriangle[normalIndices[vertexNormalData.indexOffset + j]], normal ); } // We can run into an issue where a vertex is used with 2 primitives that have opposite winding order. if ( Matrix2.Cartesian3.equalsEpsilon(Matrix2.Cartesian3.ZERO, normal, ComponentDatatype.CesiumMath.EPSILON10) ) { Matrix2.Cartesian3.clone( normalsPerTriangle[normalIndices[vertexNormalData.indexOffset]], normal ); } } // We end up with a zero vector probably because of a degenerate triangle if ( Matrix2.Cartesian3.equalsEpsilon(Matrix2.Cartesian3.ZERO, normal, ComponentDatatype.CesiumMath.EPSILON10) ) { // Default to (0,0,1) normal.z = 1.0; } Matrix2.Cartesian3.normalize(normal, normal); normalValues[i3] = normal.x; normalValues[i3 + 1] = normal.y; normalValues[i3 + 2] = normal.z; } geometry.attributes.normal = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: normalValues, }); return geometry; }; const normalScratch = new Matrix2.Cartesian3(); const normalScale = new Matrix2.Cartesian3(); const tScratch = new Matrix2.Cartesian3(); /** * Computes per-vertex tangents and bitangents for a geometry containing TRIANGLES. * The result is new tangent and bitangent attributes added to the geometry. * This assumes a counter-clockwise winding order. *

* Based on Computing Tangent Space Basis Vectors * for an Arbitrary Mesh by Eric Lengyel. *

* * @param {Geometry} geometry The geometry to modify. * @returns {Geometry} The modified geometry argument with the computed tangent and bitangent attributes. * * @exception {DeveloperError} geometry.indices length must be greater than 0 and be a multiple of 3. * @exception {DeveloperError} geometry.primitiveType must be {@link PrimitiveType.TRIANGLES}. * * @example * Cesium.GeometryPipeline.computeTangentAndBiTangent(geometry); */ GeometryPipeline.computeTangentAndBitangent = function (geometry) { //>>includeStart('debug', pragmas.debug); if (!when.defined(geometry)) { throw new RuntimeError.DeveloperError("geometry is required."); } //>>includeEnd('debug'); const attributes = geometry.attributes; const indices = geometry.indices; //>>includeStart('debug', pragmas.debug); if (!when.defined(attributes.position) || !when.defined(attributes.position.values)) { throw new RuntimeError.DeveloperError( "geometry.attributes.position.values is required." ); } if (!when.defined(attributes.normal) || !when.defined(attributes.normal.values)) { throw new RuntimeError.DeveloperError("geometry.attributes.normal.values is required."); } if (!when.defined(attributes.st) || !when.defined(attributes.st.values)) { throw new RuntimeError.DeveloperError("geometry.attributes.st.values is required."); } if (!when.defined(indices)) { throw new RuntimeError.DeveloperError("geometry.indices is required."); } if (indices.length < 2 || indices.length % 3 !== 0) { throw new RuntimeError.DeveloperError( "geometry.indices length must be greater than 0 and be a multiple of 3." ); } if (geometry.primitiveType !== GeometryAttribute.PrimitiveType.TRIANGLES) { throw new RuntimeError.DeveloperError( "geometry.primitiveType must be PrimitiveType.TRIANGLES." ); } //>>includeEnd('debug'); const vertices = geometry.attributes.position.values; const normals = geometry.attributes.normal.values; const st = geometry.attributes.st.values; const numVertices = geometry.attributes.position.values.length / 3; const numIndices = indices.length; const tan1 = new Array(numVertices * 3); let i; for (i = 0; i < tan1.length; i++) { tan1[i] = 0; } let i03; let i13; let i23; for (i = 0; i < numIndices; i += 3) { const i0 = indices[i]; const i1 = indices[i + 1]; const i2 = indices[i + 2]; i03 = i0 * 3; i13 = i1 * 3; i23 = i2 * 3; const i02 = i0 * 2; const i12 = i1 * 2; const i22 = i2 * 2; const ux = vertices[i03]; const uy = vertices[i03 + 1]; const uz = vertices[i03 + 2]; const wx = st[i02]; const wy = st[i02 + 1]; const t1 = st[i12 + 1] - wy; const t2 = st[i22 + 1] - wy; const r = 1.0 / ((st[i12] - wx) * t2 - (st[i22] - wx) * t1); const sdirx = (t2 * (vertices[i13] - ux) - t1 * (vertices[i23] - ux)) * r; const sdiry = (t2 * (vertices[i13 + 1] - uy) - t1 * (vertices[i23 + 1] - uy)) * r; const sdirz = (t2 * (vertices[i13 + 2] - uz) - t1 * (vertices[i23 + 2] - uz)) * r; tan1[i03] += sdirx; tan1[i03 + 1] += sdiry; tan1[i03 + 2] += sdirz; tan1[i13] += sdirx; tan1[i13 + 1] += sdiry; tan1[i13 + 2] += sdirz; tan1[i23] += sdirx; tan1[i23 + 1] += sdiry; tan1[i23 + 2] += sdirz; } const tangentValues = new Float32Array(numVertices * 3); const bitangentValues = new Float32Array(numVertices * 3); for (i = 0; i < numVertices; i++) { i03 = i * 3; i13 = i03 + 1; i23 = i03 + 2; const n = Matrix2.Cartesian3.fromArray(normals, i03, normalScratch); const t = Matrix2.Cartesian3.fromArray(tan1, i03, tScratch); const scalar = Matrix2.Cartesian3.dot(n, t); Matrix2.Cartesian3.multiplyByScalar(n, scalar, normalScale); Matrix2.Cartesian3.normalize(Matrix2.Cartesian3.subtract(t, normalScale, t), t); tangentValues[i03] = t.x; tangentValues[i13] = t.y; tangentValues[i23] = t.z; Matrix2.Cartesian3.normalize(Matrix2.Cartesian3.cross(n, t, t), t); bitangentValues[i03] = t.x; bitangentValues[i13] = t.y; bitangentValues[i23] = t.z; } geometry.attributes.tangent = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: tangentValues, }); geometry.attributes.bitangent = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: bitangentValues, }); return geometry; }; const scratchCartesian2 = new Matrix2.Cartesian2(); const toEncode1 = new Matrix2.Cartesian3(); const toEncode2 = new Matrix2.Cartesian3(); const toEncode3 = new Matrix2.Cartesian3(); let encodeResult2 = new Matrix2.Cartesian2(); /** * Compresses and packs geometry normal attribute values to save memory. * * @param {Geometry} geometry The geometry to modify. * @returns {Geometry} The modified geometry argument, with its normals compressed and packed. * * @example * geometry = Cesium.GeometryPipeline.compressVertices(geometry); */ GeometryPipeline.compressVertices = function (geometry) { //>>includeStart('debug', pragmas.debug); if (!when.defined(geometry)) { throw new RuntimeError.DeveloperError("geometry is required."); } //>>includeEnd('debug'); const extrudeAttribute = geometry.attributes.extrudeDirection; let i; let numVertices; if (when.defined(extrudeAttribute)) { //only shadow volumes use extrudeDirection, and shadow volumes use vertexFormat: POSITION_ONLY so we don't need to check other attributes const extrudeDirections = extrudeAttribute.values; numVertices = extrudeDirections.length / 3.0; const compressedDirections = new Float32Array(numVertices * 2); let i2 = 0; for (i = 0; i < numVertices; ++i) { Matrix2.Cartesian3.fromArray(extrudeDirections, i * 3.0, toEncode1); if (Matrix2.Cartesian3.equals(toEncode1, Matrix2.Cartesian3.ZERO)) { i2 += 2; continue; } encodeResult2 = AttributeCompression.AttributeCompression.octEncodeInRange( toEncode1, 65535, encodeResult2 ); compressedDirections[i2++] = encodeResult2.x; compressedDirections[i2++] = encodeResult2.y; } geometry.attributes.compressedAttributes = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: compressedDirections, }); delete geometry.attributes.extrudeDirection; return geometry; } const normalAttribute = geometry.attributes.normal; const stAttribute = geometry.attributes.st; const hasNormal = when.defined(normalAttribute); const hasSt = when.defined(stAttribute); if (!hasNormal && !hasSt) { return geometry; } const tangentAttribute = geometry.attributes.tangent; const bitangentAttribute = geometry.attributes.bitangent; const hasTangent = when.defined(tangentAttribute); const hasBitangent = when.defined(bitangentAttribute); let normals; let st; let tangents; let bitangents; if (hasNormal) { normals = normalAttribute.values; } if (hasSt) { st = stAttribute.values; } if (hasTangent) { tangents = tangentAttribute.values; } if (hasBitangent) { bitangents = bitangentAttribute.values; } const length = hasNormal ? normals.length : st.length; const numComponents = hasNormal ? 3.0 : 2.0; numVertices = length / numComponents; let compressedLength = numVertices; let numCompressedComponents = hasSt && hasNormal ? 2.0 : 1.0; numCompressedComponents += hasTangent || hasBitangent ? 1.0 : 0.0; compressedLength *= numCompressedComponents; const compressedAttributes = new Float32Array(compressedLength); let normalIndex = 0; for (i = 0; i < numVertices; ++i) { if (hasSt) { Matrix2.Cartesian2.fromArray(st, i * 2.0, scratchCartesian2); compressedAttributes[ normalIndex++ ] = AttributeCompression.AttributeCompression.compressTextureCoordinates(scratchCartesian2); } const index = i * 3.0; if (hasNormal && when.defined(tangents) && when.defined(bitangents)) { Matrix2.Cartesian3.fromArray(normals, index, toEncode1); Matrix2.Cartesian3.fromArray(tangents, index, toEncode2); Matrix2.Cartesian3.fromArray(bitangents, index, toEncode3); AttributeCompression.AttributeCompression.octPack( toEncode1, toEncode2, toEncode3, scratchCartesian2 ); compressedAttributes[normalIndex++] = scratchCartesian2.x; compressedAttributes[normalIndex++] = scratchCartesian2.y; } else { if (hasNormal) { Matrix2.Cartesian3.fromArray(normals, index, toEncode1); compressedAttributes[ normalIndex++ ] = AttributeCompression.AttributeCompression.octEncodeFloat(toEncode1); } if (hasTangent) { Matrix2.Cartesian3.fromArray(tangents, index, toEncode1); compressedAttributes[ normalIndex++ ] = AttributeCompression.AttributeCompression.octEncodeFloat(toEncode1); } if (hasBitangent) { Matrix2.Cartesian3.fromArray(bitangents, index, toEncode1); compressedAttributes[ normalIndex++ ] = AttributeCompression.AttributeCompression.octEncodeFloat(toEncode1); } } } geometry.attributes.compressedAttributes = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: numCompressedComponents, values: compressedAttributes, }); if (hasNormal) { delete geometry.attributes.normal; } if (hasSt) { delete geometry.attributes.st; } if (hasBitangent) { delete geometry.attributes.bitangent; } if (hasTangent) { delete geometry.attributes.tangent; } return geometry; }; function indexTriangles(geometry) { if (when.defined(geometry.indices)) { return geometry; } const numberOfVertices = GeometryAttribute.Geometry.computeNumberOfVertices(geometry); //>>includeStart('debug', pragmas.debug); if (numberOfVertices < 3) { throw new RuntimeError.DeveloperError("The number of vertices must be at least three."); } if (numberOfVertices % 3 !== 0) { throw new RuntimeError.DeveloperError( "The number of vertices must be a multiple of three." ); } //>>includeEnd('debug'); const indices = IndexDatatype.IndexDatatype.createTypedArray( numberOfVertices, numberOfVertices ); for (let i = 0; i < numberOfVertices; ++i) { indices[i] = i; } geometry.indices = indices; return geometry; } function indexTriangleFan(geometry) { const numberOfVertices = GeometryAttribute.Geometry.computeNumberOfVertices(geometry); //>>includeStart('debug', pragmas.debug); if (numberOfVertices < 3) { throw new RuntimeError.DeveloperError("The number of vertices must be at least three."); } //>>includeEnd('debug'); const indices = IndexDatatype.IndexDatatype.createTypedArray( numberOfVertices, (numberOfVertices - 2) * 3 ); indices[0] = 1; indices[1] = 0; indices[2] = 2; let indicesIndex = 3; for (let i = 3; i < numberOfVertices; ++i) { indices[indicesIndex++] = i - 1; indices[indicesIndex++] = 0; indices[indicesIndex++] = i; } geometry.indices = indices; geometry.primitiveType = GeometryAttribute.PrimitiveType.TRIANGLES; return geometry; } function indexTriangleStrip(geometry) { const numberOfVertices = GeometryAttribute.Geometry.computeNumberOfVertices(geometry); //>>includeStart('debug', pragmas.debug); if (numberOfVertices < 3) { throw new RuntimeError.DeveloperError("The number of vertices must be at least 3."); } //>>includeEnd('debug'); const indices = IndexDatatype.IndexDatatype.createTypedArray( numberOfVertices, (numberOfVertices - 2) * 3 ); indices[0] = 0; indices[1] = 1; indices[2] = 2; if (numberOfVertices > 3) { indices[3] = 0; indices[4] = 2; indices[5] = 3; } let indicesIndex = 6; for (let i = 3; i < numberOfVertices - 1; i += 2) { indices[indicesIndex++] = i; indices[indicesIndex++] = i - 1; indices[indicesIndex++] = i + 1; if (i + 2 < numberOfVertices) { indices[indicesIndex++] = i; indices[indicesIndex++] = i + 1; indices[indicesIndex++] = i + 2; } } geometry.indices = indices; geometry.primitiveType = GeometryAttribute.PrimitiveType.TRIANGLES; return geometry; } function indexLines(geometry) { if (when.defined(geometry.indices)) { return geometry; } const numberOfVertices = GeometryAttribute.Geometry.computeNumberOfVertices(geometry); //>>includeStart('debug', pragmas.debug); if (numberOfVertices < 2) { throw new RuntimeError.DeveloperError("The number of vertices must be at least two."); } if (numberOfVertices % 2 !== 0) { throw new RuntimeError.DeveloperError("The number of vertices must be a multiple of 2."); } //>>includeEnd('debug'); const indices = IndexDatatype.IndexDatatype.createTypedArray( numberOfVertices, numberOfVertices ); for (let i = 0; i < numberOfVertices; ++i) { indices[i] = i; } geometry.indices = indices; return geometry; } function indexLineStrip(geometry) { const numberOfVertices = GeometryAttribute.Geometry.computeNumberOfVertices(geometry); //>>includeStart('debug', pragmas.debug); if (numberOfVertices < 2) { throw new RuntimeError.DeveloperError("The number of vertices must be at least two."); } //>>includeEnd('debug'); const indices = IndexDatatype.IndexDatatype.createTypedArray( numberOfVertices, (numberOfVertices - 1) * 2 ); indices[0] = 0; indices[1] = 1; let indicesIndex = 2; for (let i = 2; i < numberOfVertices; ++i) { indices[indicesIndex++] = i - 1; indices[indicesIndex++] = i; } geometry.indices = indices; geometry.primitiveType = GeometryAttribute.PrimitiveType.LINES; return geometry; } function indexLineLoop(geometry) { const numberOfVertices = GeometryAttribute.Geometry.computeNumberOfVertices(geometry); //>>includeStart('debug', pragmas.debug); if (numberOfVertices < 2) { throw new RuntimeError.DeveloperError("The number of vertices must be at least two."); } //>>includeEnd('debug'); const indices = IndexDatatype.IndexDatatype.createTypedArray( numberOfVertices, numberOfVertices * 2 ); indices[0] = 0; indices[1] = 1; let indicesIndex = 2; for (let i = 2; i < numberOfVertices; ++i) { indices[indicesIndex++] = i - 1; indices[indicesIndex++] = i; } indices[indicesIndex++] = numberOfVertices - 1; indices[indicesIndex] = 0; geometry.indices = indices; geometry.primitiveType = GeometryAttribute.PrimitiveType.LINES; return geometry; } function indexPrimitive(geometry) { switch (geometry.primitiveType) { case GeometryAttribute.PrimitiveType.TRIANGLE_FAN: return indexTriangleFan(geometry); case GeometryAttribute.PrimitiveType.TRIANGLE_STRIP: return indexTriangleStrip(geometry); case GeometryAttribute.PrimitiveType.TRIANGLES: return indexTriangles(geometry); case GeometryAttribute.PrimitiveType.LINE_STRIP: return indexLineStrip(geometry); case GeometryAttribute.PrimitiveType.LINE_LOOP: return indexLineLoop(geometry); case GeometryAttribute.PrimitiveType.LINES: return indexLines(geometry); } return geometry; } function offsetPointFromXZPlane(p, isBehind) { if (Math.abs(p.y) < ComponentDatatype.CesiumMath.EPSILON6) { if (isBehind) { p.y = -ComponentDatatype.CesiumMath.EPSILON6; } else { p.y = ComponentDatatype.CesiumMath.EPSILON6; } } } function offsetTriangleFromXZPlane(p0, p1, p2) { if (p0.y !== 0.0 && p1.y !== 0.0 && p2.y !== 0.0) { offsetPointFromXZPlane(p0, p0.y < 0.0); offsetPointFromXZPlane(p1, p1.y < 0.0); offsetPointFromXZPlane(p2, p2.y < 0.0); return; } const p0y = Math.abs(p0.y); const p1y = Math.abs(p1.y); const p2y = Math.abs(p2.y); let sign; if (p0y > p1y) { if (p0y > p2y) { sign = ComponentDatatype.CesiumMath.sign(p0.y); } else { sign = ComponentDatatype.CesiumMath.sign(p2.y); } } else if (p1y > p2y) { sign = ComponentDatatype.CesiumMath.sign(p1.y); } else { sign = ComponentDatatype.CesiumMath.sign(p2.y); } const isBehind = sign < 0.0; offsetPointFromXZPlane(p0, isBehind); offsetPointFromXZPlane(p1, isBehind); offsetPointFromXZPlane(p2, isBehind); } const c3 = new Matrix2.Cartesian3(); function getXZIntersectionOffsetPoints(p, p1, u1, v1) { Matrix2.Cartesian3.add( p, Matrix2.Cartesian3.multiplyByScalar( Matrix2.Cartesian3.subtract(p1, p, c3), p.y / (p.y - p1.y), c3 ), u1 ); Matrix2.Cartesian3.clone(u1, v1); offsetPointFromXZPlane(u1, true); offsetPointFromXZPlane(v1, false); } const u1 = new Matrix2.Cartesian3(); const u2 = new Matrix2.Cartesian3(); const q1 = new Matrix2.Cartesian3(); const q2 = new Matrix2.Cartesian3(); const splitTriangleResult = { positions: new Array(7), indices: new Array(3 * 3), }; function splitTriangle(p0, p1, p2) { // In WGS84 coordinates, for a triangle approximately on the // ellipsoid to cross the IDL, first it needs to be on the // negative side of the plane x = 0. if (p0.x >= 0.0 || p1.x >= 0.0 || p2.x >= 0.0) { return undefined; } offsetTriangleFromXZPlane(p0, p1, p2); const p0Behind = p0.y < 0.0; const p1Behind = p1.y < 0.0; const p2Behind = p2.y < 0.0; let numBehind = 0; numBehind += p0Behind ? 1 : 0; numBehind += p1Behind ? 1 : 0; numBehind += p2Behind ? 1 : 0; const indices = splitTriangleResult.indices; if (numBehind === 1) { indices[1] = 3; indices[2] = 4; indices[5] = 6; indices[7] = 6; indices[8] = 5; if (p0Behind) { getXZIntersectionOffsetPoints(p0, p1, u1, q1); getXZIntersectionOffsetPoints(p0, p2, u2, q2); indices[0] = 0; indices[3] = 1; indices[4] = 2; indices[6] = 1; } else if (p1Behind) { getXZIntersectionOffsetPoints(p1, p2, u1, q1); getXZIntersectionOffsetPoints(p1, p0, u2, q2); indices[0] = 1; indices[3] = 2; indices[4] = 0; indices[6] = 2; } else if (p2Behind) { getXZIntersectionOffsetPoints(p2, p0, u1, q1); getXZIntersectionOffsetPoints(p2, p1, u2, q2); indices[0] = 2; indices[3] = 0; indices[4] = 1; indices[6] = 0; } } else if (numBehind === 2) { indices[2] = 4; indices[4] = 4; indices[5] = 3; indices[7] = 5; indices[8] = 6; if (!p0Behind) { getXZIntersectionOffsetPoints(p0, p1, u1, q1); getXZIntersectionOffsetPoints(p0, p2, u2, q2); indices[0] = 1; indices[1] = 2; indices[3] = 1; indices[6] = 0; } else if (!p1Behind) { getXZIntersectionOffsetPoints(p1, p2, u1, q1); getXZIntersectionOffsetPoints(p1, p0, u2, q2); indices[0] = 2; indices[1] = 0; indices[3] = 2; indices[6] = 1; } else if (!p2Behind) { getXZIntersectionOffsetPoints(p2, p0, u1, q1); getXZIntersectionOffsetPoints(p2, p1, u2, q2); indices[0] = 0; indices[1] = 1; indices[3] = 0; indices[6] = 2; } } const positions = splitTriangleResult.positions; positions[0] = p0; positions[1] = p1; positions[2] = p2; positions.length = 3; if (numBehind === 1 || numBehind === 2) { positions[3] = u1; positions[4] = u2; positions[5] = q1; positions[6] = q2; positions.length = 7; } return splitTriangleResult; } function updateGeometryAfterSplit(geometry, computeBoundingSphere) { const attributes = geometry.attributes; if (attributes.position.values.length === 0) { return undefined; } for (const property in attributes) { if ( attributes.hasOwnProperty(property) && when.defined(attributes[property]) && when.defined(attributes[property].values) ) { const attribute = attributes[property]; attribute.values = ComponentDatatype.ComponentDatatype.createTypedArray( attribute.componentDatatype, attribute.values ); } } const numberOfVertices = GeometryAttribute.Geometry.computeNumberOfVertices(geometry); geometry.indices = IndexDatatype.IndexDatatype.createTypedArray( numberOfVertices, geometry.indices ); if (computeBoundingSphere) { geometry.boundingSphere = Transforms.BoundingSphere.fromVertices( attributes.position.values ); } return geometry; } function copyGeometryForSplit(geometry) { const attributes = geometry.attributes; const copiedAttributes = {}; for (const property in attributes) { if ( attributes.hasOwnProperty(property) && when.defined(attributes[property]) && when.defined(attributes[property].values) ) { const attribute = attributes[property]; copiedAttributes[property] = new GeometryAttribute.GeometryAttribute({ componentDatatype: attribute.componentDatatype, componentsPerAttribute: attribute.componentsPerAttribute, normalize: attribute.normalize, values: [], }); } } return new GeometryAttribute.Geometry({ attributes: copiedAttributes, indices: [], primitiveType: geometry.primitiveType, }); } function updateInstanceAfterSplit(instance, westGeometry, eastGeometry) { const computeBoundingSphere = when.defined(instance.geometry.boundingSphere); westGeometry = updateGeometryAfterSplit(westGeometry, computeBoundingSphere); eastGeometry = updateGeometryAfterSplit(eastGeometry, computeBoundingSphere); if (when.defined(eastGeometry) && !when.defined(westGeometry)) { instance.geometry = eastGeometry; } else if (!when.defined(eastGeometry) && when.defined(westGeometry)) { instance.geometry = westGeometry; } else { instance.westHemisphereGeometry = westGeometry; instance.eastHemisphereGeometry = eastGeometry; instance.geometry = undefined; } } function generateBarycentricInterpolateFunction( CartesianType, numberOfComponents ) { const v0Scratch = new CartesianType(); const v1Scratch = new CartesianType(); const v2Scratch = new CartesianType(); return function ( i0, i1, i2, coords, sourceValues, currentValues, insertedIndex, normalize ) { const v0 = CartesianType.fromArray( sourceValues, i0 * numberOfComponents, v0Scratch ); const v1 = CartesianType.fromArray( sourceValues, i1 * numberOfComponents, v1Scratch ); const v2 = CartesianType.fromArray( sourceValues, i2 * numberOfComponents, v2Scratch ); CartesianType.multiplyByScalar(v0, coords.x, v0); CartesianType.multiplyByScalar(v1, coords.y, v1); CartesianType.multiplyByScalar(v2, coords.z, v2); const value = CartesianType.add(v0, v1, v0); CartesianType.add(value, v2, value); if (normalize) { CartesianType.normalize(value, value); } CartesianType.pack( value, currentValues, insertedIndex * numberOfComponents ); }; } const interpolateAndPackCartesian4 = generateBarycentricInterpolateFunction( Matrix2.Cartesian4, 4 ); const interpolateAndPackCartesian3 = generateBarycentricInterpolateFunction( Matrix2.Cartesian3, 3 ); const interpolateAndPackCartesian2 = generateBarycentricInterpolateFunction( Matrix2.Cartesian2, 2 ); const interpolateAndPackBoolean = function ( i0, i1, i2, coords, sourceValues, currentValues, insertedIndex ) { const v1 = sourceValues[i0] * coords.x; const v2 = sourceValues[i1] * coords.y; const v3 = sourceValues[i2] * coords.z; currentValues[insertedIndex] = v1 + v2 + v3 > ComponentDatatype.CesiumMath.EPSILON6 ? 1 : 0; }; const p0Scratch = new Matrix2.Cartesian3(); const p1Scratch = new Matrix2.Cartesian3(); const p2Scratch = new Matrix2.Cartesian3(); const barycentricScratch = new Matrix2.Cartesian3(); function computeTriangleAttributes( i0, i1, i2, point, positions, normals, tangents, bitangents, texCoords, extrudeDirections, applyOffset, currentAttributes, customAttributeNames, customAttributesLength, allAttributes, insertedIndex ) { if ( !when.defined(normals) && !when.defined(tangents) && !when.defined(bitangents) && !when.defined(texCoords) && !when.defined(extrudeDirections) && customAttributesLength === 0 ) { return; } const p0 = Matrix2.Cartesian3.fromArray(positions, i0 * 3, p0Scratch); const p1 = Matrix2.Cartesian3.fromArray(positions, i1 * 3, p1Scratch); const p2 = Matrix2.Cartesian3.fromArray(positions, i2 * 3, p2Scratch); const coords = barycentricCoordinates(point, p0, p1, p2, barycentricScratch); if (!when.defined(coords)) { return; } if (when.defined(normals)) { interpolateAndPackCartesian3( i0, i1, i2, coords, normals, currentAttributes.normal.values, insertedIndex, true ); } if (when.defined(extrudeDirections)) { const d0 = Matrix2.Cartesian3.fromArray(extrudeDirections, i0 * 3, p0Scratch); const d1 = Matrix2.Cartesian3.fromArray(extrudeDirections, i1 * 3, p1Scratch); const d2 = Matrix2.Cartesian3.fromArray(extrudeDirections, i2 * 3, p2Scratch); Matrix2.Cartesian3.multiplyByScalar(d0, coords.x, d0); Matrix2.Cartesian3.multiplyByScalar(d1, coords.y, d1); Matrix2.Cartesian3.multiplyByScalar(d2, coords.z, d2); let direction; if ( !Matrix2.Cartesian3.equals(d0, Matrix2.Cartesian3.ZERO) || !Matrix2.Cartesian3.equals(d1, Matrix2.Cartesian3.ZERO) || !Matrix2.Cartesian3.equals(d2, Matrix2.Cartesian3.ZERO) ) { direction = Matrix2.Cartesian3.add(d0, d1, d0); Matrix2.Cartesian3.add(direction, d2, direction); Matrix2.Cartesian3.normalize(direction, direction); } else { direction = p0Scratch; direction.x = 0; direction.y = 0; direction.z = 0; } Matrix2.Cartesian3.pack( direction, currentAttributes.extrudeDirection.values, insertedIndex * 3 ); } if (when.defined(applyOffset)) { interpolateAndPackBoolean( i0, i1, i2, coords, applyOffset, currentAttributes.applyOffset.values, insertedIndex ); } if (when.defined(tangents)) { interpolateAndPackCartesian3( i0, i1, i2, coords, tangents, currentAttributes.tangent.values, insertedIndex, true ); } if (when.defined(bitangents)) { interpolateAndPackCartesian3( i0, i1, i2, coords, bitangents, currentAttributes.bitangent.values, insertedIndex, true ); } if (when.defined(texCoords)) { interpolateAndPackCartesian2( i0, i1, i2, coords, texCoords, currentAttributes.st.values, insertedIndex ); } if (customAttributesLength > 0) { for (let i = 0; i < customAttributesLength; i++) { const attributeName = customAttributeNames[i]; genericInterpolate( i0, i1, i2, coords, insertedIndex, allAttributes[attributeName], currentAttributes[attributeName] ); } } } function genericInterpolate( i0, i1, i2, coords, insertedIndex, sourceAttribute, currentAttribute ) { const componentsPerAttribute = sourceAttribute.componentsPerAttribute; const sourceValues = sourceAttribute.values; const currentValues = currentAttribute.values; switch (componentsPerAttribute) { case 4: interpolateAndPackCartesian4( i0, i1, i2, coords, sourceValues, currentValues, insertedIndex, false ); break; case 3: interpolateAndPackCartesian3( i0, i1, i2, coords, sourceValues, currentValues, insertedIndex, false ); break; case 2: interpolateAndPackCartesian2( i0, i1, i2, coords, sourceValues, currentValues, insertedIndex, false ); break; default: currentValues[insertedIndex] = sourceValues[i0] * coords.x + sourceValues[i1] * coords.y + sourceValues[i2] * coords.z; } } function insertSplitPoint( currentAttributes, currentIndices, currentIndexMap, indices, currentIndex, point ) { const insertIndex = currentAttributes.position.values.length / 3; if (currentIndex !== -1) { const prevIndex = indices[currentIndex]; const newIndex = currentIndexMap[prevIndex]; if (newIndex === -1) { currentIndexMap[prevIndex] = insertIndex; currentAttributes.position.values.push(point.x, point.y, point.z); currentIndices.push(insertIndex); return insertIndex; } currentIndices.push(newIndex); return newIndex; } currentAttributes.position.values.push(point.x, point.y, point.z); currentIndices.push(insertIndex); return insertIndex; } const NAMED_ATTRIBUTES = { position: true, normal: true, bitangent: true, tangent: true, st: true, extrudeDirection: true, applyOffset: true, }; function splitLongitudeTriangles(instance) { const geometry = instance.geometry; const attributes = geometry.attributes; const positions = attributes.position.values; const normals = when.defined(attributes.normal) ? attributes.normal.values : undefined; const bitangents = when.defined(attributes.bitangent) ? attributes.bitangent.values : undefined; const tangents = when.defined(attributes.tangent) ? attributes.tangent.values : undefined; const texCoords = when.defined(attributes.st) ? attributes.st.values : undefined; const extrudeDirections = when.defined(attributes.extrudeDirection) ? attributes.extrudeDirection.values : undefined; const applyOffset = when.defined(attributes.applyOffset) ? attributes.applyOffset.values : undefined; const indices = geometry.indices; const customAttributeNames = []; for (const attributeName in attributes) { if ( attributes.hasOwnProperty(attributeName) && !NAMED_ATTRIBUTES[attributeName] && when.defined(attributes[attributeName]) ) { customAttributeNames.push(attributeName); } } const customAttributesLength = customAttributeNames.length; const eastGeometry = copyGeometryForSplit(geometry); const westGeometry = copyGeometryForSplit(geometry); let currentAttributes; let currentIndices; let currentIndexMap; let insertedIndex; let i; const westGeometryIndexMap = []; westGeometryIndexMap.length = positions.length / 3; const eastGeometryIndexMap = []; eastGeometryIndexMap.length = positions.length / 3; for (i = 0; i < westGeometryIndexMap.length; ++i) { westGeometryIndexMap[i] = -1; eastGeometryIndexMap[i] = -1; } const len = indices.length; for (i = 0; i < len; i += 3) { const i0 = indices[i]; const i1 = indices[i + 1]; const i2 = indices[i + 2]; let p0 = Matrix2.Cartesian3.fromArray(positions, i0 * 3); let p1 = Matrix2.Cartesian3.fromArray(positions, i1 * 3); let p2 = Matrix2.Cartesian3.fromArray(positions, i2 * 3); const result = splitTriangle(p0, p1, p2); if (when.defined(result) && result.positions.length > 3) { const resultPositions = result.positions; const resultIndices = result.indices; const resultLength = resultIndices.length; for (let j = 0; j < resultLength; ++j) { const resultIndex = resultIndices[j]; const point = resultPositions[resultIndex]; if (point.y < 0.0) { currentAttributes = westGeometry.attributes; currentIndices = westGeometry.indices; currentIndexMap = westGeometryIndexMap; } else { currentAttributes = eastGeometry.attributes; currentIndices = eastGeometry.indices; currentIndexMap = eastGeometryIndexMap; } insertedIndex = insertSplitPoint( currentAttributes, currentIndices, currentIndexMap, indices, resultIndex < 3 ? i + resultIndex : -1, point ); computeTriangleAttributes( i0, i1, i2, point, positions, normals, tangents, bitangents, texCoords, extrudeDirections, applyOffset, currentAttributes, customAttributeNames, customAttributesLength, attributes, insertedIndex ); } } else { if (when.defined(result)) { p0 = result.positions[0]; p1 = result.positions[1]; p2 = result.positions[2]; } if (p0.y < 0.0) { currentAttributes = westGeometry.attributes; currentIndices = westGeometry.indices; currentIndexMap = westGeometryIndexMap; } else { currentAttributes = eastGeometry.attributes; currentIndices = eastGeometry.indices; currentIndexMap = eastGeometryIndexMap; } insertedIndex = insertSplitPoint( currentAttributes, currentIndices, currentIndexMap, indices, i, p0 ); computeTriangleAttributes( i0, i1, i2, p0, positions, normals, tangents, bitangents, texCoords, extrudeDirections, applyOffset, currentAttributes, customAttributeNames, customAttributesLength, attributes, insertedIndex ); insertedIndex = insertSplitPoint( currentAttributes, currentIndices, currentIndexMap, indices, i + 1, p1 ); computeTriangleAttributes( i0, i1, i2, p1, positions, normals, tangents, bitangents, texCoords, extrudeDirections, applyOffset, currentAttributes, customAttributeNames, customAttributesLength, attributes, insertedIndex ); insertedIndex = insertSplitPoint( currentAttributes, currentIndices, currentIndexMap, indices, i + 2, p2 ); computeTriangleAttributes( i0, i1, i2, p2, positions, normals, tangents, bitangents, texCoords, extrudeDirections, applyOffset, currentAttributes, customAttributeNames, customAttributesLength, attributes, insertedIndex ); } } updateInstanceAfterSplit(instance, westGeometry, eastGeometry); } const xzPlane = Plane.Plane.fromPointNormal(Matrix2.Cartesian3.ZERO, Matrix2.Cartesian3.UNIT_Y); const offsetScratch = new Matrix2.Cartesian3(); const offsetPointScratch = new Matrix2.Cartesian3(); function computeLineAttributes( i0, i1, point, positions, insertIndex, currentAttributes, applyOffset ) { if (!when.defined(applyOffset)) { return; } const p0 = Matrix2.Cartesian3.fromArray(positions, i0 * 3, p0Scratch); if (Matrix2.Cartesian3.equalsEpsilon(p0, point, ComponentDatatype.CesiumMath.EPSILON10)) { currentAttributes.applyOffset.values[insertIndex] = applyOffset[i0]; } else { currentAttributes.applyOffset.values[insertIndex] = applyOffset[i1]; } } function splitLongitudeLines(instance) { const geometry = instance.geometry; const attributes = geometry.attributes; const positions = attributes.position.values; const applyOffset = when.defined(attributes.applyOffset) ? attributes.applyOffset.values : undefined; const indices = geometry.indices; const eastGeometry = copyGeometryForSplit(geometry); const westGeometry = copyGeometryForSplit(geometry); let i; const length = indices.length; const westGeometryIndexMap = []; westGeometryIndexMap.length = positions.length / 3; const eastGeometryIndexMap = []; eastGeometryIndexMap.length = positions.length / 3; for (i = 0; i < westGeometryIndexMap.length; ++i) { westGeometryIndexMap[i] = -1; eastGeometryIndexMap[i] = -1; } for (i = 0; i < length; i += 2) { const i0 = indices[i]; const i1 = indices[i + 1]; const p0 = Matrix2.Cartesian3.fromArray(positions, i0 * 3, p0Scratch); const p1 = Matrix2.Cartesian3.fromArray(positions, i1 * 3, p1Scratch); let insertIndex; if (Math.abs(p0.y) < ComponentDatatype.CesiumMath.EPSILON6) { if (p0.y < 0.0) { p0.y = -ComponentDatatype.CesiumMath.EPSILON6; } else { p0.y = ComponentDatatype.CesiumMath.EPSILON6; } } if (Math.abs(p1.y) < ComponentDatatype.CesiumMath.EPSILON6) { if (p1.y < 0.0) { p1.y = -ComponentDatatype.CesiumMath.EPSILON6; } else { p1.y = ComponentDatatype.CesiumMath.EPSILON6; } } let p0Attributes = eastGeometry.attributes; let p0Indices = eastGeometry.indices; let p0IndexMap = eastGeometryIndexMap; let p1Attributes = westGeometry.attributes; let p1Indices = westGeometry.indices; let p1IndexMap = westGeometryIndexMap; const intersection = IntersectionTests.IntersectionTests.lineSegmentPlane( p0, p1, xzPlane, p2Scratch ); if (when.defined(intersection)) { // move point on the xz-plane slightly away from the plane const offset = Matrix2.Cartesian3.multiplyByScalar( Matrix2.Cartesian3.UNIT_Y, 5.0 * ComponentDatatype.CesiumMath.EPSILON9, offsetScratch ); if (p0.y < 0.0) { Matrix2.Cartesian3.negate(offset, offset); p0Attributes = westGeometry.attributes; p0Indices = westGeometry.indices; p0IndexMap = westGeometryIndexMap; p1Attributes = eastGeometry.attributes; p1Indices = eastGeometry.indices; p1IndexMap = eastGeometryIndexMap; } const offsetPoint = Matrix2.Cartesian3.add( intersection, offset, offsetPointScratch ); insertIndex = insertSplitPoint( p0Attributes, p0Indices, p0IndexMap, indices, i, p0 ); computeLineAttributes( i0, i1, p0, positions, insertIndex, p0Attributes, applyOffset ); insertIndex = insertSplitPoint( p0Attributes, p0Indices, p0IndexMap, indices, -1, offsetPoint ); computeLineAttributes( i0, i1, offsetPoint, positions, insertIndex, p0Attributes, applyOffset ); Matrix2.Cartesian3.negate(offset, offset); Matrix2.Cartesian3.add(intersection, offset, offsetPoint); insertIndex = insertSplitPoint( p1Attributes, p1Indices, p1IndexMap, indices, -1, offsetPoint ); computeLineAttributes( i0, i1, offsetPoint, positions, insertIndex, p1Attributes, applyOffset ); insertIndex = insertSplitPoint( p1Attributes, p1Indices, p1IndexMap, indices, i + 1, p1 ); computeLineAttributes( i0, i1, p1, positions, insertIndex, p1Attributes, applyOffset ); } else { let currentAttributes; let currentIndices; let currentIndexMap; if (p0.y < 0.0) { currentAttributes = westGeometry.attributes; currentIndices = westGeometry.indices; currentIndexMap = westGeometryIndexMap; } else { currentAttributes = eastGeometry.attributes; currentIndices = eastGeometry.indices; currentIndexMap = eastGeometryIndexMap; } insertIndex = insertSplitPoint( currentAttributes, currentIndices, currentIndexMap, indices, i, p0 ); computeLineAttributes( i0, i1, p0, positions, insertIndex, currentAttributes, applyOffset ); insertIndex = insertSplitPoint( currentAttributes, currentIndices, currentIndexMap, indices, i + 1, p1 ); computeLineAttributes( i0, i1, p1, positions, insertIndex, currentAttributes, applyOffset ); } } updateInstanceAfterSplit(instance, westGeometry, eastGeometry); } const cartesian2Scratch0 = new Matrix2.Cartesian2(); const cartesian2Scratch1 = new Matrix2.Cartesian2(); const cartesian3Scratch0 = new Matrix2.Cartesian3(); const cartesian3Scratch2 = new Matrix2.Cartesian3(); const cartesian3Scratch3 = new Matrix2.Cartesian3(); const cartesian3Scratch4 = new Matrix2.Cartesian3(); const cartesian3Scratch5 = new Matrix2.Cartesian3(); const cartesian3Scratch6 = new Matrix2.Cartesian3(); const cartesian4Scratch0 = new Matrix2.Cartesian4(); function updateAdjacencyAfterSplit(geometry) { const attributes = geometry.attributes; const positions = attributes.position.values; const prevPositions = attributes.prevPosition.values; const nextPositions = attributes.nextPosition.values; const length = positions.length; for (let j = 0; j < length; j += 3) { const position = Matrix2.Cartesian3.unpack(positions, j, cartesian3Scratch0); if (position.x > 0.0) { continue; } const prevPosition = Matrix2.Cartesian3.unpack( prevPositions, j, cartesian3Scratch2 ); if ( (position.y < 0.0 && prevPosition.y > 0.0) || (position.y > 0.0 && prevPosition.y < 0.0) ) { if (j - 3 > 0) { prevPositions[j] = positions[j - 3]; prevPositions[j + 1] = positions[j - 2]; prevPositions[j + 2] = positions[j - 1]; } else { Matrix2.Cartesian3.pack(position, prevPositions, j); } } const nextPosition = Matrix2.Cartesian3.unpack( nextPositions, j, cartesian3Scratch3 ); if ( (position.y < 0.0 && nextPosition.y > 0.0) || (position.y > 0.0 && nextPosition.y < 0.0) ) { if (j + 3 < length) { nextPositions[j] = positions[j + 3]; nextPositions[j + 1] = positions[j + 4]; nextPositions[j + 2] = positions[j + 5]; } else { Matrix2.Cartesian3.pack(position, nextPositions, j); } } } } const offsetScalar = 5.0 * ComponentDatatype.CesiumMath.EPSILON9; const coplanarOffset = ComponentDatatype.CesiumMath.EPSILON6; function splitLongitudePolyline(instance) { const geometry = instance.geometry; const attributes = geometry.attributes; const positions = attributes.position.values; const prevPositions = attributes.prevPosition.values; const nextPositions = attributes.nextPosition.values; const expandAndWidths = attributes.expandAndWidth.values; const texCoords = when.defined(attributes.st) ? attributes.st.values : undefined; const colors = when.defined(attributes.color) ? attributes.color.values : undefined; const eastGeometry = copyGeometryForSplit(geometry); const westGeometry = copyGeometryForSplit(geometry); let i; let j; let index; let intersectionFound = false; const length = positions.length / 3; for (i = 0; i < length; i += 4) { const i0 = i; const i2 = i + 2; const p0 = Matrix2.Cartesian3.fromArray(positions, i0 * 3, cartesian3Scratch0); const p2 = Matrix2.Cartesian3.fromArray(positions, i2 * 3, cartesian3Scratch2); // Offset points that are close to the 180 longitude and change the previous/next point // to be the same offset point so it can be projected to 2D. There is special handling in the // shader for when position == prevPosition || position == nextPosition. if (Math.abs(p0.y) < coplanarOffset) { p0.y = coplanarOffset * (p2.y < 0.0 ? -1.0 : 1.0); positions[i * 3 + 1] = p0.y; positions[(i + 1) * 3 + 1] = p0.y; for (j = i0 * 3; j < i0 * 3 + 4 * 3; j += 3) { prevPositions[j] = positions[i * 3]; prevPositions[j + 1] = positions[i * 3 + 1]; prevPositions[j + 2] = positions[i * 3 + 2]; } } // Do the same but for when the line crosses 180 longitude in the opposite direction. if (Math.abs(p2.y) < coplanarOffset) { p2.y = coplanarOffset * (p0.y < 0.0 ? -1.0 : 1.0); positions[(i + 2) * 3 + 1] = p2.y; positions[(i + 3) * 3 + 1] = p2.y; for (j = i0 * 3; j < i0 * 3 + 4 * 3; j += 3) { nextPositions[j] = positions[(i + 2) * 3]; nextPositions[j + 1] = positions[(i + 2) * 3 + 1]; nextPositions[j + 2] = positions[(i + 2) * 3 + 2]; } } let p0Attributes = eastGeometry.attributes; let p0Indices = eastGeometry.indices; let p2Attributes = westGeometry.attributes; let p2Indices = westGeometry.indices; const intersection = IntersectionTests.IntersectionTests.lineSegmentPlane( p0, p2, xzPlane, cartesian3Scratch4 ); if (when.defined(intersection)) { intersectionFound = true; // move point on the xz-plane slightly away from the plane const offset = Matrix2.Cartesian3.multiplyByScalar( Matrix2.Cartesian3.UNIT_Y, offsetScalar, cartesian3Scratch5 ); if (p0.y < 0.0) { Matrix2.Cartesian3.negate(offset, offset); p0Attributes = westGeometry.attributes; p0Indices = westGeometry.indices; p2Attributes = eastGeometry.attributes; p2Indices = eastGeometry.indices; } const offsetPoint = Matrix2.Cartesian3.add( intersection, offset, cartesian3Scratch6 ); p0Attributes.position.values.push(p0.x, p0.y, p0.z, p0.x, p0.y, p0.z); p0Attributes.position.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p0Attributes.position.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p0Attributes.prevPosition.values.push( prevPositions[i0 * 3], prevPositions[i0 * 3 + 1], prevPositions[i0 * 3 + 2] ); p0Attributes.prevPosition.values.push( prevPositions[i0 * 3 + 3], prevPositions[i0 * 3 + 4], prevPositions[i0 * 3 + 5] ); p0Attributes.prevPosition.values.push(p0.x, p0.y, p0.z, p0.x, p0.y, p0.z); p0Attributes.nextPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p0Attributes.nextPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p0Attributes.nextPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p0Attributes.nextPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); Matrix2.Cartesian3.negate(offset, offset); Matrix2.Cartesian3.add(intersection, offset, offsetPoint); p2Attributes.position.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p2Attributes.position.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p2Attributes.position.values.push(p2.x, p2.y, p2.z, p2.x, p2.y, p2.z); p2Attributes.prevPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p2Attributes.prevPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p2Attributes.prevPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p2Attributes.prevPosition.values.push( offsetPoint.x, offsetPoint.y, offsetPoint.z ); p2Attributes.nextPosition.values.push(p2.x, p2.y, p2.z, p2.x, p2.y, p2.z); p2Attributes.nextPosition.values.push( nextPositions[i2 * 3], nextPositions[i2 * 3 + 1], nextPositions[i2 * 3 + 2] ); p2Attributes.nextPosition.values.push( nextPositions[i2 * 3 + 3], nextPositions[i2 * 3 + 4], nextPositions[i2 * 3 + 5] ); const ew0 = Matrix2.Cartesian2.fromArray( expandAndWidths, i0 * 2, cartesian2Scratch0 ); const width = Math.abs(ew0.y); p0Attributes.expandAndWidth.values.push(-1, width, 1, width); p0Attributes.expandAndWidth.values.push(-1, -width, 1, -width); p2Attributes.expandAndWidth.values.push(-1, width, 1, width); p2Attributes.expandAndWidth.values.push(-1, -width, 1, -width); let t = Matrix2.Cartesian3.magnitudeSquared( Matrix2.Cartesian3.subtract(intersection, p0, cartesian3Scratch3) ); t /= Matrix2.Cartesian3.magnitudeSquared( Matrix2.Cartesian3.subtract(p2, p0, cartesian3Scratch3) ); if (when.defined(colors)) { const c0 = Matrix2.Cartesian4.fromArray(colors, i0 * 4, cartesian4Scratch0); const c2 = Matrix2.Cartesian4.fromArray(colors, i2 * 4, cartesian4Scratch0); const r = ComponentDatatype.CesiumMath.lerp(c0.x, c2.x, t); const g = ComponentDatatype.CesiumMath.lerp(c0.y, c2.y, t); const b = ComponentDatatype.CesiumMath.lerp(c0.z, c2.z, t); const a = ComponentDatatype.CesiumMath.lerp(c0.w, c2.w, t); for (j = i0 * 4; j < i0 * 4 + 2 * 4; ++j) { p0Attributes.color.values.push(colors[j]); } p0Attributes.color.values.push(r, g, b, a); p0Attributes.color.values.push(r, g, b, a); p2Attributes.color.values.push(r, g, b, a); p2Attributes.color.values.push(r, g, b, a); for (j = i2 * 4; j < i2 * 4 + 2 * 4; ++j) { p2Attributes.color.values.push(colors[j]); } } if (when.defined(texCoords)) { const s0 = Matrix2.Cartesian2.fromArray(texCoords, i0 * 2, cartesian2Scratch0); const s3 = Matrix2.Cartesian2.fromArray( texCoords, (i + 3) * 2, cartesian2Scratch1 ); const sx = ComponentDatatype.CesiumMath.lerp(s0.x, s3.x, t); for (j = i0 * 2; j < i0 * 2 + 2 * 2; ++j) { p0Attributes.st.values.push(texCoords[j]); } p0Attributes.st.values.push(sx, s0.y); p0Attributes.st.values.push(sx, s3.y); p2Attributes.st.values.push(sx, s0.y); p2Attributes.st.values.push(sx, s3.y); for (j = i2 * 2; j < i2 * 2 + 2 * 2; ++j) { p2Attributes.st.values.push(texCoords[j]); } } index = p0Attributes.position.values.length / 3 - 4; p0Indices.push(index, index + 2, index + 1); p0Indices.push(index + 1, index + 2, index + 3); index = p2Attributes.position.values.length / 3 - 4; p2Indices.push(index, index + 2, index + 1); p2Indices.push(index + 1, index + 2, index + 3); } else { let currentAttributes; let currentIndices; if (p0.y < 0.0) { currentAttributes = westGeometry.attributes; currentIndices = westGeometry.indices; } else { currentAttributes = eastGeometry.attributes; currentIndices = eastGeometry.indices; } currentAttributes.position.values.push(p0.x, p0.y, p0.z); currentAttributes.position.values.push(p0.x, p0.y, p0.z); currentAttributes.position.values.push(p2.x, p2.y, p2.z); currentAttributes.position.values.push(p2.x, p2.y, p2.z); for (j = i * 3; j < i * 3 + 4 * 3; ++j) { currentAttributes.prevPosition.values.push(prevPositions[j]); currentAttributes.nextPosition.values.push(nextPositions[j]); } for (j = i * 2; j < i * 2 + 4 * 2; ++j) { currentAttributes.expandAndWidth.values.push(expandAndWidths[j]); if (when.defined(texCoords)) { currentAttributes.st.values.push(texCoords[j]); } } if (when.defined(colors)) { for (j = i * 4; j < i * 4 + 4 * 4; ++j) { currentAttributes.color.values.push(colors[j]); } } index = currentAttributes.position.values.length / 3 - 4; currentIndices.push(index, index + 2, index + 1); currentIndices.push(index + 1, index + 2, index + 3); } } if (intersectionFound) { updateAdjacencyAfterSplit(westGeometry); updateAdjacencyAfterSplit(eastGeometry); } updateInstanceAfterSplit(instance, westGeometry, eastGeometry); } /** * Splits the instances's geometry, by introducing new vertices and indices,that * intersect the International Date Line and Prime Meridian so that no primitives cross longitude * -180/180 degrees. This is not required for 3D drawing, but is required for * correcting drawing in 2D and Columbus view. * * @private * * @param {GeometryInstance} instance The instance to modify. * @returns {GeometryInstance} The modified instance argument, with it's geometry split at the International Date Line. * * @example * instance = Cesium.GeometryPipeline.splitLongitude(instance); */ GeometryPipeline.splitLongitude = function (instance) { //>>includeStart('debug', pragmas.debug); if (!when.defined(instance)) { throw new RuntimeError.DeveloperError("instance is required."); } //>>includeEnd('debug'); const geometry = instance.geometry; const boundingSphere = geometry.boundingSphere; if (when.defined(boundingSphere)) { const minX = boundingSphere.center.x - boundingSphere.radius; if ( minX > 0 || Transforms.BoundingSphere.intersectPlane(boundingSphere, Plane.Plane.ORIGIN_ZX_PLANE) !== Transforms.Intersect.INTERSECTING ) { return instance; } } if (geometry.geometryType !== GeometryAttribute.GeometryType.NONE) { switch (geometry.geometryType) { case GeometryAttribute.GeometryType.POLYLINES: splitLongitudePolyline(instance); break; case GeometryAttribute.GeometryType.TRIANGLES: splitLongitudeTriangles(instance); break; case GeometryAttribute.GeometryType.LINES: splitLongitudeLines(instance); break; } } else { indexPrimitive(geometry); if (geometry.primitiveType === GeometryAttribute.PrimitiveType.TRIANGLES) { splitLongitudeTriangles(instance); } else if (geometry.primitiveType === GeometryAttribute.PrimitiveType.LINES) { splitLongitudeLines(instance); } } return instance; }; exports.GeometryPipeline = GeometryPipeline; })); //# sourceMappingURL=GeometryPipeline-e93f6439.js.map