/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['exports', './GeometryOffsetAttribute-7e016332', './Transforms-8b90e17c', './Matrix2-265d9610', './ComponentDatatype-aad54330', './when-4bbc8319', './RuntimeError-5b082e8f', './GeometryAttribute-4bcb785f', './GeometryAttributes-7827a6c2', './IndexDatatype-6739e544'], (function (exports, GeometryOffsetAttribute, Transforms, Matrix2, ComponentDatatype, when, RuntimeError, GeometryAttribute, GeometryAttributes, IndexDatatype) { 'use strict'; const defaultRadii = new Matrix2.Cartesian3(1.0, 1.0, 1.0); const cos = Math.cos; const sin = Math.sin; /** * A description of the outline of an ellipsoid centered at the origin. * * @alias EllipsoidOutlineGeometry * @constructor * * @param {Object} [options] Object with the following properties: * @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions. * @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions. * @param {Number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis. * @param {Number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis. * @param {Number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis. * @param {Number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis. * @param {Number} [options.stackPartitions=10] The count of stacks for the ellipsoid (1 greater than the number of parallel lines). * @param {Number} [options.slicePartitions=8] The count of slices for the ellipsoid (Equal to the number of radial lines). * @param {Number} [options.subdivisions=128] The number of points per line, determining the granularity of the curvature. * * @exception {DeveloperError} options.stackPartitions must be greater than or equal to one. * @exception {DeveloperError} options.slicePartitions must be greater than or equal to zero. * @exception {DeveloperError} options.subdivisions must be greater than or equal to zero. * * @example * const ellipsoid = new Cesium.EllipsoidOutlineGeometry({ * radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0), * stackPartitions: 6, * slicePartitions: 5 * }); * const geometry = Cesium.EllipsoidOutlineGeometry.createGeometry(ellipsoid); */ function EllipsoidOutlineGeometry(options) { options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT); const radii = when.defaultValue(options.radii, defaultRadii); const innerRadii = when.defaultValue(options.innerRadii, radii); const minimumClock = when.defaultValue(options.minimumClock, 0.0); const maximumClock = when.defaultValue(options.maximumClock, ComponentDatatype.CesiumMath.TWO_PI); const minimumCone = when.defaultValue(options.minimumCone, 0.0); const maximumCone = when.defaultValue(options.maximumCone, ComponentDatatype.CesiumMath.PI); const stackPartitions = Math.round(when.defaultValue(options.stackPartitions, 10)); const slicePartitions = Math.round(when.defaultValue(options.slicePartitions, 8)); const subdivisions = Math.round(when.defaultValue(options.subdivisions, 128)); //>>includeStart('debug', pragmas.debug); if (stackPartitions < 1) { throw new RuntimeError.DeveloperError("options.stackPartitions cannot be less than 1"); } if (slicePartitions < 0) { throw new RuntimeError.DeveloperError("options.slicePartitions cannot be less than 0"); } if (subdivisions < 0) { throw new RuntimeError.DeveloperError( "options.subdivisions must be greater than or equal to zero." ); } if ( when.defined(options.offsetAttribute) && options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP ) { throw new RuntimeError.DeveloperError( "GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry." ); } //>>includeEnd('debug'); this._radii = Matrix2.Cartesian3.clone(radii); this._innerRadii = Matrix2.Cartesian3.clone(innerRadii); this._minimumClock = minimumClock; this._maximumClock = maximumClock; this._minimumCone = minimumCone; this._maximumCone = maximumCone; this._stackPartitions = stackPartitions; this._slicePartitions = slicePartitions; this._subdivisions = subdivisions; this._offsetAttribute = options.offsetAttribute; this._workerName = "createEllipsoidOutlineGeometry"; } /** * The number of elements used to pack the object into an array. * @type {Number} */ EllipsoidOutlineGeometry.packedLength = 2 * Matrix2.Cartesian3.packedLength + 8; /** * Stores the provided instance into the provided array. * * @param {EllipsoidOutlineGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ EllipsoidOutlineGeometry.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); if (!when.defined(value)) { throw new RuntimeError.DeveloperError("value is required"); } if (!when.defined(array)) { throw new RuntimeError.DeveloperError("array is required"); } //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); Matrix2.Cartesian3.pack(value._radii, array, startingIndex); startingIndex += Matrix2.Cartesian3.packedLength; Matrix2.Cartesian3.pack(value._innerRadii, array, startingIndex); startingIndex += Matrix2.Cartesian3.packedLength; array[startingIndex++] = value._minimumClock; array[startingIndex++] = value._maximumClock; array[startingIndex++] = value._minimumCone; array[startingIndex++] = value._maximumCone; array[startingIndex++] = value._stackPartitions; array[startingIndex++] = value._slicePartitions; array[startingIndex++] = value._subdivisions; array[startingIndex] = when.defaultValue(value._offsetAttribute, -1); return array; }; const scratchRadii = new Matrix2.Cartesian3(); const scratchInnerRadii = new Matrix2.Cartesian3(); const scratchOptions = { radii: scratchRadii, innerRadii: scratchInnerRadii, minimumClock: undefined, maximumClock: undefined, minimumCone: undefined, maximumCone: undefined, stackPartitions: undefined, slicePartitions: undefined, subdivisions: undefined, offsetAttribute: undefined, }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {EllipsoidOutlineGeometry} [result] The object into which to store the result. * @returns {EllipsoidOutlineGeometry} The modified result parameter or a new EllipsoidOutlineGeometry instance if one was not provided. */ EllipsoidOutlineGeometry.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); if (!when.defined(array)) { throw new RuntimeError.DeveloperError("array is required"); } //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); const radii = Matrix2.Cartesian3.unpack(array, startingIndex, scratchRadii); startingIndex += Matrix2.Cartesian3.packedLength; const innerRadii = Matrix2.Cartesian3.unpack(array, startingIndex, scratchInnerRadii); startingIndex += Matrix2.Cartesian3.packedLength; const minimumClock = array[startingIndex++]; const maximumClock = array[startingIndex++]; const minimumCone = array[startingIndex++]; const maximumCone = array[startingIndex++]; const stackPartitions = array[startingIndex++]; const slicePartitions = array[startingIndex++]; const subdivisions = array[startingIndex++]; const offsetAttribute = array[startingIndex]; if (!when.defined(result)) { scratchOptions.minimumClock = minimumClock; scratchOptions.maximumClock = maximumClock; scratchOptions.minimumCone = minimumCone; scratchOptions.maximumCone = maximumCone; scratchOptions.stackPartitions = stackPartitions; scratchOptions.slicePartitions = slicePartitions; scratchOptions.subdivisions = subdivisions; scratchOptions.offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return new EllipsoidOutlineGeometry(scratchOptions); } result._radii = Matrix2.Cartesian3.clone(radii, result._radii); result._innerRadii = Matrix2.Cartesian3.clone(innerRadii, result._innerRadii); result._minimumClock = minimumClock; result._maximumClock = maximumClock; result._minimumCone = minimumCone; result._maximumCone = maximumCone; result._stackPartitions = stackPartitions; result._slicePartitions = slicePartitions; result._subdivisions = subdivisions; result._offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return result; }; /** * Computes the geometric representation of an outline of an ellipsoid, including its vertices, indices, and a bounding sphere. * * @param {EllipsoidOutlineGeometry} ellipsoidGeometry A description of the ellipsoid outline. * @returns {Geometry|undefined} The computed vertices and indices. */ EllipsoidOutlineGeometry.createGeometry = function (ellipsoidGeometry) { const radii = ellipsoidGeometry._radii; if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) { return; } const innerRadii = ellipsoidGeometry._innerRadii; if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) { return; } const minimumClock = ellipsoidGeometry._minimumClock; const maximumClock = ellipsoidGeometry._maximumClock; const minimumCone = ellipsoidGeometry._minimumCone; const maximumCone = ellipsoidGeometry._maximumCone; const subdivisions = ellipsoidGeometry._subdivisions; const ellipsoid = Matrix2.Ellipsoid.fromCartesian3(radii); // Add an extra slice and stack to remain consistent with EllipsoidGeometry let slicePartitions = ellipsoidGeometry._slicePartitions + 1; let stackPartitions = ellipsoidGeometry._stackPartitions + 1; slicePartitions = Math.round( (slicePartitions * Math.abs(maximumClock - minimumClock)) / ComponentDatatype.CesiumMath.TWO_PI ); stackPartitions = Math.round( (stackPartitions * Math.abs(maximumCone - minimumCone)) / ComponentDatatype.CesiumMath.PI ); if (slicePartitions < 2) { slicePartitions = 2; } if (stackPartitions < 2) { stackPartitions = 2; } let extraIndices = 0; let vertexMultiplier = 1.0; const hasInnerSurface = innerRadii.x !== radii.x || innerRadii.y !== radii.y || innerRadii.z !== radii.z; let isTopOpen = false; let isBotOpen = false; if (hasInnerSurface) { vertexMultiplier = 2.0; // Add 2x slicePartitions to connect the top/bottom of the outer to // the top/bottom of the inner if (minimumCone > 0.0) { isTopOpen = true; extraIndices += slicePartitions; } if (maximumCone < Math.PI) { isBotOpen = true; extraIndices += slicePartitions; } } const vertexCount = subdivisions * vertexMultiplier * (stackPartitions + slicePartitions); const positions = new Float64Array(vertexCount * 3); // Multiply by two because two points define each line segment const numIndices = 2 * (vertexCount + extraIndices - (slicePartitions + stackPartitions) * vertexMultiplier); const indices = IndexDatatype.IndexDatatype.createTypedArray(vertexCount, numIndices); let i; let j; let theta; let phi; let index = 0; // Calculate sin/cos phi const sinPhi = new Array(stackPartitions); const cosPhi = new Array(stackPartitions); for (i = 0; i < stackPartitions; i++) { phi = minimumCone + (i * (maximumCone - minimumCone)) / (stackPartitions - 1); sinPhi[i] = sin(phi); cosPhi[i] = cos(phi); } // Calculate sin/cos theta const sinTheta = new Array(subdivisions); const cosTheta = new Array(subdivisions); for (i = 0; i < subdivisions; i++) { theta = minimumClock + (i * (maximumClock - minimumClock)) / (subdivisions - 1); sinTheta[i] = sin(theta); cosTheta[i] = cos(theta); } // Calculate the latitude lines on the outer surface for (i = 0; i < stackPartitions; i++) { for (j = 0; j < subdivisions; j++) { positions[index++] = radii.x * sinPhi[i] * cosTheta[j]; positions[index++] = radii.y * sinPhi[i] * sinTheta[j]; positions[index++] = radii.z * cosPhi[i]; } } // Calculate the latitude lines on the inner surface if (hasInnerSurface) { for (i = 0; i < stackPartitions; i++) { for (j = 0; j < subdivisions; j++) { positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j]; positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j]; positions[index++] = innerRadii.z * cosPhi[i]; } } } // Calculate sin/cos phi sinPhi.length = subdivisions; cosPhi.length = subdivisions; for (i = 0; i < subdivisions; i++) { phi = minimumCone + (i * (maximumCone - minimumCone)) / (subdivisions - 1); sinPhi[i] = sin(phi); cosPhi[i] = cos(phi); } // Calculate sin/cos theta for each slice partition sinTheta.length = slicePartitions; cosTheta.length = slicePartitions; for (i = 0; i < slicePartitions; i++) { theta = minimumClock + (i * (maximumClock - minimumClock)) / (slicePartitions - 1); sinTheta[i] = sin(theta); cosTheta[i] = cos(theta); } // Calculate the longitude lines on the outer surface for (i = 0; i < subdivisions; i++) { for (j = 0; j < slicePartitions; j++) { positions[index++] = radii.x * sinPhi[i] * cosTheta[j]; positions[index++] = radii.y * sinPhi[i] * sinTheta[j]; positions[index++] = radii.z * cosPhi[i]; } } // Calculate the longitude lines on the inner surface if (hasInnerSurface) { for (i = 0; i < subdivisions; i++) { for (j = 0; j < slicePartitions; j++) { positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j]; positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j]; positions[index++] = innerRadii.z * cosPhi[i]; } } } // Create indices for the latitude lines index = 0; for (i = 0; i < stackPartitions * vertexMultiplier; i++) { const topOffset = i * subdivisions; for (j = 0; j < subdivisions - 1; j++) { indices[index++] = topOffset + j; indices[index++] = topOffset + j + 1; } } // Create indices for the outer longitude lines let offset = stackPartitions * subdivisions * vertexMultiplier; for (i = 0; i < slicePartitions; i++) { for (j = 0; j < subdivisions - 1; j++) { indices[index++] = offset + i + j * slicePartitions; indices[index++] = offset + i + (j + 1) * slicePartitions; } } // Create indices for the inner longitude lines if (hasInnerSurface) { offset = stackPartitions * subdivisions * vertexMultiplier + slicePartitions * subdivisions; for (i = 0; i < slicePartitions; i++) { for (j = 0; j < subdivisions - 1; j++) { indices[index++] = offset + i + j * slicePartitions; indices[index++] = offset + i + (j + 1) * slicePartitions; } } } if (hasInnerSurface) { let outerOffset = stackPartitions * subdivisions * vertexMultiplier; let innerOffset = outerOffset + subdivisions * slicePartitions; if (isTopOpen) { // Draw lines from the top of the inner surface to the top of the outer surface for (i = 0; i < slicePartitions; i++) { indices[index++] = outerOffset + i; indices[index++] = innerOffset + i; } } if (isBotOpen) { // Draw lines from the top of the inner surface to the top of the outer surface outerOffset += subdivisions * slicePartitions - slicePartitions; innerOffset += subdivisions * slicePartitions - slicePartitions; for (i = 0; i < slicePartitions; i++) { indices[index++] = outerOffset + i; indices[index++] = innerOffset + i; } } } const attributes = new GeometryAttributes.GeometryAttributes({ position: new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: positions, }), }); if (when.defined(ellipsoidGeometry._offsetAttribute)) { const length = positions.length; const applyOffset = new Uint8Array(length / 3); const offsetValue = ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1; GeometryOffsetAttribute.arrayFill(applyOffset, offsetValue); attributes.applyOffset = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute: 1, values: applyOffset, }); } return new GeometryAttribute.Geometry({ attributes: attributes, indices: indices, primitiveType: GeometryAttribute.PrimitiveType.LINES, boundingSphere: Transforms.BoundingSphere.fromEllipsoid(ellipsoid), offsetAttribute: ellipsoidGeometry._offsetAttribute, }); }; exports.EllipsoidOutlineGeometry = EllipsoidOutlineGeometry; })); //# sourceMappingURL=EllipsoidOutlineGeometry-b79bb09f.js.map