/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['exports', './GeometryOffsetAttribute-7e016332', './Transforms-8b90e17c', './Matrix2-265d9610', './ComponentDatatype-aad54330', './when-4bbc8319', './RuntimeError-5b082e8f', './GeometryAttribute-4bcb785f', './GeometryAttributes-7827a6c2', './IndexDatatype-6739e544', './VertexFormat-07539138'], (function (exports, GeometryOffsetAttribute, Transforms, Matrix2, ComponentDatatype, when, RuntimeError, GeometryAttribute, GeometryAttributes, IndexDatatype, VertexFormat) { 'use strict'; const scratchPosition = new Matrix2.Cartesian3(); const scratchNormal = new Matrix2.Cartesian3(); const scratchTangent = new Matrix2.Cartesian3(); const scratchBitangent = new Matrix2.Cartesian3(); const scratchNormalST = new Matrix2.Cartesian3(); const defaultRadii = new Matrix2.Cartesian3(1.0, 1.0, 1.0); const cos = Math.cos; const sin = Math.sin; /** * A description of an ellipsoid centered at the origin. * * @alias EllipsoidGeometry * @constructor * * @param {Object} [options] Object with the following properties: * @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions. * @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions. * @param {Number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis. * @param {Number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis. * @param {Number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis. * @param {Number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis. * @param {Number} [options.stackPartitions=64] The number of times to partition the ellipsoid into stacks. * @param {Number} [options.slicePartitions=64] The number of times to partition the ellipsoid into radial slices. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * * @exception {DeveloperError} options.slicePartitions cannot be less than three. * @exception {DeveloperError} options.stackPartitions cannot be less than three. * * @see EllipsoidGeometry#createGeometry * * @example * const ellipsoid = new Cesium.EllipsoidGeometry({ * vertexFormat : Cesium.VertexFormat.POSITION_ONLY, * radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0) * }); * const geometry = Cesium.EllipsoidGeometry.createGeometry(ellipsoid); */ function EllipsoidGeometry(options) { options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT); const radii = when.defaultValue(options.radii, defaultRadii); const innerRadii = when.defaultValue(options.innerRadii, radii); const minimumClock = when.defaultValue(options.minimumClock, 0.0); const maximumClock = when.defaultValue(options.maximumClock, ComponentDatatype.CesiumMath.TWO_PI); const minimumCone = when.defaultValue(options.minimumCone, 0.0); const maximumCone = when.defaultValue(options.maximumCone, ComponentDatatype.CesiumMath.PI); const stackPartitions = Math.round(when.defaultValue(options.stackPartitions, 64)); const slicePartitions = Math.round(when.defaultValue(options.slicePartitions, 64)); const vertexFormat = when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT); //>>includeStart('debug', pragmas.debug); if (slicePartitions < 3) { throw new RuntimeError.DeveloperError( "options.slicePartitions cannot be less than three." ); } if (stackPartitions < 3) { throw new RuntimeError.DeveloperError( "options.stackPartitions cannot be less than three." ); } //>>includeEnd('debug'); this._radii = Matrix2.Cartesian3.clone(radii); this._innerRadii = Matrix2.Cartesian3.clone(innerRadii); this._minimumClock = minimumClock; this._maximumClock = maximumClock; this._minimumCone = minimumCone; this._maximumCone = maximumCone; this._stackPartitions = stackPartitions; this._slicePartitions = slicePartitions; this._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat); this._offsetAttribute = options.offsetAttribute; this._workerName = "createEllipsoidGeometry"; } /** * The number of elements used to pack the object into an array. * @type {Number} */ EllipsoidGeometry.packedLength = 2 * Matrix2.Cartesian3.packedLength + VertexFormat.VertexFormat.packedLength + 7; /** * Stores the provided instance into the provided array. * * @param {EllipsoidGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ EllipsoidGeometry.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); if (!when.defined(value)) { throw new RuntimeError.DeveloperError("value is required"); } if (!when.defined(array)) { throw new RuntimeError.DeveloperError("array is required"); } //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); Matrix2.Cartesian3.pack(value._radii, array, startingIndex); startingIndex += Matrix2.Cartesian3.packedLength; Matrix2.Cartesian3.pack(value._innerRadii, array, startingIndex); startingIndex += Matrix2.Cartesian3.packedLength; VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex); startingIndex += VertexFormat.VertexFormat.packedLength; array[startingIndex++] = value._minimumClock; array[startingIndex++] = value._maximumClock; array[startingIndex++] = value._minimumCone; array[startingIndex++] = value._maximumCone; array[startingIndex++] = value._stackPartitions; array[startingIndex++] = value._slicePartitions; array[startingIndex] = when.defaultValue(value._offsetAttribute, -1); return array; }; const scratchRadii = new Matrix2.Cartesian3(); const scratchInnerRadii = new Matrix2.Cartesian3(); const scratchVertexFormat = new VertexFormat.VertexFormat(); const scratchOptions = { radii: scratchRadii, innerRadii: scratchInnerRadii, vertexFormat: scratchVertexFormat, minimumClock: undefined, maximumClock: undefined, minimumCone: undefined, maximumCone: undefined, stackPartitions: undefined, slicePartitions: undefined, offsetAttribute: undefined, }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {EllipsoidGeometry} [result] The object into which to store the result. * @returns {EllipsoidGeometry} The modified result parameter or a new EllipsoidGeometry instance if one was not provided. */ EllipsoidGeometry.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); if (!when.defined(array)) { throw new RuntimeError.DeveloperError("array is required"); } //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); const radii = Matrix2.Cartesian3.unpack(array, startingIndex, scratchRadii); startingIndex += Matrix2.Cartesian3.packedLength; const innerRadii = Matrix2.Cartesian3.unpack(array, startingIndex, scratchInnerRadii); startingIndex += Matrix2.Cartesian3.packedLength; const vertexFormat = VertexFormat.VertexFormat.unpack( array, startingIndex, scratchVertexFormat ); startingIndex += VertexFormat.VertexFormat.packedLength; const minimumClock = array[startingIndex++]; const maximumClock = array[startingIndex++]; const minimumCone = array[startingIndex++]; const maximumCone = array[startingIndex++]; const stackPartitions = array[startingIndex++]; const slicePartitions = array[startingIndex++]; const offsetAttribute = array[startingIndex]; if (!when.defined(result)) { scratchOptions.minimumClock = minimumClock; scratchOptions.maximumClock = maximumClock; scratchOptions.minimumCone = minimumCone; scratchOptions.maximumCone = maximumCone; scratchOptions.stackPartitions = stackPartitions; scratchOptions.slicePartitions = slicePartitions; scratchOptions.offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return new EllipsoidGeometry(scratchOptions); } result._radii = Matrix2.Cartesian3.clone(radii, result._radii); result._innerRadii = Matrix2.Cartesian3.clone(innerRadii, result._innerRadii); result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat); result._minimumClock = minimumClock; result._maximumClock = maximumClock; result._minimumCone = minimumCone; result._maximumCone = maximumCone; result._stackPartitions = stackPartitions; result._slicePartitions = slicePartitions; result._offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return result; }; /** * Computes the geometric representation of an ellipsoid, including its vertices, indices, and a bounding sphere. * * @param {EllipsoidGeometry} ellipsoidGeometry A description of the ellipsoid. * @returns {Geometry|undefined} The computed vertices and indices. */ EllipsoidGeometry.createGeometry = function (ellipsoidGeometry) { const radii = ellipsoidGeometry._radii; if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) { return; } const innerRadii = ellipsoidGeometry._innerRadii; if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) { return; } const minimumClock = ellipsoidGeometry._minimumClock; const maximumClock = ellipsoidGeometry._maximumClock; const minimumCone = ellipsoidGeometry._minimumCone; const maximumCone = ellipsoidGeometry._maximumCone; const vertexFormat = ellipsoidGeometry._vertexFormat; // Add an extra slice and stack so that the number of partitions is the // number of surfaces rather than the number of joints let slicePartitions = ellipsoidGeometry._slicePartitions + 1; let stackPartitions = ellipsoidGeometry._stackPartitions + 1; slicePartitions = Math.round( (slicePartitions * Math.abs(maximumClock - minimumClock)) / ComponentDatatype.CesiumMath.TWO_PI ); stackPartitions = Math.round( (stackPartitions * Math.abs(maximumCone - minimumCone)) / ComponentDatatype.CesiumMath.PI ); if (slicePartitions < 2) { slicePartitions = 2; } if (stackPartitions < 2) { stackPartitions = 2; } let i; let j; let index = 0; // Create arrays for theta and phi. Duplicate first and last angle to // allow different normals at the intersections. const phis = [minimumCone]; const thetas = [minimumClock]; for (i = 0; i < stackPartitions; i++) { phis.push( minimumCone + (i * (maximumCone - minimumCone)) / (stackPartitions - 1) ); } phis.push(maximumCone); for (j = 0; j < slicePartitions; j++) { thetas.push( minimumClock + (j * (maximumClock - minimumClock)) / (slicePartitions - 1) ); } thetas.push(maximumClock); const numPhis = phis.length; const numThetas = thetas.length; // Allow for extra indices if there is an inner surface and if we need // to close the sides if the clock range is not a full circle let extraIndices = 0; let vertexMultiplier = 1.0; const hasInnerSurface = innerRadii.x !== radii.x || innerRadii.y !== radii.y || innerRadii.z !== radii.z; let isTopOpen = false; let isBotOpen = false; let isClockOpen = false; if (hasInnerSurface) { vertexMultiplier = 2.0; if (minimumCone > 0.0) { isTopOpen = true; extraIndices += slicePartitions - 1; } if (maximumCone < Math.PI) { isBotOpen = true; extraIndices += slicePartitions - 1; } if ((maximumClock - minimumClock) % ComponentDatatype.CesiumMath.TWO_PI) { isClockOpen = true; extraIndices += (stackPartitions - 1) * 2 + 1; } else { extraIndices += 1; } } const vertexCount = numThetas * numPhis * vertexMultiplier; const positions = new Float64Array(vertexCount * 3); const isInner = GeometryOffsetAttribute.arrayFill(new Array(vertexCount), false); const negateNormal = GeometryOffsetAttribute.arrayFill(new Array(vertexCount), false); // Multiply by 6 because there are two triangles per sector const indexCount = slicePartitions * stackPartitions * vertexMultiplier; const numIndices = 6 * (indexCount + extraIndices + 1 - (slicePartitions + stackPartitions) * vertexMultiplier); const indices = IndexDatatype.IndexDatatype.createTypedArray(indexCount, numIndices); const normals = vertexFormat.normal ? new Float32Array(vertexCount * 3) : undefined; const tangents = vertexFormat.tangent ? new Float32Array(vertexCount * 3) : undefined; const bitangents = vertexFormat.bitangent ? new Float32Array(vertexCount * 3) : undefined; const st = vertexFormat.st ? new Float32Array(vertexCount * 2) : undefined; // Calculate sin/cos phi const sinPhi = new Array(numPhis); const cosPhi = new Array(numPhis); for (i = 0; i < numPhis; i++) { sinPhi[i] = sin(phis[i]); cosPhi[i] = cos(phis[i]); } // Calculate sin/cos theta const sinTheta = new Array(numThetas); const cosTheta = new Array(numThetas); for (j = 0; j < numThetas; j++) { cosTheta[j] = cos(thetas[j]); sinTheta[j] = sin(thetas[j]); } // Create outer surface for (i = 0; i < numPhis; i++) { for (j = 0; j < numThetas; j++) { positions[index++] = radii.x * sinPhi[i] * cosTheta[j]; positions[index++] = radii.y * sinPhi[i] * sinTheta[j]; positions[index++] = radii.z * cosPhi[i]; } } // Create inner surface let vertexIndex = vertexCount / 2.0; if (hasInnerSurface) { for (i = 0; i < numPhis; i++) { for (j = 0; j < numThetas; j++) { positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j]; positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j]; positions[index++] = innerRadii.z * cosPhi[i]; // Keep track of which vertices are the inner and which ones // need the normal to be negated isInner[vertexIndex] = true; if (i > 0 && i !== numPhis - 1 && j !== 0 && j !== numThetas - 1) { negateNormal[vertexIndex] = true; } vertexIndex++; } } } // Create indices for outer surface index = 0; let topOffset; let bottomOffset; for (i = 1; i < numPhis - 2; i++) { topOffset = i * numThetas; bottomOffset = (i + 1) * numThetas; for (j = 1; j < numThetas - 2; j++) { indices[index++] = bottomOffset + j; indices[index++] = bottomOffset + j + 1; indices[index++] = topOffset + j + 1; indices[index++] = bottomOffset + j; indices[index++] = topOffset + j + 1; indices[index++] = topOffset + j; } } // Create indices for inner surface if (hasInnerSurface) { const offset = numPhis * numThetas; for (i = 1; i < numPhis - 2; i++) { topOffset = offset + i * numThetas; bottomOffset = offset + (i + 1) * numThetas; for (j = 1; j < numThetas - 2; j++) { indices[index++] = bottomOffset + j; indices[index++] = topOffset + j; indices[index++] = topOffset + j + 1; indices[index++] = bottomOffset + j; indices[index++] = topOffset + j + 1; indices[index++] = bottomOffset + j + 1; } } } let outerOffset; let innerOffset; if (hasInnerSurface) { if (isTopOpen) { // Connect the top of the inner surface to the top of the outer surface innerOffset = numPhis * numThetas; for (i = 1; i < numThetas - 2; i++) { indices[index++] = i; indices[index++] = i + 1; indices[index++] = innerOffset + i + 1; indices[index++] = i; indices[index++] = innerOffset + i + 1; indices[index++] = innerOffset + i; } } if (isBotOpen) { // Connect the bottom of the inner surface to the bottom of the outer surface outerOffset = numPhis * numThetas - numThetas; innerOffset = numPhis * numThetas * vertexMultiplier - numThetas; for (i = 1; i < numThetas - 2; i++) { indices[index++] = outerOffset + i + 1; indices[index++] = outerOffset + i; indices[index++] = innerOffset + i; indices[index++] = outerOffset + i + 1; indices[index++] = innerOffset + i; indices[index++] = innerOffset + i + 1; } } } // Connect the edges if clock is not closed if (isClockOpen) { for (i = 1; i < numPhis - 2; i++) { innerOffset = numThetas * numPhis + numThetas * i; outerOffset = numThetas * i; indices[index++] = innerOffset; indices[index++] = outerOffset + numThetas; indices[index++] = outerOffset; indices[index++] = innerOffset; indices[index++] = innerOffset + numThetas; indices[index++] = outerOffset + numThetas; } for (i = 1; i < numPhis - 2; i++) { innerOffset = numThetas * numPhis + numThetas * (i + 1) - 1; outerOffset = numThetas * (i + 1) - 1; indices[index++] = outerOffset + numThetas; indices[index++] = innerOffset; indices[index++] = outerOffset; indices[index++] = outerOffset + numThetas; indices[index++] = innerOffset + numThetas; indices[index++] = innerOffset; } } const attributes = new GeometryAttributes.GeometryAttributes(); if (vertexFormat.position) { attributes.position = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: positions, }); } let stIndex = 0; let normalIndex = 0; let tangentIndex = 0; let bitangentIndex = 0; const vertexCountHalf = vertexCount / 2.0; let ellipsoid; const ellipsoidOuter = Matrix2.Ellipsoid.fromCartesian3(radii); const ellipsoidInner = Matrix2.Ellipsoid.fromCartesian3(innerRadii); if ( vertexFormat.st || vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent ) { for (i = 0; i < vertexCount; i++) { ellipsoid = isInner[i] ? ellipsoidInner : ellipsoidOuter; const position = Matrix2.Cartesian3.fromArray(positions, i * 3, scratchPosition); const normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal); if (negateNormal[i]) { Matrix2.Cartesian3.negate(normal, normal); } if (vertexFormat.st) { const normalST = Matrix2.Cartesian2.negate(normal, scratchNormalST); st[stIndex++] = Math.atan2(normalST.y, normalST.x) / ComponentDatatype.CesiumMath.TWO_PI + 0.5; st[stIndex++] = Math.asin(normal.z) / Math.PI + 0.5; } if (vertexFormat.normal) { normals[normalIndex++] = normal.x; normals[normalIndex++] = normal.y; normals[normalIndex++] = normal.z; } if (vertexFormat.tangent || vertexFormat.bitangent) { const tangent = scratchTangent; // Use UNIT_X for the poles let tangetOffset = 0; let unit; if (isInner[i]) { tangetOffset = vertexCountHalf; } if ( !isTopOpen && i >= tangetOffset && i < tangetOffset + numThetas * 2 ) { unit = Matrix2.Cartesian3.UNIT_X; } else { unit = Matrix2.Cartesian3.UNIT_Z; } Matrix2.Cartesian3.cross(unit, normal, tangent); Matrix2.Cartesian3.normalize(tangent, tangent); if (vertexFormat.tangent) { tangents[tangentIndex++] = tangent.x; tangents[tangentIndex++] = tangent.y; tangents[tangentIndex++] = tangent.z; } if (vertexFormat.bitangent) { const bitangent = Matrix2.Cartesian3.cross(normal, tangent, scratchBitangent); Matrix2.Cartesian3.normalize(bitangent, bitangent); bitangents[bitangentIndex++] = bitangent.x; bitangents[bitangentIndex++] = bitangent.y; bitangents[bitangentIndex++] = bitangent.z; } } } if (vertexFormat.st) { attributes.st = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: st, }); } if (vertexFormat.normal) { attributes.normal = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: normals, }); } if (vertexFormat.tangent) { attributes.tangent = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: tangents, }); } if (vertexFormat.bitangent) { attributes.bitangent = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: bitangents, }); } } if (when.defined(ellipsoidGeometry._offsetAttribute)) { const length = positions.length; const applyOffset = new Uint8Array(length / 3); const offsetValue = ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1; GeometryOffsetAttribute.arrayFill(applyOffset, offsetValue); attributes.applyOffset = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute: 1, values: applyOffset, }); } return new GeometryAttribute.Geometry({ attributes: attributes, indices: indices, primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES, boundingSphere: Transforms.BoundingSphere.fromEllipsoid(ellipsoidOuter), offsetAttribute: ellipsoidGeometry._offsetAttribute, }); }; let unitEllipsoidGeometry; /** * Returns the geometric representation of a unit ellipsoid, including its vertices, indices, and a bounding sphere. * @returns {Geometry} The computed vertices and indices. * * @private */ EllipsoidGeometry.getUnitEllipsoid = function () { if (!when.defined(unitEllipsoidGeometry)) { unitEllipsoidGeometry = EllipsoidGeometry.createGeometry( new EllipsoidGeometry({ radii: new Matrix2.Cartesian3(1.0, 1.0, 1.0), vertexFormat: VertexFormat.VertexFormat.POSITION_ONLY, }) ); } return unitEllipsoidGeometry; }; exports.EllipsoidGeometry = EllipsoidGeometry; })); //# sourceMappingURL=EllipsoidGeometry-c1dcbb8c.js.map