/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['exports', './Transforms-8b90e17c', './Matrix2-265d9610', './RuntimeError-5b082e8f', './when-4bbc8319', './AttributeCompression-442278a0', './ComponentDatatype-aad54330'], (function (exports, Transforms, Matrix2, RuntimeError, when, AttributeCompression, ComponentDatatype) { 'use strict'; /** * Determine whether or not other objects are visible or hidden behind the visible horizon defined by * an {@link Ellipsoid} and a camera position. The ellipsoid is assumed to be located at the * origin of the coordinate system. This class uses the algorithm described in the * {@link https://cesium.com/blog/2013/04/25/Horizon-culling/|Horizon Culling} blog post. * * @alias EllipsoidalOccluder * * @param {Ellipsoid} ellipsoid The ellipsoid to use as an occluder. * @param {Cartesian3} [cameraPosition] The coordinate of the viewer/camera. If this parameter is not * specified, {@link EllipsoidalOccluder#cameraPosition} must be called before * testing visibility. * * @constructor * * @example * // Construct an ellipsoidal occluder with radii 1.0, 1.1, and 0.9. * const cameraPosition = new Cesium.Cartesian3(5.0, 6.0, 7.0); * const occluderEllipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9); * const occluder = new Cesium.EllipsoidalOccluder(occluderEllipsoid, cameraPosition); * * @private */ function EllipsoidalOccluder(ellipsoid, cameraPosition) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("ellipsoid", ellipsoid); //>>includeEnd('debug'); this._ellipsoid = ellipsoid; this._cameraPosition = new Matrix2.Cartesian3(); this._cameraPositionInScaledSpace = new Matrix2.Cartesian3(); this._distanceToLimbInScaledSpaceSquared = 0.0; // cameraPosition fills in the above values if (when.defined(cameraPosition)) { this.cameraPosition = cameraPosition; } } Object.defineProperties(EllipsoidalOccluder.prototype, { /** * Gets the occluding ellipsoid. * @memberof EllipsoidalOccluder.prototype * @type {Ellipsoid} */ ellipsoid: { get: function () { return this._ellipsoid; }, }, /** * Gets or sets the position of the camera. * @memberof EllipsoidalOccluder.prototype * @type {Cartesian3} */ cameraPosition: { get: function () { return this._cameraPosition; }, set: function (cameraPosition) { // See https://cesium.com/blog/2013/04/25/Horizon-culling/ const ellipsoid = this._ellipsoid; const cv = ellipsoid.transformPositionToScaledSpace( cameraPosition, this._cameraPositionInScaledSpace ); const vhMagnitudeSquared = Matrix2.Cartesian3.magnitudeSquared(cv) - 1.0; Matrix2.Cartesian3.clone(cameraPosition, this._cameraPosition); this._cameraPositionInScaledSpace = cv; this._distanceToLimbInScaledSpaceSquared = vhMagnitudeSquared; }, }, }); const scratchCartesian = new Matrix2.Cartesian3(); /** * Determines whether or not a point, the occludee, is hidden from view by the occluder. * * @param {Cartesian3} occludee The point to test for visibility. * @returns {Boolean} true if the occludee is visible; otherwise false. * * @example * const cameraPosition = new Cesium.Cartesian3(0, 0, 2.5); * const ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9); * const occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition); * const point = new Cesium.Cartesian3(0, -3, -3); * occluder.isPointVisible(point); //returns true */ EllipsoidalOccluder.prototype.isPointVisible = function (occludee) { const ellipsoid = this._ellipsoid; const occludeeScaledSpacePosition = ellipsoid.transformPositionToScaledSpace( occludee, scratchCartesian ); return isScaledSpacePointVisible( occludeeScaledSpacePosition, this._cameraPositionInScaledSpace, this._distanceToLimbInScaledSpaceSquared ); }; /** * Determines whether or not a point expressed in the ellipsoid scaled space, is hidden from view by the * occluder. To transform a Cartesian X, Y, Z position in the coordinate system aligned with the ellipsoid * into the scaled space, call {@link Ellipsoid#transformPositionToScaledSpace}. * * @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space. * @returns {Boolean} true if the occludee is visible; otherwise false. * * @example * const cameraPosition = new Cesium.Cartesian3(0, 0, 2.5); * const ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9); * const occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition); * const point = new Cesium.Cartesian3(0, -3, -3); * const scaledSpacePoint = ellipsoid.transformPositionToScaledSpace(point); * occluder.isScaledSpacePointVisible(scaledSpacePoint); //returns true */ EllipsoidalOccluder.prototype.isScaledSpacePointVisible = function ( occludeeScaledSpacePosition ) { return isScaledSpacePointVisible( occludeeScaledSpacePosition, this._cameraPositionInScaledSpace, this._distanceToLimbInScaledSpaceSquared ); }; const scratchCameraPositionInScaledSpaceShrunk = new Matrix2.Cartesian3(); /** * Similar to {@link EllipsoidalOccluder#isScaledSpacePointVisible} except tests against an * ellipsoid that has been shrunk by the minimum height when the minimum height is below * the ellipsoid. This is intended to be used with points generated by * {@link EllipsoidalOccluder#computeHorizonCullingPointPossiblyUnderEllipsoid} or * {@link EllipsoidalOccluder#computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid}. * * @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space of the possibly-shrunk ellipsoid. * @returns {Boolean} true if the occludee is visible; otherwise false. */ EllipsoidalOccluder.prototype.isScaledSpacePointVisiblePossiblyUnderEllipsoid = function ( occludeeScaledSpacePosition, minimumHeight ) { const ellipsoid = this._ellipsoid; let vhMagnitudeSquared; let cv; if ( when.defined(minimumHeight) && minimumHeight < 0.0 && ellipsoid.minimumRadius > -minimumHeight ) { // This code is similar to the cameraPosition setter, but unrolled for performance because it will be called a lot. cv = scratchCameraPositionInScaledSpaceShrunk; cv.x = this._cameraPosition.x / (ellipsoid.radii.x + minimumHeight); cv.y = this._cameraPosition.y / (ellipsoid.radii.y + minimumHeight); cv.z = this._cameraPosition.z / (ellipsoid.radii.z + minimumHeight); vhMagnitudeSquared = cv.x * cv.x + cv.y * cv.y + cv.z * cv.z - 1.0; } else { cv = this._cameraPositionInScaledSpace; vhMagnitudeSquared = this._distanceToLimbInScaledSpaceSquared; } return isScaledSpacePointVisible( occludeeScaledSpacePosition, cv, vhMagnitudeSquared ); }; /** * Computes a point that can be used for horizon culling from a list of positions. If the point is below * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point * is expressed in the ellipsoid-scaled space and is suitable for use with * {@link EllipsoidalOccluder#isScaledSpacePointVisible}. * * @param {Cartesian3} directionToPoint The direction that the computed point will lie along. * A reasonable direction to use is the direction from the center of the ellipsoid to * the center of the bounding sphere computed from the positions. The direction need not * be normalized. * @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions * must be expressed in a reference frame centered at the ellipsoid and aligned with the * ellipsoid's axes. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPoint = function ( directionToPoint, positions, result ) { return computeHorizonCullingPointFromPositions( this._ellipsoid, directionToPoint, positions, result ); }; const scratchEllipsoidShrunk = Matrix2.Ellipsoid.clone(Matrix2.Ellipsoid.UNIT_SPHERE); /** * Similar to {@link EllipsoidalOccluder#computeHorizonCullingPoint} except computes the culling * point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below * the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable * for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}. * * @param {Cartesian3} directionToPoint The direction that the computed point will lie along. * A reasonable direction to use is the direction from the center of the ellipsoid to * the center of the bounding sphere computed from the positions. The direction need not * be normalized. * @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions * must be expressed in a reference frame centered at the ellipsoid and aligned with the * ellipsoid's axes. * @param {Number} [minimumHeight] The minimum height of all positions. If this value is undefined, all positions are assumed to be above the ellipsoid. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPointPossiblyUnderEllipsoid = function ( directionToPoint, positions, minimumHeight, result ) { const possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid( this._ellipsoid, minimumHeight, scratchEllipsoidShrunk ); return computeHorizonCullingPointFromPositions( possiblyShrunkEllipsoid, directionToPoint, positions, result ); }; /** * Computes a point that can be used for horizon culling from a list of positions. If the point is below * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point * is expressed in the ellipsoid-scaled space and is suitable for use with * {@link EllipsoidalOccluder#isScaledSpacePointVisible}. * * @param {Cartesian3} directionToPoint The direction that the computed point will lie along. * A reasonable direction to use is the direction from the center of the ellipsoid to * the center of the bounding sphere computed from the positions. The direction need not * be normalized. * @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions * must be expressed in a reference frame centered at the ellipsoid and aligned with the * ellipsoid's axes. * @param {Number} [stride=3] * @param {Cartesian3} [center=Cartesian3.ZERO] * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVertices = function ( directionToPoint, vertices, stride, center, result ) { return computeHorizonCullingPointFromVertices( this._ellipsoid, directionToPoint, vertices, stride, center, result ); }; /** * Similar to {@link EllipsoidalOccluder#computeHorizonCullingPointFromVertices} except computes the culling * point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below * the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable * for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}. * * @param {Cartesian3} directionToPoint The direction that the computed point will lie along. * A reasonable direction to use is the direction from the center of the ellipsoid to * the center of the bounding sphere computed from the positions. The direction need not * be normalized. * @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions * must be expressed in a reference frame centered at the ellipsoid and aligned with the * ellipsoid's axes. * @param {Number} [stride=3] * @param {Cartesian3} [center=Cartesian3.ZERO] * @param {Number} [minimumHeight] The minimum height of all vertices. If this value is undefined, all vertices are assumed to be above the ellipsoid. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid = function ( directionToPoint, vertices, stride, center, minimumHeight, result ) { const possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid( this._ellipsoid, minimumHeight, scratchEllipsoidShrunk ); return computeHorizonCullingPointFromVertices( possiblyShrunkEllipsoid, directionToPoint, vertices, stride, center, result ); }; const subsampleScratch = []; /** * Computes a point that can be used for horizon culling of a rectangle. If the point is below * the horizon, the ellipsoid-conforming rectangle is guaranteed to be below the horizon as well. * The returned point is expressed in the ellipsoid-scaled space and is suitable for use with * {@link EllipsoidalOccluder#isScaledSpacePointVisible}. * * @param {Rectangle} rectangle The rectangle for which to compute the horizon culling point. * @param {Ellipsoid} ellipsoid The ellipsoid on which the rectangle is defined. This may be different from * the ellipsoid used by this instance for occlusion testing. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPointFromRectangle = function ( rectangle, ellipsoid, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("rectangle", rectangle); //>>includeEnd('debug'); const positions = Matrix2.Rectangle.subsample( rectangle, ellipsoid, 0.0, subsampleScratch ); const bs = Transforms.BoundingSphere.fromPoints(positions); // If the bounding sphere center is too close to the center of the occluder, it doesn't make // sense to try to horizon cull it. if (Matrix2.Cartesian3.magnitude(bs.center) < 0.1 * ellipsoid.minimumRadius) { return undefined; } return this.computeHorizonCullingPoint(bs.center, positions, result); }; const scratchEllipsoidShrunkRadii = new Matrix2.Cartesian3(); function getPossiblyShrunkEllipsoid(ellipsoid, minimumHeight, result) { if ( when.defined(minimumHeight) && minimumHeight < 0.0 && ellipsoid.minimumRadius > -minimumHeight ) { const ellipsoidShrunkRadii = Matrix2.Cartesian3.fromElements( ellipsoid.radii.x + minimumHeight, ellipsoid.radii.y + minimumHeight, ellipsoid.radii.z + minimumHeight, scratchEllipsoidShrunkRadii ); ellipsoid = Matrix2.Ellipsoid.fromCartesian3(ellipsoidShrunkRadii, result); } return ellipsoid; } function computeHorizonCullingPointFromPositions( ellipsoid, directionToPoint, positions, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("directionToPoint", directionToPoint); RuntimeError.Check.defined("positions", positions); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Matrix2.Cartesian3(); } const scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint( ellipsoid, directionToPoint ); let resultMagnitude = 0.0; for (let i = 0, len = positions.length; i < len; ++i) { const position = positions[i]; const candidateMagnitude = computeMagnitude( ellipsoid, position, scaledSpaceDirectionToPoint ); if (candidateMagnitude < 0.0) { // all points should face the same direction, but this one doesn't, so return undefined return undefined; } resultMagnitude = Math.max(resultMagnitude, candidateMagnitude); } return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result); } const positionScratch = new Matrix2.Cartesian3(); function computeHorizonCullingPointFromVertices( ellipsoid, directionToPoint, vertices, stride, center, result ) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("directionToPoint", directionToPoint); RuntimeError.Check.defined("vertices", vertices); RuntimeError.Check.typeOf.number("stride", stride); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Matrix2.Cartesian3(); } stride = when.defaultValue(stride, 3); center = when.defaultValue(center, Matrix2.Cartesian3.ZERO); const scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint( ellipsoid, directionToPoint ); let resultMagnitude = 0.0; for (let i = 0, len = vertices.length; i < len; i += stride) { positionScratch.x = vertices[i] + center.x; positionScratch.y = vertices[i + 1] + center.y; positionScratch.z = vertices[i + 2] + center.z; const candidateMagnitude = computeMagnitude( ellipsoid, positionScratch, scaledSpaceDirectionToPoint ); if (candidateMagnitude < 0.0) { // all points should face the same direction, but this one doesn't, so return undefined return undefined; } resultMagnitude = Math.max(resultMagnitude, candidateMagnitude); } return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result); } function isScaledSpacePointVisible( occludeeScaledSpacePosition, cameraPositionInScaledSpace, distanceToLimbInScaledSpaceSquared ) { // See https://cesium.com/blog/2013/04/25/Horizon-culling/ const cv = cameraPositionInScaledSpace; const vhMagnitudeSquared = distanceToLimbInScaledSpaceSquared; const vt = Matrix2.Cartesian3.subtract( occludeeScaledSpacePosition, cv, scratchCartesian ); const vtDotVc = -Matrix2.Cartesian3.dot(vt, cv); // If vhMagnitudeSquared < 0 then we are below the surface of the ellipsoid and // in this case, set the culling plane to be on V. const isOccluded = vhMagnitudeSquared < 0 ? vtDotVc > 0 : vtDotVc > vhMagnitudeSquared && (vtDotVc * vtDotVc) / Matrix2.Cartesian3.magnitudeSquared(vt) > vhMagnitudeSquared; return !isOccluded; } const scaledSpaceScratch = new Matrix2.Cartesian3(); const directionScratch = new Matrix2.Cartesian3(); function computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint) { const scaledSpacePosition = ellipsoid.transformPositionToScaledSpace( position, scaledSpaceScratch ); let magnitudeSquared = Matrix2.Cartesian3.magnitudeSquared(scaledSpacePosition); let magnitude = Math.sqrt(magnitudeSquared); const direction = Matrix2.Cartesian3.divideByScalar( scaledSpacePosition, magnitude, directionScratch ); // For the purpose of this computation, points below the ellipsoid are consider to be on it instead. magnitudeSquared = Math.max(1.0, magnitudeSquared); magnitude = Math.max(1.0, magnitude); const cosAlpha = Matrix2.Cartesian3.dot(direction, scaledSpaceDirectionToPoint); const sinAlpha = Matrix2.Cartesian3.magnitude( Matrix2.Cartesian3.cross(direction, scaledSpaceDirectionToPoint, direction) ); const cosBeta = 1.0 / magnitude; const sinBeta = Math.sqrt(magnitudeSquared - 1.0) * cosBeta; return 1.0 / (cosAlpha * cosBeta - sinAlpha * sinBeta); } function magnitudeToPoint( scaledSpaceDirectionToPoint, resultMagnitude, result ) { // The horizon culling point is undefined if there were no positions from which to compute it, // the directionToPoint is pointing opposite all of the positions, or if we computed NaN or infinity. if ( resultMagnitude <= 0.0 || resultMagnitude === 1.0 / 0.0 || resultMagnitude !== resultMagnitude ) { return undefined; } return Matrix2.Cartesian3.multiplyByScalar( scaledSpaceDirectionToPoint, resultMagnitude, result ); } const directionToPointScratch = new Matrix2.Cartesian3(); function computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint) { if (Matrix2.Cartesian3.equals(directionToPoint, Matrix2.Cartesian3.ZERO)) { return directionToPoint; } ellipsoid.transformPositionToScaledSpace( directionToPoint, directionToPointScratch ); return Matrix2.Cartesian3.normalize(directionToPointScratch, directionToPointScratch); } /** * @private */ const TerrainExaggeration = {}; /** * Scales a height relative to an offset. * * @param {Number} height The height. * @param {Number} scale A scalar used to exaggerate the terrain. If the value is 1.0 there will be no effect. * @param {Number} relativeHeight The height relative to which terrain is exaggerated. If the value is 0.0 terrain will be exaggerated relative to the ellipsoid surface. */ TerrainExaggeration.getHeight = function (height, scale, relativeHeight) { return (height - relativeHeight) * scale + relativeHeight; }; const scratchCartographic = new Matrix2.Cartesian3(); /** * Scales a position by exaggeration. */ TerrainExaggeration.getPosition = function ( position, ellipsoid, terrainExaggeration, terrainExaggerationRelativeHeight, result ) { const cartographic = ellipsoid.cartesianToCartographic( position, scratchCartographic ); const newHeight = TerrainExaggeration.getHeight( cartographic.height, terrainExaggeration, terrainExaggerationRelativeHeight ); return Matrix2.Cartesian3.fromRadians( cartographic.longitude, cartographic.latitude, newHeight, ellipsoid, result ); }; /** * This enumerated type is used to determine how the vertices of the terrain mesh are compressed. * * @enum {Number} * * @private */ const TerrainQuantization = { /** * The vertices are not compressed. * * @type {Number} * @constant */ NONE: 0, /** * The vertices are compressed to 12 bits. * * @type {Number} * @constant */ BITS12: 1, }; var TerrainQuantization$1 = Object.freeze(TerrainQuantization); const cartesian3Scratch = new Matrix2.Cartesian3(); const cartesian3DimScratch = new Matrix2.Cartesian3(); const cartesian2Scratch = new Matrix2.Cartesian2(); const matrix4Scratch = new Matrix2.Matrix4(); const matrix4Scratch2 = new Matrix2.Matrix4(); const SHIFT_LEFT_12 = Math.pow(2.0, 12.0); /** * Data used to quantize and pack the terrain mesh. The position can be unpacked for picking and all attributes * are unpacked in the vertex shader. * * @alias TerrainEncoding * @constructor * * @param {Cartesian3} center The center point of the vertices. * @param {AxisAlignedBoundingBox} axisAlignedBoundingBox The bounds of the tile in the east-north-up coordinates at the tiles center. * @param {Number} minimumHeight The minimum height. * @param {Number} maximumHeight The maximum height. * @param {Matrix4} fromENU The east-north-up to fixed frame matrix at the center of the terrain mesh. * @param {Boolean} hasVertexNormals If the mesh has vertex normals. * @param {Boolean} [hasWebMercatorT=false] true if the terrain data includes a Web Mercator texture coordinate; otherwise, false. * @param {Boolean} [hasGeodeticSurfaceNormals=false] true if the terrain data includes geodetic surface normals; otherwise, false. * @param {Number} [exaggeration=1.0] A scalar used to exaggerate terrain. * @param {Number} [exaggerationRelativeHeight=0.0] The relative height from which terrain is exaggerated. * * @private */ function TerrainEncoding( center, axisAlignedBoundingBox, minimumHeight, maximumHeight, fromENU, hasVertexNormals, hasWebMercatorT, hasGeodeticSurfaceNormals, exaggeration, exaggerationRelativeHeight ) { let quantization = TerrainQuantization$1.NONE; let toENU; let matrix; if ( when.defined(axisAlignedBoundingBox) && when.defined(minimumHeight) && when.defined(maximumHeight) && when.defined(fromENU) ) { const minimum = axisAlignedBoundingBox.minimum; const maximum = axisAlignedBoundingBox.maximum; const dimensions = Matrix2.Cartesian3.subtract( maximum, minimum, cartesian3DimScratch ); const hDim = maximumHeight - minimumHeight; const maxDim = Math.max(Matrix2.Cartesian3.maximumComponent(dimensions), hDim); if (maxDim < SHIFT_LEFT_12 - 1.0) { quantization = TerrainQuantization$1.BITS12; } else { quantization = TerrainQuantization$1.NONE; } toENU = Matrix2.Matrix4.inverseTransformation(fromENU, new Matrix2.Matrix4()); const translation = Matrix2.Cartesian3.negate(minimum, cartesian3Scratch); Matrix2.Matrix4.multiply( Matrix2.Matrix4.fromTranslation(translation, matrix4Scratch), toENU, toENU ); const scale = cartesian3Scratch; scale.x = 1.0 / dimensions.x; scale.y = 1.0 / dimensions.y; scale.z = 1.0 / dimensions.z; Matrix2.Matrix4.multiply(Matrix2.Matrix4.fromScale(scale, matrix4Scratch), toENU, toENU); matrix = Matrix2.Matrix4.clone(fromENU); Matrix2.Matrix4.setTranslation(matrix, Matrix2.Cartesian3.ZERO, matrix); fromENU = Matrix2.Matrix4.clone(fromENU, new Matrix2.Matrix4()); const translationMatrix = Matrix2.Matrix4.fromTranslation(minimum, matrix4Scratch); const scaleMatrix = Matrix2.Matrix4.fromScale(dimensions, matrix4Scratch2); const st = Matrix2.Matrix4.multiply(translationMatrix, scaleMatrix, matrix4Scratch); Matrix2.Matrix4.multiply(fromENU, st, fromENU); Matrix2.Matrix4.multiply(matrix, st, matrix); } /** * How the vertices of the mesh were compressed. * @type {TerrainQuantization} */ this.quantization = quantization; /** * The minimum height of the tile including the skirts. * @type {Number} */ this.minimumHeight = minimumHeight; /** * The maximum height of the tile. * @type {Number} */ this.maximumHeight = maximumHeight; /** * The center of the tile. * @type {Cartesian3} */ this.center = Matrix2.Cartesian3.clone(center); /** * A matrix that takes a vertex from the tile, transforms it to east-north-up at the center and scales * it so each component is in the [0, 1] range. * @type {Matrix4} */ this.toScaledENU = toENU; /** * A matrix that restores a vertex transformed with toScaledENU back to the earth fixed reference frame * @type {Matrix4} */ this.fromScaledENU = fromENU; /** * The matrix used to decompress the terrain vertices in the shader for RTE rendering. * @type {Matrix4} */ this.matrix = matrix; /** * The terrain mesh contains normals. * @type {Boolean} */ this.hasVertexNormals = hasVertexNormals; /** * The terrain mesh contains a vertical texture coordinate following the Web Mercator projection. * @type {Boolean} */ this.hasWebMercatorT = when.defaultValue(hasWebMercatorT, false); /** * The terrain mesh contains geodetic surface normals, used for terrain exaggeration. * @type {Boolean} */ this.hasGeodeticSurfaceNormals = when.defaultValue( hasGeodeticSurfaceNormals, false ); /** * A scalar used to exaggerate terrain. * @type {Number} */ this.exaggeration = when.defaultValue(exaggeration, 1.0); /** * The relative height from which terrain is exaggerated. */ this.exaggerationRelativeHeight = when.defaultValue( exaggerationRelativeHeight, 0.0 ); /** * The number of components in each vertex. This value can differ with different quantizations. * @type {Number} */ this.stride = 0; this._offsetGeodeticSurfaceNormal = 0; this._offsetVertexNormal = 0; // Calculate the stride and offsets declared above this._calculateStrideAndOffsets(); } TerrainEncoding.prototype.encode = function ( vertexBuffer, bufferIndex, position, uv, height, normalToPack, webMercatorT, geodeticSurfaceNormal ) { const u = uv.x; const v = uv.y; if (this.quantization === TerrainQuantization$1.BITS12) { position = Matrix2.Matrix4.multiplyByPoint( this.toScaledENU, position, cartesian3Scratch ); position.x = ComponentDatatype.CesiumMath.clamp(position.x, 0.0, 1.0); position.y = ComponentDatatype.CesiumMath.clamp(position.y, 0.0, 1.0); position.z = ComponentDatatype.CesiumMath.clamp(position.z, 0.0, 1.0); const hDim = this.maximumHeight - this.minimumHeight; const h = ComponentDatatype.CesiumMath.clamp((height - this.minimumHeight) / hDim, 0.0, 1.0); Matrix2.Cartesian2.fromElements(position.x, position.y, cartesian2Scratch); const compressed0 = AttributeCompression.AttributeCompression.compressTextureCoordinates( cartesian2Scratch ); Matrix2.Cartesian2.fromElements(position.z, h, cartesian2Scratch); const compressed1 = AttributeCompression.AttributeCompression.compressTextureCoordinates( cartesian2Scratch ); Matrix2.Cartesian2.fromElements(u, v, cartesian2Scratch); const compressed2 = AttributeCompression.AttributeCompression.compressTextureCoordinates( cartesian2Scratch ); vertexBuffer[bufferIndex++] = compressed0; vertexBuffer[bufferIndex++] = compressed1; vertexBuffer[bufferIndex++] = compressed2; if (this.hasWebMercatorT) { Matrix2.Cartesian2.fromElements(webMercatorT, 0.0, cartesian2Scratch); const compressed3 = AttributeCompression.AttributeCompression.compressTextureCoordinates( cartesian2Scratch ); vertexBuffer[bufferIndex++] = compressed3; } } else { Matrix2.Cartesian3.subtract(position, this.center, cartesian3Scratch); vertexBuffer[bufferIndex++] = cartesian3Scratch.x; vertexBuffer[bufferIndex++] = cartesian3Scratch.y; vertexBuffer[bufferIndex++] = cartesian3Scratch.z; vertexBuffer[bufferIndex++] = height; vertexBuffer[bufferIndex++] = u; vertexBuffer[bufferIndex++] = v; if (this.hasWebMercatorT) { vertexBuffer[bufferIndex++] = webMercatorT; } } if (this.hasVertexNormals) { vertexBuffer[bufferIndex++] = AttributeCompression.AttributeCompression.octPackFloat( normalToPack ); } if (this.hasGeodeticSurfaceNormals) { vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.x; vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.y; vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.z; } return bufferIndex; }; const scratchPosition = new Matrix2.Cartesian3(); const scratchGeodeticSurfaceNormal = new Matrix2.Cartesian3(); TerrainEncoding.prototype.addGeodeticSurfaceNormals = function ( oldBuffer, newBuffer, ellipsoid ) { if (this.hasGeodeticSurfaceNormals) { return; } const oldStride = this.stride; const vertexCount = oldBuffer.length / oldStride; this.hasGeodeticSurfaceNormals = true; this._calculateStrideAndOffsets(); const newStride = this.stride; for (let index = 0; index < vertexCount; index++) { for (let offset = 0; offset < oldStride; offset++) { const oldIndex = index * oldStride + offset; const newIndex = index * newStride + offset; newBuffer[newIndex] = oldBuffer[oldIndex]; } const position = this.decodePosition(newBuffer, index, scratchPosition); const geodeticSurfaceNormal = ellipsoid.geodeticSurfaceNormal( position, scratchGeodeticSurfaceNormal ); const bufferIndex = index * newStride + this._offsetGeodeticSurfaceNormal; newBuffer[bufferIndex] = geodeticSurfaceNormal.x; newBuffer[bufferIndex + 1] = geodeticSurfaceNormal.y; newBuffer[bufferIndex + 2] = geodeticSurfaceNormal.z; } }; TerrainEncoding.prototype.removeGeodeticSurfaceNormals = function ( oldBuffer, newBuffer ) { if (!this.hasGeodeticSurfaceNormals) { return; } const oldStride = this.stride; const vertexCount = oldBuffer.length / oldStride; this.hasGeodeticSurfaceNormals = false; this._calculateStrideAndOffsets(); const newStride = this.stride; for (let index = 0; index < vertexCount; index++) { for (let offset = 0; offset < newStride; offset++) { const oldIndex = index * oldStride + offset; const newIndex = index * newStride + offset; newBuffer[newIndex] = oldBuffer[oldIndex]; } } }; TerrainEncoding.prototype.decodePosition = function (buffer, index, result) { if (!when.defined(result)) { result = new Matrix2.Cartesian3(); } index *= this.stride; if (this.quantization === TerrainQuantization$1.BITS12) { const xy = AttributeCompression.AttributeCompression.decompressTextureCoordinates( buffer[index], cartesian2Scratch ); result.x = xy.x; result.y = xy.y; const zh = AttributeCompression.AttributeCompression.decompressTextureCoordinates( buffer[index + 1], cartesian2Scratch ); result.z = zh.x; return Matrix2.Matrix4.multiplyByPoint(this.fromScaledENU, result, result); } result.x = buffer[index]; result.y = buffer[index + 1]; result.z = buffer[index + 2]; return Matrix2.Cartesian3.add(result, this.center, result); }; TerrainEncoding.prototype.getExaggeratedPosition = function ( buffer, index, result ) { result = this.decodePosition(buffer, index, result); const exaggeration = this.exaggeration; const exaggerationRelativeHeight = this.exaggerationRelativeHeight; const hasExaggeration = exaggeration !== 1.0; if (hasExaggeration && this.hasGeodeticSurfaceNormals) { const geodeticSurfaceNormal = this.decodeGeodeticSurfaceNormal( buffer, index, scratchGeodeticSurfaceNormal ); const rawHeight = this.decodeHeight(buffer, index); const heightDifference = TerrainExaggeration.getHeight( rawHeight, exaggeration, exaggerationRelativeHeight ) - rawHeight; // some math is unrolled for better performance result.x += geodeticSurfaceNormal.x * heightDifference; result.y += geodeticSurfaceNormal.y * heightDifference; result.z += geodeticSurfaceNormal.z * heightDifference; } return result; }; TerrainEncoding.prototype.decodeTextureCoordinates = function ( buffer, index, result ) { if (!when.defined(result)) { result = new Matrix2.Cartesian2(); } index *= this.stride; if (this.quantization === TerrainQuantization$1.BITS12) { return AttributeCompression.AttributeCompression.decompressTextureCoordinates( buffer[index + 2], result ); } return Matrix2.Cartesian2.fromElements(buffer[index + 4], buffer[index + 5], result); }; TerrainEncoding.prototype.decodeHeight = function (buffer, index) { index *= this.stride; if (this.quantization === TerrainQuantization$1.BITS12) { const zh = AttributeCompression.AttributeCompression.decompressTextureCoordinates( buffer[index + 1], cartesian2Scratch ); return ( zh.y * (this.maximumHeight - this.minimumHeight) + this.minimumHeight ); } return buffer[index + 3]; }; TerrainEncoding.prototype.decodeWebMercatorT = function (buffer, index) { index *= this.stride; if (this.quantization === TerrainQuantization$1.BITS12) { return AttributeCompression.AttributeCompression.decompressTextureCoordinates( buffer[index + 3], cartesian2Scratch ).x; } return buffer[index + 6]; }; TerrainEncoding.prototype.getOctEncodedNormal = function ( buffer, index, result ) { index = index * this.stride + this._offsetVertexNormal; const temp = buffer[index] / 256.0; const x = Math.floor(temp); const y = (temp - x) * 256.0; return Matrix2.Cartesian2.fromElements(x, y, result); }; TerrainEncoding.prototype.decodeGeodeticSurfaceNormal = function ( buffer, index, result ) { index = index * this.stride + this._offsetGeodeticSurfaceNormal; result.x = buffer[index]; result.y = buffer[index + 1]; result.z = buffer[index + 2]; return result; }; TerrainEncoding.prototype._calculateStrideAndOffsets = function () { let vertexStride = 0; switch (this.quantization) { case TerrainQuantization$1.BITS12: vertexStride += 3; break; default: vertexStride += 6; } if (this.hasWebMercatorT) { vertexStride += 1; } if (this.hasVertexNormals) { this._offsetVertexNormal = vertexStride; vertexStride += 1; } if (this.hasGeodeticSurfaceNormals) { this._offsetGeodeticSurfaceNormal = vertexStride; vertexStride += 3; } this.stride = vertexStride; }; const attributesIndicesNone = { position3DAndHeight: 0, textureCoordAndEncodedNormals: 1, geodeticSurfaceNormal: 2, }; const attributesIndicesBits12 = { compressed0: 0, compressed1: 1, geodeticSurfaceNormal: 2, }; TerrainEncoding.prototype.getAttributes = function (buffer) { const datatype = ComponentDatatype.ComponentDatatype.FLOAT; const sizeInBytes = ComponentDatatype.ComponentDatatype.getSizeInBytes(datatype); const strideInBytes = this.stride * sizeInBytes; let offsetInBytes = 0; const attributes = []; function addAttribute(index, componentsPerAttribute) { attributes.push({ index: index, vertexBuffer: buffer, componentDatatype: datatype, componentsPerAttribute: componentsPerAttribute, offsetInBytes: offsetInBytes, strideInBytes: strideInBytes, }); offsetInBytes += componentsPerAttribute * sizeInBytes; } if (this.quantization === TerrainQuantization$1.NONE) { addAttribute(attributesIndicesNone.position3DAndHeight, 4); let componentsTexCoordAndNormals = 2; componentsTexCoordAndNormals += this.hasWebMercatorT ? 1 : 0; componentsTexCoordAndNormals += this.hasVertexNormals ? 1 : 0; addAttribute( attributesIndicesNone.textureCoordAndEncodedNormals, componentsTexCoordAndNormals ); if (this.hasGeodeticSurfaceNormals) { addAttribute(attributesIndicesNone.geodeticSurfaceNormal, 3); } } else { // When there is no webMercatorT or vertex normals, the attribute only needs 3 components: x/y, z/h, u/v. // WebMercatorT and vertex normals each take up one component, so if only one of them is present the first // attribute gets a 4th component. If both are present, we need an additional attribute that has 1 component. const usingAttribute0Component4 = this.hasWebMercatorT || this.hasVertexNormals; const usingAttribute1Component1 = this.hasWebMercatorT && this.hasVertexNormals; addAttribute( attributesIndicesBits12.compressed0, usingAttribute0Component4 ? 4 : 3 ); if (usingAttribute1Component1) { addAttribute(attributesIndicesBits12.compressed1, 1); } if (this.hasGeodeticSurfaceNormals) { addAttribute(attributesIndicesBits12.geodeticSurfaceNormal, 3); } } return attributes; }; TerrainEncoding.prototype.getAttributeLocations = function () { if (this.quantization === TerrainQuantization$1.NONE) { return attributesIndicesNone; } return attributesIndicesBits12; }; TerrainEncoding.clone = function (encoding, result) { if (!when.defined(encoding)) { return undefined; } if (!when.defined(result)) { result = new TerrainEncoding(); } result.quantization = encoding.quantization; result.minimumHeight = encoding.minimumHeight; result.maximumHeight = encoding.maximumHeight; result.center = Matrix2.Cartesian3.clone(encoding.center); result.toScaledENU = Matrix2.Matrix4.clone(encoding.toScaledENU); result.fromScaledENU = Matrix2.Matrix4.clone(encoding.fromScaledENU); result.matrix = Matrix2.Matrix4.clone(encoding.matrix); result.hasVertexNormals = encoding.hasVertexNormals; result.hasWebMercatorT = encoding.hasWebMercatorT; result.hasGeodeticSurfaceNormals = encoding.hasGeodeticSurfaceNormals; result.exaggeration = encoding.exaggeration; result.exaggerationRelativeHeight = encoding.exaggerationRelativeHeight; result._calculateStrideAndOffsets(); return result; }; exports.EllipsoidalOccluder = EllipsoidalOccluder; exports.TerrainEncoding = TerrainEncoding; })); //# sourceMappingURL=TerrainEncoding-82b55fe0.js.map