/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['exports', './Matrix2-265d9610', './ComponentDatatype-aad54330', './Transforms-8b90e17c'], (function (exports, Matrix2, ComponentDatatype, Transforms) { 'use strict'; const EllipseGeometryLibrary = {}; const rotAxis = new Matrix2.Cartesian3(); const tempVec = new Matrix2.Cartesian3(); const unitQuat = new Transforms.Quaternion(); const rotMtx = new Matrix2.Matrix3(); function pointOnEllipsoid( theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, result ) { const azimuth = theta + rotation; Matrix2.Cartesian3.multiplyByScalar(eastVec, Math.cos(azimuth), rotAxis); Matrix2.Cartesian3.multiplyByScalar(northVec, Math.sin(azimuth), tempVec); Matrix2.Cartesian3.add(rotAxis, tempVec, rotAxis); let cosThetaSquared = Math.cos(theta); cosThetaSquared = cosThetaSquared * cosThetaSquared; let sinThetaSquared = Math.sin(theta); sinThetaSquared = sinThetaSquared * sinThetaSquared; const radius = ab / Math.sqrt(bSqr * cosThetaSquared + aSqr * sinThetaSquared); const angle = radius / mag; // Create the quaternion to rotate the position vector to the boundary of the ellipse. Transforms.Quaternion.fromAxisAngle(rotAxis, angle, unitQuat); Matrix2.Matrix3.fromQuaternion(unitQuat, rotMtx); Matrix2.Matrix3.multiplyByVector(rotMtx, unitPos, result); Matrix2.Cartesian3.normalize(result, result); Matrix2.Cartesian3.multiplyByScalar(result, mag, result); return result; } const scratchCartesian1 = new Matrix2.Cartesian3(); const scratchCartesian2 = new Matrix2.Cartesian3(); const scratchCartesian3 = new Matrix2.Cartesian3(); const scratchNormal = new Matrix2.Cartesian3(); /** * Returns the positions raised to the given heights * @private */ EllipseGeometryLibrary.raisePositionsToHeight = function ( positions, options, extrude ) { const ellipsoid = options.ellipsoid; const height = options.height; const extrudedHeight = options.extrudedHeight; const size = extrude ? (positions.length / 3) * 2 : positions.length / 3; const finalPositions = new Float64Array(size * 3); const length = positions.length; const bottomOffset = extrude ? length : 0; for (let i = 0; i < length; i += 3) { const i1 = i + 1; const i2 = i + 2; const position = Matrix2.Cartesian3.fromArray(positions, i, scratchCartesian1); ellipsoid.scaleToGeodeticSurface(position, position); const extrudedPosition = Matrix2.Cartesian3.clone(position, scratchCartesian2); const normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal); const scaledNormal = Matrix2.Cartesian3.multiplyByScalar( normal, height, scratchCartesian3 ); Matrix2.Cartesian3.add(position, scaledNormal, position); if (extrude) { Matrix2.Cartesian3.multiplyByScalar(normal, extrudedHeight, scaledNormal); Matrix2.Cartesian3.add(extrudedPosition, scaledNormal, extrudedPosition); finalPositions[i + bottomOffset] = extrudedPosition.x; finalPositions[i1 + bottomOffset] = extrudedPosition.y; finalPositions[i2 + bottomOffset] = extrudedPosition.z; } finalPositions[i] = position.x; finalPositions[i1] = position.y; finalPositions[i2] = position.z; } return finalPositions; }; const unitPosScratch = new Matrix2.Cartesian3(); const eastVecScratch = new Matrix2.Cartesian3(); const northVecScratch = new Matrix2.Cartesian3(); /** * Returns an array of positions that make up the ellipse. * @private */ EllipseGeometryLibrary.computeEllipsePositions = function ( options, addFillPositions, addEdgePositions ) { const semiMinorAxis = options.semiMinorAxis; const semiMajorAxis = options.semiMajorAxis; const rotation = options.rotation; const center = options.center; // Computing the arc-length of the ellipse is too expensive to be practical. Estimating it using the // arc length of the sphere is too inaccurate and creates sharp edges when either the semi-major or // semi-minor axis is much bigger than the other. Instead, scale the angle delta to make // the distance along the ellipse boundary more closely match the granularity. const granularity = options.granularity * 8.0; const aSqr = semiMinorAxis * semiMinorAxis; const bSqr = semiMajorAxis * semiMajorAxis; const ab = semiMajorAxis * semiMinorAxis; const mag = Matrix2.Cartesian3.magnitude(center); const unitPos = Matrix2.Cartesian3.normalize(center, unitPosScratch); let eastVec = Matrix2.Cartesian3.cross(Matrix2.Cartesian3.UNIT_Z, center, eastVecScratch); eastVec = Matrix2.Cartesian3.normalize(eastVec, eastVec); const northVec = Matrix2.Cartesian3.cross(unitPos, eastVec, northVecScratch); // The number of points in the first quadrant let numPts = 1 + Math.ceil(ComponentDatatype.CesiumMath.PI_OVER_TWO / granularity); const deltaTheta = ComponentDatatype.CesiumMath.PI_OVER_TWO / (numPts - 1); let theta = ComponentDatatype.CesiumMath.PI_OVER_TWO - numPts * deltaTheta; if (theta < 0.0) { numPts -= Math.ceil(Math.abs(theta) / deltaTheta); } // If the number of points were three, the ellipse // would be tessellated like below: // // *---* // / | \ | \ // *---*---*---* // / | \ | \ | \ | \ // / .*---*---*---*. \ // * ` | \ | \ | \ | `* // \`.*---*---*---*.`/ // \ | \ | \ | \ | / // *---*---*---* // \ | \ | / // *---* // The first and last column have one position and fan to connect to the adjacent column. // Each other vertical column contains an even number of positions. const size = 2 * (numPts * (numPts + 2)); const positions = addFillPositions ? new Array(size * 3) : undefined; let positionIndex = 0; let position = scratchCartesian1; let reflectedPosition = scratchCartesian2; const outerPositionsLength = numPts * 4 * 3; let outerRightIndex = outerPositionsLength - 1; let outerLeftIndex = 0; const outerPositions = addEdgePositions ? new Array(outerPositionsLength) : undefined; let i; let j; let numInterior; let t; let interiorPosition; // Compute points in the 'eastern' half of the ellipse theta = ComponentDatatype.CesiumMath.PI_OVER_TWO; position = pointOnEllipsoid( theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, position ); if (addFillPositions) { positions[positionIndex++] = position.x; positions[positionIndex++] = position.y; positions[positionIndex++] = position.z; } if (addEdgePositions) { outerPositions[outerRightIndex--] = position.z; outerPositions[outerRightIndex--] = position.y; outerPositions[outerRightIndex--] = position.x; } theta = ComponentDatatype.CesiumMath.PI_OVER_TWO - deltaTheta; for (i = 1; i < numPts + 1; ++i) { position = pointOnEllipsoid( theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, position ); reflectedPosition = pointOnEllipsoid( Math.PI - theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, reflectedPosition ); if (addFillPositions) { positions[positionIndex++] = position.x; positions[positionIndex++] = position.y; positions[positionIndex++] = position.z; numInterior = 2 * i + 2; for (j = 1; j < numInterior - 1; ++j) { t = j / (numInterior - 1); interiorPosition = Matrix2.Cartesian3.lerp( position, reflectedPosition, t, scratchCartesian3 ); positions[positionIndex++] = interiorPosition.x; positions[positionIndex++] = interiorPosition.y; positions[positionIndex++] = interiorPosition.z; } positions[positionIndex++] = reflectedPosition.x; positions[positionIndex++] = reflectedPosition.y; positions[positionIndex++] = reflectedPosition.z; } if (addEdgePositions) { outerPositions[outerRightIndex--] = position.z; outerPositions[outerRightIndex--] = position.y; outerPositions[outerRightIndex--] = position.x; outerPositions[outerLeftIndex++] = reflectedPosition.x; outerPositions[outerLeftIndex++] = reflectedPosition.y; outerPositions[outerLeftIndex++] = reflectedPosition.z; } theta = ComponentDatatype.CesiumMath.PI_OVER_TWO - (i + 1) * deltaTheta; } // Compute points in the 'western' half of the ellipse for (i = numPts; i > 1; --i) { theta = ComponentDatatype.CesiumMath.PI_OVER_TWO - (i - 1) * deltaTheta; position = pointOnEllipsoid( -theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, position ); reflectedPosition = pointOnEllipsoid( theta + Math.PI, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, reflectedPosition ); if (addFillPositions) { positions[positionIndex++] = position.x; positions[positionIndex++] = position.y; positions[positionIndex++] = position.z; numInterior = 2 * (i - 1) + 2; for (j = 1; j < numInterior - 1; ++j) { t = j / (numInterior - 1); interiorPosition = Matrix2.Cartesian3.lerp( position, reflectedPosition, t, scratchCartesian3 ); positions[positionIndex++] = interiorPosition.x; positions[positionIndex++] = interiorPosition.y; positions[positionIndex++] = interiorPosition.z; } positions[positionIndex++] = reflectedPosition.x; positions[positionIndex++] = reflectedPosition.y; positions[positionIndex++] = reflectedPosition.z; } if (addEdgePositions) { outerPositions[outerRightIndex--] = position.z; outerPositions[outerRightIndex--] = position.y; outerPositions[outerRightIndex--] = position.x; outerPositions[outerLeftIndex++] = reflectedPosition.x; outerPositions[outerLeftIndex++] = reflectedPosition.y; outerPositions[outerLeftIndex++] = reflectedPosition.z; } } theta = ComponentDatatype.CesiumMath.PI_OVER_TWO; position = pointOnEllipsoid( -theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, position ); const r = {}; if (addFillPositions) { positions[positionIndex++] = position.x; positions[positionIndex++] = position.y; positions[positionIndex++] = position.z; r.positions = positions; r.numPts = numPts; } if (addEdgePositions) { outerPositions[outerRightIndex--] = position.z; outerPositions[outerRightIndex--] = position.y; outerPositions[outerRightIndex--] = position.x; r.outerPositions = outerPositions; } return r; }; exports.EllipseGeometryLibrary = EllipseGeometryLibrary; })); //# sourceMappingURL=EllipseGeometryLibrary-4ab591fa.js.map