/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['exports', './Matrix2-265d9610', './RuntimeError-5b082e8f', './when-4bbc8319', './ComponentDatatype-aad54330'], (function (exports, Matrix2, RuntimeError, when, ComponentDatatype) { 'use strict'; /** * A plane in Hessian Normal Form defined by *
   * ax + by + cz + d = 0
   * 
* where (a, b, c) is the plane's normal, d is the signed * distance to the plane, and (x, y, z) is any point on * the plane. * * @alias Plane * @constructor * * @param {Cartesian3} normal The plane's normal (normalized). * @param {Number} distance The shortest distance from the origin to the plane. The sign of * distance determines which side of the plane the origin * is on. If distance is positive, the origin is in the half-space * in the direction of the normal; if negative, the origin is in the half-space * opposite to the normal; if zero, the plane passes through the origin. * * @example * // The plane x=0 * const plane = new Cesium.Plane(Cesium.Cartesian3.UNIT_X, 0.0); * * @exception {DeveloperError} Normal must be normalized */ function Plane(normal, distance) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("normal", normal); if ( !ComponentDatatype.CesiumMath.equalsEpsilon( Matrix2.Cartesian3.magnitude(normal), 1.0, ComponentDatatype.CesiumMath.EPSILON6 ) ) { throw new RuntimeError.DeveloperError("normal must be normalized."); } RuntimeError.Check.typeOf.number("distance", distance); //>>includeEnd('debug'); /** * The plane's normal. * * @type {Cartesian3} */ this.normal = Matrix2.Cartesian3.clone(normal); /** * The shortest distance from the origin to the plane. The sign of * distance determines which side of the plane the origin * is on. If distance is positive, the origin is in the half-space * in the direction of the normal; if negative, the origin is in the half-space * opposite to the normal; if zero, the plane passes through the origin. * * @type {Number} */ this.distance = distance; } /** * Creates a plane from a normal and a point on the plane. * * @param {Cartesian3} point The point on the plane. * @param {Cartesian3} normal The plane's normal (normalized). * @param {Plane} [result] The object onto which to store the result. * @returns {Plane} A new plane instance or the modified result parameter. * * @example * const point = Cesium.Cartesian3.fromDegrees(-72.0, 40.0); * const normal = ellipsoid.geodeticSurfaceNormal(point); * const tangentPlane = Cesium.Plane.fromPointNormal(point, normal); * * @exception {DeveloperError} Normal must be normalized */ Plane.fromPointNormal = function (point, normal, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("point", point); RuntimeError.Check.typeOf.object("normal", normal); if ( !ComponentDatatype.CesiumMath.equalsEpsilon( Matrix2.Cartesian3.magnitude(normal), 1.0, ComponentDatatype.CesiumMath.EPSILON6 ) ) { throw new RuntimeError.DeveloperError("normal must be normalized."); } //>>includeEnd('debug'); const distance = -Matrix2.Cartesian3.dot(normal, point); if (!when.defined(result)) { return new Plane(normal, distance); } Matrix2.Cartesian3.clone(normal, result.normal); result.distance = distance; return result; }; const scratchNormal = new Matrix2.Cartesian3(); /** * Creates a plane from the general equation * * @param {Cartesian4} coefficients The plane's normal (normalized). * @param {Plane} [result] The object onto which to store the result. * @returns {Plane} A new plane instance or the modified result parameter. * * @exception {DeveloperError} Normal must be normalized */ Plane.fromCartesian4 = function (coefficients, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("coefficients", coefficients); //>>includeEnd('debug'); const normal = Matrix2.Cartesian3.fromCartesian4(coefficients, scratchNormal); const distance = coefficients.w; //>>includeStart('debug', pragmas.debug); if ( !ComponentDatatype.CesiumMath.equalsEpsilon( Matrix2.Cartesian3.magnitude(normal), 1.0, ComponentDatatype.CesiumMath.EPSILON6 ) ) { throw new RuntimeError.DeveloperError("normal must be normalized."); } //>>includeEnd('debug'); if (!when.defined(result)) { return new Plane(normal, distance); } Matrix2.Cartesian3.clone(normal, result.normal); result.distance = distance; return result; }; /** * Computes the signed shortest distance of a point to a plane. * The sign of the distance determines which side of the plane the point * is on. If the distance is positive, the point is in the half-space * in the direction of the normal; if negative, the point is in the half-space * opposite to the normal; if zero, the plane passes through the point. * * @param {Plane} plane The plane. * @param {Cartesian3} point The point. * @returns {Number} The signed shortest distance of the point to the plane. */ Plane.getPointDistance = function (plane, point) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("plane", plane); RuntimeError.Check.typeOf.object("point", point); //>>includeEnd('debug'); return Matrix2.Cartesian3.dot(plane.normal, point) + plane.distance; }; const scratchCartesian = new Matrix2.Cartesian3(); /** * Projects a point onto the plane. * @param {Plane} plane The plane to project the point onto * @param {Cartesian3} point The point to project onto the plane * @param {Cartesian3} [result] The result point. If undefined, a new Cartesian3 will be created. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Plane.projectPointOntoPlane = function (plane, point, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("plane", plane); RuntimeError.Check.typeOf.object("point", point); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Matrix2.Cartesian3(); } // projectedPoint = point - (normal.point + scale) * normal const pointDistance = Plane.getPointDistance(plane, point); const scaledNormal = Matrix2.Cartesian3.multiplyByScalar( plane.normal, pointDistance, scratchCartesian ); return Matrix2.Cartesian3.subtract(point, scaledNormal, result); }; const scratchInverseTranspose = new Matrix2.Matrix4(); const scratchPlaneCartesian4 = new Matrix2.Cartesian4(); const scratchTransformNormal = new Matrix2.Cartesian3(); /** * Transforms the plane by the given transformation matrix. * * @param {Plane} plane The plane. * @param {Matrix4} transform The transformation matrix. * @param {Plane} [result] The object into which to store the result. * @returns {Plane} The plane transformed by the given transformation matrix. */ Plane.transform = function (plane, transform, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("plane", plane); RuntimeError.Check.typeOf.object("transform", transform); //>>includeEnd('debug'); const normal = plane.normal; const distance = plane.distance; const inverseTranspose = Matrix2.Matrix4.inverseTranspose( transform, scratchInverseTranspose ); let planeAsCartesian4 = Matrix2.Cartesian4.fromElements( normal.x, normal.y, normal.z, distance, scratchPlaneCartesian4 ); planeAsCartesian4 = Matrix2.Matrix4.multiplyByVector( inverseTranspose, planeAsCartesian4, planeAsCartesian4 ); // Convert the transformed plane to Hessian Normal Form const transformedNormal = Matrix2.Cartesian3.fromCartesian4( planeAsCartesian4, scratchTransformNormal ); planeAsCartesian4 = Matrix2.Cartesian4.divideByScalar( planeAsCartesian4, Matrix2.Cartesian3.magnitude(transformedNormal), planeAsCartesian4 ); return Plane.fromCartesian4(planeAsCartesian4, result); }; /** * Duplicates a Plane instance. * * @param {Plane} plane The plane to duplicate. * @param {Plane} [result] The object onto which to store the result. * @returns {Plane} The modified result parameter or a new Plane instance if one was not provided. */ Plane.clone = function (plane, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("plane", plane); //>>includeEnd('debug'); if (!when.defined(result)) { return new Plane(plane.normal, plane.distance); } Matrix2.Cartesian3.clone(plane.normal, result.normal); result.distance = plane.distance; return result; }; /** * Compares the provided Planes by normal and distance and returns * true if they are equal, false otherwise. * * @param {Plane} left The first plane. * @param {Plane} right The second plane. * @returns {Boolean} true if left and right are equal, false otherwise. */ Plane.equals = function (left, right) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.typeOf.object("left", left); RuntimeError.Check.typeOf.object("right", right); //>>includeEnd('debug'); return ( left.distance === right.distance && Matrix2.Cartesian3.equals(left.normal, right.normal) ); }; /** * A constant initialized to the XY plane passing through the origin, with normal in positive Z. * * @type {Plane} * @constant */ Plane.ORIGIN_XY_PLANE = Object.freeze(new Plane(Matrix2.Cartesian3.UNIT_Z, 0.0)); /** * A constant initialized to the YZ plane passing through the origin, with normal in positive X. * * @type {Plane} * @constant */ Plane.ORIGIN_YZ_PLANE = Object.freeze(new Plane(Matrix2.Cartesian3.UNIT_X, 0.0)); /** * A constant initialized to the ZX plane passing through the origin, with normal in positive Y. * * @type {Plane} * @constant */ Plane.ORIGIN_ZX_PLANE = Object.freeze(new Plane(Matrix2.Cartesian3.UNIT_Y, 0.0)); exports.Plane = Plane; })); //# sourceMappingURL=Plane-616c9c0a.js.map