/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['./when-4bbc8319', './Matrix2-265d9610', './Transforms-8b90e17c', './ComponentDatatype-aad54330', './RuntimeError-5b082e8f', './GeometryAttribute-4bcb785f', './GeometryAttributes-7827a6c2', './IndexDatatype-6739e544', './VertexFormat-07539138', './WallGeometryLibrary-a5c492d8', './combine-e9466e32', './WebGLConstants-508b9636', './arrayRemoveDuplicates-65de6756', './PolylinePipeline-b9913663', './EllipsoidGeodesic-ed024f16', './EllipsoidRhumbLine-d09d563f', './IntersectionTests-596e31ec', './Plane-616c9c0a'], (function (when, Matrix2, Transforms, ComponentDatatype, RuntimeError, GeometryAttribute, GeometryAttributes, IndexDatatype, VertexFormat, WallGeometryLibrary, combine, WebGLConstants, arrayRemoveDuplicates, PolylinePipeline, EllipsoidGeodesic, EllipsoidRhumbLine, IntersectionTests, Plane) { 'use strict'; const scratchCartesian3Position1 = new Matrix2.Cartesian3(); const scratchCartesian3Position2 = new Matrix2.Cartesian3(); const scratchCartesian3Position4 = new Matrix2.Cartesian3(); const scratchCartesian3Position5 = new Matrix2.Cartesian3(); const scratchBitangent = new Matrix2.Cartesian3(); const scratchTangent = new Matrix2.Cartesian3(); const scratchNormal = new Matrix2.Cartesian3(); /** * A description of a wall, which is similar to a KML line string. A wall is defined by a series of points, * which extrude down to the ground. Optionally, they can extrude downwards to a specified height. * * @alias WallGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.positions An array of Cartesian objects, which are the points of the wall. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer. * @param {Number[]} [options.maximumHeights] An array parallel to positions that give the maximum height of the * wall at positions. If undefined, the height of each position in used. * @param {Number[]} [options.minimumHeights] An array parallel to positions that give the minimum height of the * wall at positions. If undefined, the height at each position is 0.0. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid for coordinate manipulation * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * * @exception {DeveloperError} positions length must be greater than or equal to 2. * @exception {DeveloperError} positions and maximumHeights must have the same length. * @exception {DeveloperError} positions and minimumHeights must have the same length. * * @see WallGeometry#createGeometry * @see WallGeometry#fromConstantHeight * * @demo {@link https://sandcastle.cesium.com/index.html?src=Wall.html|Cesium Sandcastle Wall Demo} * * @example * // create a wall that spans from ground level to 10000 meters * const wall = new Cesium.WallGeometry({ * positions : Cesium.Cartesian3.fromDegreesArrayHeights([ * 19.0, 47.0, 10000.0, * 19.0, 48.0, 10000.0, * 20.0, 48.0, 10000.0, * 20.0, 47.0, 10000.0, * 19.0, 47.0, 10000.0 * ]) * }); * const geometry = Cesium.WallGeometry.createGeometry(wall); */ function WallGeometry(options) { options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT); const wallPositions = options.positions; const maximumHeights = options.maximumHeights; const minimumHeights = options.minimumHeights; //>>includeStart('debug', pragmas.debug); if (!when.defined(wallPositions)) { throw new RuntimeError.DeveloperError("options.positions is required."); } if ( when.defined(maximumHeights) && maximumHeights.length !== wallPositions.length ) { throw new RuntimeError.DeveloperError( "options.positions and options.maximumHeights must have the same length." ); } if ( when.defined(minimumHeights) && minimumHeights.length !== wallPositions.length ) { throw new RuntimeError.DeveloperError( "options.positions and options.minimumHeights must have the same length." ); } //>>includeEnd('debug'); const vertexFormat = when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT); const granularity = when.defaultValue( options.granularity, ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE ); const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84); this._positions = wallPositions; this._minimumHeights = minimumHeights; this._maximumHeights = maximumHeights; this._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat); this._granularity = granularity; this._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid); this._workerName = "createWallGeometry"; let numComponents = 1 + wallPositions.length * Matrix2.Cartesian3.packedLength + 2; if (when.defined(minimumHeights)) { numComponents += minimumHeights.length; } if (when.defined(maximumHeights)) { numComponents += maximumHeights.length; } /** * The number of elements used to pack the object into an array. * @type {Number} */ this.packedLength = numComponents + Matrix2.Ellipsoid.packedLength + VertexFormat.VertexFormat.packedLength + 1; } /** * Stores the provided instance into the provided array. * * @param {WallGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ WallGeometry.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); if (!when.defined(value)) { throw new RuntimeError.DeveloperError("value is required"); } if (!when.defined(array)) { throw new RuntimeError.DeveloperError("array is required"); } //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); let i; const positions = value._positions; let length = positions.length; array[startingIndex++] = length; for (i = 0; i < length; ++i, startingIndex += Matrix2.Cartesian3.packedLength) { Matrix2.Cartesian3.pack(positions[i], array, startingIndex); } const minimumHeights = value._minimumHeights; length = when.defined(minimumHeights) ? minimumHeights.length : 0; array[startingIndex++] = length; if (when.defined(minimumHeights)) { for (i = 0; i < length; ++i) { array[startingIndex++] = minimumHeights[i]; } } const maximumHeights = value._maximumHeights; length = when.defined(maximumHeights) ? maximumHeights.length : 0; array[startingIndex++] = length; if (when.defined(maximumHeights)) { for (i = 0; i < length; ++i) { array[startingIndex++] = maximumHeights[i]; } } Matrix2.Ellipsoid.pack(value._ellipsoid, array, startingIndex); startingIndex += Matrix2.Ellipsoid.packedLength; VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex); startingIndex += VertexFormat.VertexFormat.packedLength; array[startingIndex] = value._granularity; return array; }; const scratchEllipsoid = Matrix2.Ellipsoid.clone(Matrix2.Ellipsoid.UNIT_SPHERE); const scratchVertexFormat = new VertexFormat.VertexFormat(); const scratchOptions = { positions: undefined, minimumHeights: undefined, maximumHeights: undefined, ellipsoid: scratchEllipsoid, vertexFormat: scratchVertexFormat, granularity: undefined, }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {WallGeometry} [result] The object into which to store the result. * @returns {WallGeometry} The modified result parameter or a new WallGeometry instance if one was not provided. */ WallGeometry.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); if (!when.defined(array)) { throw new RuntimeError.DeveloperError("array is required"); } //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); let i; let length = array[startingIndex++]; const positions = new Array(length); for (i = 0; i < length; ++i, startingIndex += Matrix2.Cartesian3.packedLength) { positions[i] = Matrix2.Cartesian3.unpack(array, startingIndex); } length = array[startingIndex++]; let minimumHeights; if (length > 0) { minimumHeights = new Array(length); for (i = 0; i < length; ++i) { minimumHeights[i] = array[startingIndex++]; } } length = array[startingIndex++]; let maximumHeights; if (length > 0) { maximumHeights = new Array(length); for (i = 0; i < length; ++i) { maximumHeights[i] = array[startingIndex++]; } } const ellipsoid = Matrix2.Ellipsoid.unpack(array, startingIndex, scratchEllipsoid); startingIndex += Matrix2.Ellipsoid.packedLength; const vertexFormat = VertexFormat.VertexFormat.unpack( array, startingIndex, scratchVertexFormat ); startingIndex += VertexFormat.VertexFormat.packedLength; const granularity = array[startingIndex]; if (!when.defined(result)) { scratchOptions.positions = positions; scratchOptions.minimumHeights = minimumHeights; scratchOptions.maximumHeights = maximumHeights; scratchOptions.granularity = granularity; return new WallGeometry(scratchOptions); } result._positions = positions; result._minimumHeights = minimumHeights; result._maximumHeights = maximumHeights; result._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid, result._ellipsoid); result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat); result._granularity = granularity; return result; }; /** * A description of a wall, which is similar to a KML line string. A wall is defined by a series of points, * which extrude down to the ground. Optionally, they can extrude downwards to a specified height. * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.positions An array of Cartesian objects, which are the points of the wall. * @param {Number} [options.maximumHeight] A constant that defines the maximum height of the * wall at positions. If undefined, the height of each position in used. * @param {Number} [options.minimumHeight] A constant that defines the minimum height of the * wall at positions. If undefined, the height at each position is 0.0. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid for coordinate manipulation * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * @returns {WallGeometry} * * * @example * // create a wall that spans from 10000 meters to 20000 meters * const wall = Cesium.WallGeometry.fromConstantHeights({ * positions : Cesium.Cartesian3.fromDegreesArray([ * 19.0, 47.0, * 19.0, 48.0, * 20.0, 48.0, * 20.0, 47.0, * 19.0, 47.0, * ]), * minimumHeight : 20000.0, * maximumHeight : 10000.0 * }); * const geometry = Cesium.WallGeometry.createGeometry(wall); * * @see WallGeometry#createGeometry */ WallGeometry.fromConstantHeights = function (options) { options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT); const positions = options.positions; //>>includeStart('debug', pragmas.debug); if (!when.defined(positions)) { throw new RuntimeError.DeveloperError("options.positions is required."); } //>>includeEnd('debug'); let minHeights; let maxHeights; const min = options.minimumHeight; const max = options.maximumHeight; const doMin = when.defined(min); const doMax = when.defined(max); if (doMin || doMax) { const length = positions.length; minHeights = doMin ? new Array(length) : undefined; maxHeights = doMax ? new Array(length) : undefined; for (let i = 0; i < length; ++i) { if (doMin) { minHeights[i] = min; } if (doMax) { maxHeights[i] = max; } } } const newOptions = { positions: positions, maximumHeights: maxHeights, minimumHeights: minHeights, ellipsoid: options.ellipsoid, vertexFormat: options.vertexFormat, }; return new WallGeometry(newOptions); }; /** * Computes the geometric representation of a wall, including its vertices, indices, and a bounding sphere. * * @param {WallGeometry} wallGeometry A description of the wall. * @returns {Geometry|undefined} The computed vertices and indices. */ WallGeometry.createGeometry = function (wallGeometry) { const wallPositions = wallGeometry._positions; const minimumHeights = wallGeometry._minimumHeights; const maximumHeights = wallGeometry._maximumHeights; const vertexFormat = wallGeometry._vertexFormat; const granularity = wallGeometry._granularity; const ellipsoid = wallGeometry._ellipsoid; const pos = WallGeometryLibrary.WallGeometryLibrary.computePositions( ellipsoid, wallPositions, maximumHeights, minimumHeights, granularity, true ); if (!when.defined(pos)) { return; } const bottomPositions = pos.bottomPositions; const topPositions = pos.topPositions; const numCorners = pos.numCorners; let length = topPositions.length; let size = length * 2; const positions = vertexFormat.position ? new Float64Array(size) : undefined; const normals = vertexFormat.normal ? new Float32Array(size) : undefined; const tangents = vertexFormat.tangent ? new Float32Array(size) : undefined; const bitangents = vertexFormat.bitangent ? new Float32Array(size) : undefined; const textureCoordinates = vertexFormat.st ? new Float32Array((size / 3) * 2) : undefined; let positionIndex = 0; let normalIndex = 0; let bitangentIndex = 0; let tangentIndex = 0; let stIndex = 0; // add lower and upper points one after the other, lower // points being even and upper points being odd let normal = scratchNormal; let tangent = scratchTangent; let bitangent = scratchBitangent; let recomputeNormal = true; length /= 3; let i; let s = 0; const ds = 1 / (length - numCorners - 1); for (i = 0; i < length; ++i) { const i3 = i * 3; const topPosition = Matrix2.Cartesian3.fromArray( topPositions, i3, scratchCartesian3Position1 ); const bottomPosition = Matrix2.Cartesian3.fromArray( bottomPositions, i3, scratchCartesian3Position2 ); if (vertexFormat.position) { // insert the lower point positions[positionIndex++] = bottomPosition.x; positions[positionIndex++] = bottomPosition.y; positions[positionIndex++] = bottomPosition.z; // insert the upper point positions[positionIndex++] = topPosition.x; positions[positionIndex++] = topPosition.y; positions[positionIndex++] = topPosition.z; } if (vertexFormat.st) { textureCoordinates[stIndex++] = s; textureCoordinates[stIndex++] = 0.0; textureCoordinates[stIndex++] = s; textureCoordinates[stIndex++] = 1.0; } if (vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) { let nextTop = Matrix2.Cartesian3.clone( Matrix2.Cartesian3.ZERO, scratchCartesian3Position5 ); const groundPosition = Matrix2.Cartesian3.subtract( topPosition, ellipsoid.geodeticSurfaceNormal( topPosition, scratchCartesian3Position2 ), scratchCartesian3Position2 ); if (i + 1 < length) { nextTop = Matrix2.Cartesian3.fromArray( topPositions, i3 + 3, scratchCartesian3Position5 ); } if (recomputeNormal) { const scalednextPosition = Matrix2.Cartesian3.subtract( nextTop, topPosition, scratchCartesian3Position4 ); const scaledGroundPosition = Matrix2.Cartesian3.subtract( groundPosition, topPosition, scratchCartesian3Position1 ); normal = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross(scaledGroundPosition, scalednextPosition, normal), normal ); recomputeNormal = false; } if ( Matrix2.Cartesian3.equalsEpsilon(topPosition, nextTop, ComponentDatatype.CesiumMath.EPSILON10) ) { recomputeNormal = true; } else { s += ds; if (vertexFormat.tangent) { tangent = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.subtract(nextTop, topPosition, tangent), tangent ); } if (vertexFormat.bitangent) { bitangent = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross(normal, tangent, bitangent), bitangent ); } } if (vertexFormat.normal) { normals[normalIndex++] = normal.x; normals[normalIndex++] = normal.y; normals[normalIndex++] = normal.z; normals[normalIndex++] = normal.x; normals[normalIndex++] = normal.y; normals[normalIndex++] = normal.z; } if (vertexFormat.tangent) { tangents[tangentIndex++] = tangent.x; tangents[tangentIndex++] = tangent.y; tangents[tangentIndex++] = tangent.z; tangents[tangentIndex++] = tangent.x; tangents[tangentIndex++] = tangent.y; tangents[tangentIndex++] = tangent.z; } if (vertexFormat.bitangent) { bitangents[bitangentIndex++] = bitangent.x; bitangents[bitangentIndex++] = bitangent.y; bitangents[bitangentIndex++] = bitangent.z; bitangents[bitangentIndex++] = bitangent.x; bitangents[bitangentIndex++] = bitangent.y; bitangents[bitangentIndex++] = bitangent.z; } } } const attributes = new GeometryAttributes.GeometryAttributes(); if (vertexFormat.position) { attributes.position = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: positions, }); } if (vertexFormat.normal) { attributes.normal = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: normals, }); } if (vertexFormat.tangent) { attributes.tangent = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: tangents, }); } if (vertexFormat.bitangent) { attributes.bitangent = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: bitangents, }); } if (vertexFormat.st) { attributes.st = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: textureCoordinates, }); } // prepare the side walls, two triangles for each wall // // A (i+1) B (i+3) E // +--------+-------+ // | / | /| triangles: A C B // | / | / | B C D // | / | / | // | / | / | // | / | / | // | / | / | // +--------+-------+ // C (i) D (i+2) F // const numVertices = size / 3; size -= 6 * (numCorners + 1); const indices = IndexDatatype.IndexDatatype.createTypedArray(numVertices, size); let edgeIndex = 0; for (i = 0; i < numVertices - 2; i += 2) { const LL = i; const LR = i + 2; const pl = Matrix2.Cartesian3.fromArray( positions, LL * 3, scratchCartesian3Position1 ); const pr = Matrix2.Cartesian3.fromArray( positions, LR * 3, scratchCartesian3Position2 ); if (Matrix2.Cartesian3.equalsEpsilon(pl, pr, ComponentDatatype.CesiumMath.EPSILON10)) { continue; } const UL = i + 1; const UR = i + 3; indices[edgeIndex++] = UL; indices[edgeIndex++] = LL; indices[edgeIndex++] = UR; indices[edgeIndex++] = UR; indices[edgeIndex++] = LL; indices[edgeIndex++] = LR; } return new GeometryAttribute.Geometry({ attributes: attributes, indices: indices, primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES, boundingSphere: new Transforms.BoundingSphere.fromVertices(positions), }); }; function createWallGeometry(wallGeometry, offset) { if (when.defined(offset)) { wallGeometry = WallGeometry.unpack(wallGeometry, offset); } wallGeometry._ellipsoid = Matrix2.Ellipsoid.clone(wallGeometry._ellipsoid); return WallGeometry.createGeometry(wallGeometry); } return createWallGeometry; })); //# sourceMappingURL=createWallGeometry.js.map