/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['./AxisAlignedBoundingBox-2a0ca7ef', './Matrix2-265d9610', './when-4bbc8319', './TerrainEncoding-82b55fe0', './IndexDatatype-6739e544', './ComponentDatatype-aad54330', './RuntimeError-5b082e8f', './Transforms-8b90e17c', './WebMercatorProjection-d67afe4b', './createTaskProcessorWorker', './AttributeCompression-442278a0', './WebGLConstants-508b9636', './combine-e9466e32'], (function (AxisAlignedBoundingBox, Matrix2, when, TerrainEncoding, IndexDatatype, ComponentDatatype, RuntimeError, Transforms, WebMercatorProjection, createTaskProcessorWorker, AttributeCompression, WebGLConstants, combine) { 'use strict'; /** * Provides terrain or other geometry for the surface of an ellipsoid. The surface geometry is * organized into a pyramid of tiles according to a {@link TilingScheme}. This type describes an * interface and is not intended to be instantiated directly. * * @alias TerrainProvider * @constructor * * @see EllipsoidTerrainProvider * @see CesiumTerrainProvider * @see VRTheWorldTerrainProvider * @see GoogleEarthEnterpriseTerrainProvider */ function TerrainProvider() { RuntimeError.DeveloperError.throwInstantiationError(); } Object.defineProperties(TerrainProvider.prototype, { /** * Gets an event that is raised when the terrain provider encounters an asynchronous error.. By subscribing * to the event, you will be notified of the error and can potentially recover from it. Event listeners * are passed an instance of {@link TileProviderError}. * @memberof TerrainProvider.prototype * @type {Event} * @readonly */ errorEvent: { get: RuntimeError.DeveloperError.throwInstantiationError, }, /** * Gets the credit to display when this terrain provider is active. Typically this is used to credit * the source of the terrain. This function should * not be called before {@link TerrainProvider#ready} returns true. * @memberof TerrainProvider.prototype * @type {Credit} * @readonly */ credit: { get: RuntimeError.DeveloperError.throwInstantiationError, }, /** * Gets the tiling scheme used by the provider. This function should * not be called before {@link TerrainProvider#ready} returns true. * @memberof TerrainProvider.prototype * @type {TilingScheme} * @readonly */ tilingScheme: { get: RuntimeError.DeveloperError.throwInstantiationError, }, /** * Gets a value indicating whether or not the provider is ready for use. * @memberof TerrainProvider.prototype * @type {Boolean} * @readonly */ ready: { get: RuntimeError.DeveloperError.throwInstantiationError, }, /** * Gets a promise that resolves to true when the provider is ready for use. * @memberof TerrainProvider.prototype * @type {Promise.} * @readonly */ readyPromise: { get: RuntimeError.DeveloperError.throwInstantiationError, }, /** * Gets a value indicating whether or not the provider includes a water mask. The water mask * indicates which areas of the globe are water rather than land, so they can be rendered * as a reflective surface with animated waves. This function should not be * called before {@link TerrainProvider#ready} returns true. * @memberof TerrainProvider.prototype * @type {Boolean} * @readonly */ hasWaterMask: { get: RuntimeError.DeveloperError.throwInstantiationError, }, /** * Gets a value indicating whether or not the requested tiles include vertex normals. * This function should not be called before {@link TerrainProvider#ready} returns true. * @memberof TerrainProvider.prototype * @type {Boolean} * @readonly */ hasVertexNormals: { get: RuntimeError.DeveloperError.throwInstantiationError, }, /** * Gets an object that can be used to determine availability of terrain from this provider, such as * at points and in rectangles. This function should not be called before * {@link TerrainProvider#ready} returns true. This property may be undefined if availability * information is not available. * @memberof TerrainProvider.prototype * @type {TileAvailability} * @readonly */ availability: { get: RuntimeError.DeveloperError.throwInstantiationError, }, }); const regularGridIndicesCache = []; /** * Gets a list of indices for a triangle mesh representing a regular grid. Calling * this function multiple times with the same grid width and height returns the * same list of indices. The total number of vertices must be less than or equal * to 65536. * * @param {Number} width The number of vertices in the regular grid in the horizontal direction. * @param {Number} height The number of vertices in the regular grid in the vertical direction. * @returns {Uint16Array|Uint32Array} The list of indices. Uint16Array gets returned for 64KB or less and Uint32Array for 4GB or less. */ TerrainProvider.getRegularGridIndices = function (width, height) { //>>includeStart('debug', pragmas.debug); if (width * height >= ComponentDatatype.CesiumMath.FOUR_GIGABYTES) { throw new RuntimeError.DeveloperError( "The total number of vertices (width * height) must be less than 4,294,967,296." ); } //>>includeEnd('debug'); let byWidth = regularGridIndicesCache[width]; if (!when.defined(byWidth)) { regularGridIndicesCache[width] = byWidth = []; } let indices = byWidth[height]; if (!when.defined(indices)) { if (width * height < ComponentDatatype.CesiumMath.SIXTY_FOUR_KILOBYTES) { indices = byWidth[height] = new Uint16Array( (width - 1) * (height - 1) * 6 ); } else { indices = byWidth[height] = new Uint32Array( (width - 1) * (height - 1) * 6 ); } addRegularGridIndices(width, height, indices, 0); } return indices; }; const regularGridAndEdgeIndicesCache = []; /** * @private */ TerrainProvider.getRegularGridIndicesAndEdgeIndices = function (width, height) { //>>includeStart('debug', pragmas.debug); if (width * height >= ComponentDatatype.CesiumMath.FOUR_GIGABYTES) { throw new RuntimeError.DeveloperError( "The total number of vertices (width * height) must be less than 4,294,967,296." ); } //>>includeEnd('debug'); let byWidth = regularGridAndEdgeIndicesCache[width]; if (!when.defined(byWidth)) { regularGridAndEdgeIndicesCache[width] = byWidth = []; } let indicesAndEdges = byWidth[height]; if (!when.defined(indicesAndEdges)) { const indices = TerrainProvider.getRegularGridIndices(width, height); const edgeIndices = getEdgeIndices(width, height); const westIndicesSouthToNorth = edgeIndices.westIndicesSouthToNorth; const southIndicesEastToWest = edgeIndices.southIndicesEastToWest; const eastIndicesNorthToSouth = edgeIndices.eastIndicesNorthToSouth; const northIndicesWestToEast = edgeIndices.northIndicesWestToEast; indicesAndEdges = byWidth[height] = { indices: indices, westIndicesSouthToNorth: westIndicesSouthToNorth, southIndicesEastToWest: southIndicesEastToWest, eastIndicesNorthToSouth: eastIndicesNorthToSouth, northIndicesWestToEast: northIndicesWestToEast, }; } return indicesAndEdges; }; const regularGridAndSkirtAndEdgeIndicesCache = []; /** * @private */ TerrainProvider.getRegularGridAndSkirtIndicesAndEdgeIndices = function ( width, height ) { //>>includeStart('debug', pragmas.debug); if (width * height >= ComponentDatatype.CesiumMath.FOUR_GIGABYTES) { throw new RuntimeError.DeveloperError( "The total number of vertices (width * height) must be less than 4,294,967,296." ); } //>>includeEnd('debug'); let byWidth = regularGridAndSkirtAndEdgeIndicesCache[width]; if (!when.defined(byWidth)) { regularGridAndSkirtAndEdgeIndicesCache[width] = byWidth = []; } let indicesAndEdges = byWidth[height]; if (!when.defined(indicesAndEdges)) { const gridVertexCount = width * height; const gridIndexCount = (width - 1) * (height - 1) * 6; const edgeVertexCount = width * 2 + height * 2; const edgeIndexCount = Math.max(0, edgeVertexCount - 4) * 6; const vertexCount = gridVertexCount + edgeVertexCount; const indexCount = gridIndexCount + edgeIndexCount; const edgeIndices = getEdgeIndices(width, height); const westIndicesSouthToNorth = edgeIndices.westIndicesSouthToNorth; const southIndicesEastToWest = edgeIndices.southIndicesEastToWest; const eastIndicesNorthToSouth = edgeIndices.eastIndicesNorthToSouth; const northIndicesWestToEast = edgeIndices.northIndicesWestToEast; const indices = IndexDatatype.IndexDatatype.createTypedArray(vertexCount, indexCount); addRegularGridIndices(width, height, indices, 0); TerrainProvider.addSkirtIndices( westIndicesSouthToNorth, southIndicesEastToWest, eastIndicesNorthToSouth, northIndicesWestToEast, gridVertexCount, indices, gridIndexCount ); indicesAndEdges = byWidth[height] = { indices: indices, westIndicesSouthToNorth: westIndicesSouthToNorth, southIndicesEastToWest: southIndicesEastToWest, eastIndicesNorthToSouth: eastIndicesNorthToSouth, northIndicesWestToEast: northIndicesWestToEast, indexCountWithoutSkirts: gridIndexCount, }; } return indicesAndEdges; }; /** * @private */ TerrainProvider.addSkirtIndices = function ( westIndicesSouthToNorth, southIndicesEastToWest, eastIndicesNorthToSouth, northIndicesWestToEast, vertexCount, indices, offset ) { let vertexIndex = vertexCount; offset = addSkirtIndices( westIndicesSouthToNorth, vertexIndex, indices, offset ); vertexIndex += westIndicesSouthToNorth.length; offset = addSkirtIndices( southIndicesEastToWest, vertexIndex, indices, offset ); vertexIndex += southIndicesEastToWest.length; offset = addSkirtIndices( eastIndicesNorthToSouth, vertexIndex, indices, offset ); vertexIndex += eastIndicesNorthToSouth.length; addSkirtIndices(northIndicesWestToEast, vertexIndex, indices, offset); }; function getEdgeIndices(width, height) { const westIndicesSouthToNorth = new Array(height); const southIndicesEastToWest = new Array(width); const eastIndicesNorthToSouth = new Array(height); const northIndicesWestToEast = new Array(width); let i; for (i = 0; i < width; ++i) { northIndicesWestToEast[i] = i; southIndicesEastToWest[i] = width * height - 1 - i; } for (i = 0; i < height; ++i) { eastIndicesNorthToSouth[i] = (i + 1) * width - 1; westIndicesSouthToNorth[i] = (height - i - 1) * width; } return { westIndicesSouthToNorth: westIndicesSouthToNorth, southIndicesEastToWest: southIndicesEastToWest, eastIndicesNorthToSouth: eastIndicesNorthToSouth, northIndicesWestToEast: northIndicesWestToEast, }; } function addRegularGridIndices(width, height, indices, offset) { let index = 0; for (let j = 0; j < height - 1; ++j) { for (let i = 0; i < width - 1; ++i) { const upperLeft = index; const lowerLeft = upperLeft + width; const lowerRight = lowerLeft + 1; const upperRight = upperLeft + 1; indices[offset++] = upperLeft; indices[offset++] = lowerLeft; indices[offset++] = upperRight; indices[offset++] = upperRight; indices[offset++] = lowerLeft; indices[offset++] = lowerRight; ++index; } ++index; } } function addSkirtIndices(edgeIndices, vertexIndex, indices, offset) { let previousIndex = edgeIndices[0]; const length = edgeIndices.length; for (let i = 1; i < length; ++i) { const index = edgeIndices[i]; indices[offset++] = previousIndex; indices[offset++] = index; indices[offset++] = vertexIndex; indices[offset++] = vertexIndex; indices[offset++] = index; indices[offset++] = vertexIndex + 1; previousIndex = index; ++vertexIndex; } return offset; } /** * Specifies the quality of terrain created from heightmaps. A value of 1.0 will * ensure that adjacent heightmap vertices are separated by no more than * {@link Globe.maximumScreenSpaceError} screen pixels and will probably go very slowly. * A value of 0.5 will cut the estimated level zero geometric error in half, allowing twice the * screen pixels between adjacent heightmap vertices and thus rendering more quickly. * @type {Number} */ TerrainProvider.heightmapTerrainQuality = 0.25; /** * Determines an appropriate geometric error estimate when the geometry comes from a heightmap. * * @param {Ellipsoid} ellipsoid The ellipsoid to which the terrain is attached. * @param {Number} tileImageWidth The width, in pixels, of the heightmap associated with a single tile. * @param {Number} numberOfTilesAtLevelZero The number of tiles in the horizontal direction at tile level zero. * @returns {Number} An estimated geometric error. */ TerrainProvider.getEstimatedLevelZeroGeometricErrorForAHeightmap = function ( ellipsoid, tileImageWidth, numberOfTilesAtLevelZero ) { return ( (ellipsoid.maximumRadius * 2 * Math.PI * TerrainProvider.heightmapTerrainQuality) / (tileImageWidth * numberOfTilesAtLevelZero) ); }; /** * Requests the geometry for a given tile. This function should not be called before * {@link TerrainProvider#ready} returns true. The result must include terrain data and * may optionally include a water mask and an indication of which child tiles are available. * @function * * @param {Number} x The X coordinate of the tile for which to request geometry. * @param {Number} y The Y coordinate of the tile for which to request geometry. * @param {Number} level The level of the tile for which to request geometry. * @param {Request} [request] The request object. Intended for internal use only. * * @returns {Promise.|undefined} A promise for the requested geometry. If this method * returns undefined instead of a promise, it is an indication that too many requests are already * pending and the request will be retried later. */ TerrainProvider.prototype.requestTileGeometry = RuntimeError.DeveloperError.throwInstantiationError; /** * Gets the maximum geometric error allowed in a tile at a given level. This function should not be * called before {@link TerrainProvider#ready} returns true. * @function * * @param {Number} level The tile level for which to get the maximum geometric error. * @returns {Number} The maximum geometric error. */ TerrainProvider.prototype.getLevelMaximumGeometricError = RuntimeError.DeveloperError.throwInstantiationError; /** * Determines whether data for a tile is available to be loaded. * @function * * @param {Number} x The X coordinate of the tile for which to request geometry. * @param {Number} y The Y coordinate of the tile for which to request geometry. * @param {Number} level The level of the tile for which to request geometry. * @returns {Boolean|undefined} Undefined if not supported by the terrain provider, otherwise true or false. */ TerrainProvider.prototype.getTileDataAvailable = RuntimeError.DeveloperError.throwInstantiationError; /** * Makes sure we load availability data for a tile * @function * * @param {Number} x The X coordinate of the tile for which to request geometry. * @param {Number} y The Y coordinate of the tile for which to request geometry. * @param {Number} level The level of the tile for which to request geometry. * @returns {undefined|Promise} Undefined if nothing need to be loaded or a Promise that resolves when all required tiles are loaded */ TerrainProvider.prototype.loadTileDataAvailability = RuntimeError.DeveloperError.throwInstantiationError; const maxShort = 32767; const cartesian3Scratch = new Matrix2.Cartesian3(); const scratchMinimum = new Matrix2.Cartesian3(); const scratchMaximum = new Matrix2.Cartesian3(); const cartographicScratch = new Matrix2.Cartographic(); const toPack = new Matrix2.Cartesian2(); function createVerticesFromQuantizedTerrainMesh( parameters, transferableObjects ) { const quantizedVertices = parameters.quantizedVertices; const quantizedVertexCount = quantizedVertices.length / 3; const octEncodedNormals = parameters.octEncodedNormals; const edgeVertexCount = parameters.westIndices.length + parameters.eastIndices.length + parameters.southIndices.length + parameters.northIndices.length; const includeWebMercatorT = parameters.includeWebMercatorT; const exaggeration = parameters.exaggeration; const exaggerationRelativeHeight = parameters.exaggerationRelativeHeight; const hasExaggeration = exaggeration !== 1.0; const includeGeodeticSurfaceNormals = hasExaggeration; const rectangle = Matrix2.Rectangle.clone(parameters.rectangle); const west = rectangle.west; const south = rectangle.south; const east = rectangle.east; const north = rectangle.north; const ellipsoid = Matrix2.Ellipsoid.clone(parameters.ellipsoid); const minimumHeight = parameters.minimumHeight; const maximumHeight = parameters.maximumHeight; const center = parameters.relativeToCenter; const fromENU = Transforms.Transforms.eastNorthUpToFixedFrame(center, ellipsoid); const toENU = Matrix2.Matrix4.inverseTransformation(fromENU, new Matrix2.Matrix4()); let southMercatorY; let oneOverMercatorHeight; if (includeWebMercatorT) { southMercatorY = WebMercatorProjection.WebMercatorProjection.geodeticLatitudeToMercatorAngle( south ); oneOverMercatorHeight = 1.0 / (WebMercatorProjection.WebMercatorProjection.geodeticLatitudeToMercatorAngle(north) - southMercatorY); } const uBuffer = quantizedVertices.subarray(0, quantizedVertexCount); const vBuffer = quantizedVertices.subarray( quantizedVertexCount, 2 * quantizedVertexCount ); const heightBuffer = quantizedVertices.subarray( quantizedVertexCount * 2, 3 * quantizedVertexCount ); const hasVertexNormals = when.defined(octEncodedNormals); const uvs = new Array(quantizedVertexCount); const heights = new Array(quantizedVertexCount); const positions = new Array(quantizedVertexCount); const webMercatorTs = includeWebMercatorT ? new Array(quantizedVertexCount) : []; const geodeticSurfaceNormals = includeGeodeticSurfaceNormals ? new Array(quantizedVertexCount) : []; const minimum = scratchMinimum; minimum.x = Number.POSITIVE_INFINITY; minimum.y = Number.POSITIVE_INFINITY; minimum.z = Number.POSITIVE_INFINITY; const maximum = scratchMaximum; maximum.x = Number.NEGATIVE_INFINITY; maximum.y = Number.NEGATIVE_INFINITY; maximum.z = Number.NEGATIVE_INFINITY; let minLongitude = Number.POSITIVE_INFINITY; let maxLongitude = Number.NEGATIVE_INFINITY; let minLatitude = Number.POSITIVE_INFINITY; let maxLatitude = Number.NEGATIVE_INFINITY; for (let i = 0; i < quantizedVertexCount; ++i) { const rawU = uBuffer[i]; const rawV = vBuffer[i]; const u = rawU / maxShort; const v = rawV / maxShort; const height = ComponentDatatype.CesiumMath.lerp( minimumHeight, maximumHeight, heightBuffer[i] / maxShort ); cartographicScratch.longitude = ComponentDatatype.CesiumMath.lerp(west, east, u); cartographicScratch.latitude = ComponentDatatype.CesiumMath.lerp(south, north, v); cartographicScratch.height = height; minLongitude = Math.min(cartographicScratch.longitude, minLongitude); maxLongitude = Math.max(cartographicScratch.longitude, maxLongitude); minLatitude = Math.min(cartographicScratch.latitude, minLatitude); maxLatitude = Math.max(cartographicScratch.latitude, maxLatitude); const position = ellipsoid.cartographicToCartesian(cartographicScratch); uvs[i] = new Matrix2.Cartesian2(u, v); heights[i] = height; positions[i] = position; if (includeWebMercatorT) { webMercatorTs[i] = (WebMercatorProjection.WebMercatorProjection.geodeticLatitudeToMercatorAngle( cartographicScratch.latitude ) - southMercatorY) * oneOverMercatorHeight; } if (includeGeodeticSurfaceNormals) { geodeticSurfaceNormals[i] = ellipsoid.geodeticSurfaceNormal(position); } Matrix2.Matrix4.multiplyByPoint(toENU, position, cartesian3Scratch); Matrix2.Cartesian3.minimumByComponent(cartesian3Scratch, minimum, minimum); Matrix2.Cartesian3.maximumByComponent(cartesian3Scratch, maximum, maximum); } const westIndicesSouthToNorth = copyAndSort(parameters.westIndices, function ( a, b ) { return uvs[a].y - uvs[b].y; }); const eastIndicesNorthToSouth = copyAndSort(parameters.eastIndices, function ( a, b ) { return uvs[b].y - uvs[a].y; }); const southIndicesEastToWest = copyAndSort(parameters.southIndices, function ( a, b ) { return uvs[b].x - uvs[a].x; }); const northIndicesWestToEast = copyAndSort(parameters.northIndices, function ( a, b ) { return uvs[a].x - uvs[b].x; }); let occludeePointInScaledSpace; if (minimumHeight < 0.0) { // Horizon culling point needs to be recomputed since the tile is at least partly under the ellipsoid. const occluder = new TerrainEncoding.EllipsoidalOccluder(ellipsoid); occludeePointInScaledSpace = occluder.computeHorizonCullingPointPossiblyUnderEllipsoid( center, positions, minimumHeight ); } let hMin = minimumHeight; hMin = Math.min( hMin, findMinMaxSkirts( parameters.westIndices, parameters.westSkirtHeight, heights, uvs, rectangle, ellipsoid, toENU, minimum, maximum ) ); hMin = Math.min( hMin, findMinMaxSkirts( parameters.southIndices, parameters.southSkirtHeight, heights, uvs, rectangle, ellipsoid, toENU, minimum, maximum ) ); hMin = Math.min( hMin, findMinMaxSkirts( parameters.eastIndices, parameters.eastSkirtHeight, heights, uvs, rectangle, ellipsoid, toENU, minimum, maximum ) ); hMin = Math.min( hMin, findMinMaxSkirts( parameters.northIndices, parameters.northSkirtHeight, heights, uvs, rectangle, ellipsoid, toENU, minimum, maximum ) ); const aaBox = new AxisAlignedBoundingBox.AxisAlignedBoundingBox(minimum, maximum, center); const encoding = new TerrainEncoding.TerrainEncoding( center, aaBox, hMin, maximumHeight, fromENU, hasVertexNormals, includeWebMercatorT, includeGeodeticSurfaceNormals, exaggeration, exaggerationRelativeHeight ); const vertexStride = encoding.stride; const size = quantizedVertexCount * vertexStride + edgeVertexCount * vertexStride; const vertexBuffer = new Float32Array(size); let bufferIndex = 0; for (let j = 0; j < quantizedVertexCount; ++j) { if (hasVertexNormals) { const n = j * 2.0; toPack.x = octEncodedNormals[n]; toPack.y = octEncodedNormals[n + 1]; } bufferIndex = encoding.encode( vertexBuffer, bufferIndex, positions[j], uvs[j], heights[j], toPack, webMercatorTs[j], geodeticSurfaceNormals[j] ); } const edgeTriangleCount = Math.max(0, (edgeVertexCount - 4) * 2); const indexBufferLength = parameters.indices.length + edgeTriangleCount * 3; const indexBuffer = IndexDatatype.IndexDatatype.createTypedArray( quantizedVertexCount + edgeVertexCount, indexBufferLength ); indexBuffer.set(parameters.indices, 0); const percentage = 0.0001; const lonOffset = (maxLongitude - minLongitude) * percentage; const latOffset = (maxLatitude - minLatitude) * percentage; const westLongitudeOffset = -lonOffset; const westLatitudeOffset = 0.0; const eastLongitudeOffset = lonOffset; const eastLatitudeOffset = 0.0; const northLongitudeOffset = 0.0; const northLatitudeOffset = latOffset; const southLongitudeOffset = 0.0; const southLatitudeOffset = -latOffset; // Add skirts. let vertexBufferIndex = quantizedVertexCount * vertexStride; addSkirt( vertexBuffer, vertexBufferIndex, westIndicesSouthToNorth, encoding, heights, uvs, octEncodedNormals, ellipsoid, rectangle, parameters.westSkirtHeight, southMercatorY, oneOverMercatorHeight, westLongitudeOffset, westLatitudeOffset ); vertexBufferIndex += parameters.westIndices.length * vertexStride; addSkirt( vertexBuffer, vertexBufferIndex, southIndicesEastToWest, encoding, heights, uvs, octEncodedNormals, ellipsoid, rectangle, parameters.southSkirtHeight, southMercatorY, oneOverMercatorHeight, southLongitudeOffset, southLatitudeOffset ); vertexBufferIndex += parameters.southIndices.length * vertexStride; addSkirt( vertexBuffer, vertexBufferIndex, eastIndicesNorthToSouth, encoding, heights, uvs, octEncodedNormals, ellipsoid, rectangle, parameters.eastSkirtHeight, southMercatorY, oneOverMercatorHeight, eastLongitudeOffset, eastLatitudeOffset ); vertexBufferIndex += parameters.eastIndices.length * vertexStride; addSkirt( vertexBuffer, vertexBufferIndex, northIndicesWestToEast, encoding, heights, uvs, octEncodedNormals, ellipsoid, rectangle, parameters.northSkirtHeight, southMercatorY, oneOverMercatorHeight, northLongitudeOffset, northLatitudeOffset ); TerrainProvider.addSkirtIndices( westIndicesSouthToNorth, southIndicesEastToWest, eastIndicesNorthToSouth, northIndicesWestToEast, quantizedVertexCount, indexBuffer, parameters.indices.length ); transferableObjects.push(vertexBuffer.buffer, indexBuffer.buffer); return { vertices: vertexBuffer.buffer, indices: indexBuffer.buffer, westIndicesSouthToNorth: westIndicesSouthToNorth, southIndicesEastToWest: southIndicesEastToWest, eastIndicesNorthToSouth: eastIndicesNorthToSouth, northIndicesWestToEast: northIndicesWestToEast, vertexStride: vertexStride, center: center, minimumHeight: minimumHeight, maximumHeight: maximumHeight, occludeePointInScaledSpace: occludeePointInScaledSpace, encoding: encoding, indexCountWithoutSkirts: parameters.indices.length, }; } function findMinMaxSkirts( edgeIndices, edgeHeight, heights, uvs, rectangle, ellipsoid, toENU, minimum, maximum ) { let hMin = Number.POSITIVE_INFINITY; const north = rectangle.north; const south = rectangle.south; let east = rectangle.east; const west = rectangle.west; if (east < west) { east += ComponentDatatype.CesiumMath.TWO_PI; } const length = edgeIndices.length; for (let i = 0; i < length; ++i) { const index = edgeIndices[i]; const h = heights[index]; const uv = uvs[index]; cartographicScratch.longitude = ComponentDatatype.CesiumMath.lerp(west, east, uv.x); cartographicScratch.latitude = ComponentDatatype.CesiumMath.lerp(south, north, uv.y); cartographicScratch.height = h - edgeHeight; const position = ellipsoid.cartographicToCartesian( cartographicScratch, cartesian3Scratch ); Matrix2.Matrix4.multiplyByPoint(toENU, position, position); Matrix2.Cartesian3.minimumByComponent(position, minimum, minimum); Matrix2.Cartesian3.maximumByComponent(position, maximum, maximum); hMin = Math.min(hMin, cartographicScratch.height); } return hMin; } function addSkirt( vertexBuffer, vertexBufferIndex, edgeVertices, encoding, heights, uvs, octEncodedNormals, ellipsoid, rectangle, skirtLength, southMercatorY, oneOverMercatorHeight, longitudeOffset, latitudeOffset ) { const hasVertexNormals = when.defined(octEncodedNormals); const north = rectangle.north; const south = rectangle.south; let east = rectangle.east; const west = rectangle.west; if (east < west) { east += ComponentDatatype.CesiumMath.TWO_PI; } const length = edgeVertices.length; for (let i = 0; i < length; ++i) { const index = edgeVertices[i]; const h = heights[index]; const uv = uvs[index]; cartographicScratch.longitude = ComponentDatatype.CesiumMath.lerp(west, east, uv.x) + longitudeOffset; cartographicScratch.latitude = ComponentDatatype.CesiumMath.lerp(south, north, uv.y) + latitudeOffset; cartographicScratch.height = h - skirtLength; const position = ellipsoid.cartographicToCartesian( cartographicScratch, cartesian3Scratch ); if (hasVertexNormals) { const n = index * 2.0; toPack.x = octEncodedNormals[n]; toPack.y = octEncodedNormals[n + 1]; } let webMercatorT; if (encoding.hasWebMercatorT) { webMercatorT = (WebMercatorProjection.WebMercatorProjection.geodeticLatitudeToMercatorAngle( cartographicScratch.latitude ) - southMercatorY) * oneOverMercatorHeight; } let geodeticSurfaceNormal; if (encoding.hasGeodeticSurfaceNormals) { geodeticSurfaceNormal = ellipsoid.geodeticSurfaceNormal(position); } vertexBufferIndex = encoding.encode( vertexBuffer, vertexBufferIndex, position, uv, cartographicScratch.height, toPack, webMercatorT, geodeticSurfaceNormal ); } } function copyAndSort(typedArray, comparator) { let copy; if (typeof typedArray.slice === "function") { copy = typedArray.slice(); if (typeof copy.sort !== "function") { // Sliced typed array isn't sortable, so we can't use it. copy = undefined; } } if (!when.defined(copy)) { copy = Array.prototype.slice.call(typedArray); } copy.sort(comparator); return copy; } var createVerticesFromQuantizedTerrainMesh$1 = createTaskProcessorWorker( createVerticesFromQuantizedTerrainMesh ); return createVerticesFromQuantizedTerrainMesh$1; })); //# sourceMappingURL=createVerticesFromQuantizedTerrainMesh.js.map