/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details. */ define(['exports', './GeometryOffsetAttribute-7e016332', './Transforms-8b90e17c', './Matrix2-265d9610', './RuntimeError-5b082e8f', './ComponentDatatype-aad54330', './when-4bbc8319', './EllipseGeometryLibrary-4ab591fa', './GeometryAttribute-4bcb785f', './GeometryAttributes-7827a6c2', './GeometryInstance-d57564f8', './GeometryPipeline-e93f6439', './IndexDatatype-6739e544', './VertexFormat-07539138'], (function (exports, GeometryOffsetAttribute, Transforms, Matrix2, RuntimeError, ComponentDatatype, when, EllipseGeometryLibrary, GeometryAttribute, GeometryAttributes, GeometryInstance, GeometryPipeline, IndexDatatype, VertexFormat) { 'use strict'; const scratchCartesian1 = new Matrix2.Cartesian3(); const scratchCartesian2 = new Matrix2.Cartesian3(); const scratchCartesian3 = new Matrix2.Cartesian3(); const scratchCartesian4 = new Matrix2.Cartesian3(); const texCoordScratch = new Matrix2.Cartesian2(); const textureMatrixScratch = new Matrix2.Matrix3(); const tangentMatrixScratch = new Matrix2.Matrix3(); const quaternionScratch = new Transforms.Quaternion(); const scratchNormal = new Matrix2.Cartesian3(); const scratchTangent = new Matrix2.Cartesian3(); const scratchBitangent = new Matrix2.Cartesian3(); const scratchCartographic = new Matrix2.Cartographic(); const projectedCenterScratch = new Matrix2.Cartesian3(); const scratchMinTexCoord = new Matrix2.Cartesian2(); const scratchMaxTexCoord = new Matrix2.Cartesian2(); function computeTopBottomAttributes(positions, options, extrude) { const vertexFormat = options.vertexFormat; const center = options.center; const semiMajorAxis = options.semiMajorAxis; const semiMinorAxis = options.semiMinorAxis; const ellipsoid = options.ellipsoid; const stRotation = options.stRotation; const size = extrude ? (positions.length / 3) * 2 : positions.length / 3; const shadowVolume = options.shadowVolume; const textureCoordinates = vertexFormat.st ? new Float32Array(size * 2) : undefined; const normals = vertexFormat.normal ? new Float32Array(size * 3) : undefined; const tangents = vertexFormat.tangent ? new Float32Array(size * 3) : undefined; const bitangents = vertexFormat.bitangent ? new Float32Array(size * 3) : undefined; const extrudeNormals = shadowVolume ? new Float32Array(size * 3) : undefined; let textureCoordIndex = 0; // Raise positions to a height above the ellipsoid and compute the // texture coordinates, normals, tangents, and bitangents. let normal = scratchNormal; let tangent = scratchTangent; let bitangent = scratchBitangent; const projection = new Transforms.GeographicProjection(ellipsoid); const projectedCenter = projection.project( ellipsoid.cartesianToCartographic(center, scratchCartographic), projectedCenterScratch ); const geodeticNormal = ellipsoid.scaleToGeodeticSurface( center, scratchCartesian1 ); ellipsoid.geodeticSurfaceNormal(geodeticNormal, geodeticNormal); let textureMatrix = textureMatrixScratch; let tangentMatrix = tangentMatrixScratch; if (stRotation !== 0) { let rotation = Transforms.Quaternion.fromAxisAngle( geodeticNormal, stRotation, quaternionScratch ); textureMatrix = Matrix2.Matrix3.fromQuaternion(rotation, textureMatrix); rotation = Transforms.Quaternion.fromAxisAngle( geodeticNormal, -stRotation, quaternionScratch ); tangentMatrix = Matrix2.Matrix3.fromQuaternion(rotation, tangentMatrix); } else { textureMatrix = Matrix2.Matrix3.clone(Matrix2.Matrix3.IDENTITY, textureMatrix); tangentMatrix = Matrix2.Matrix3.clone(Matrix2.Matrix3.IDENTITY, tangentMatrix); } const minTexCoord = Matrix2.Cartesian2.fromElements( Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY, scratchMinTexCoord ); const maxTexCoord = Matrix2.Cartesian2.fromElements( Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY, scratchMaxTexCoord ); let length = positions.length; const bottomOffset = extrude ? length : 0; const stOffset = (bottomOffset / 3) * 2; for (let i = 0; i < length; i += 3) { const i1 = i + 1; const i2 = i + 2; const position = Matrix2.Cartesian3.fromArray(positions, i, scratchCartesian1); if (vertexFormat.st) { const rotatedPoint = Matrix2.Matrix3.multiplyByVector( textureMatrix, position, scratchCartesian2 ); const projectedPoint = projection.project( ellipsoid.cartesianToCartographic(rotatedPoint, scratchCartographic), scratchCartesian3 ); Matrix2.Cartesian3.subtract(projectedPoint, projectedCenter, projectedPoint); texCoordScratch.x = (projectedPoint.x + semiMajorAxis) / (2.0 * semiMajorAxis); texCoordScratch.y = (projectedPoint.y + semiMinorAxis) / (2.0 * semiMinorAxis); minTexCoord.x = Math.min(texCoordScratch.x, minTexCoord.x); minTexCoord.y = Math.min(texCoordScratch.y, minTexCoord.y); maxTexCoord.x = Math.max(texCoordScratch.x, maxTexCoord.x); maxTexCoord.y = Math.max(texCoordScratch.y, maxTexCoord.y); if (extrude) { textureCoordinates[textureCoordIndex + stOffset] = texCoordScratch.x; textureCoordinates[textureCoordIndex + 1 + stOffset] = texCoordScratch.y; } textureCoordinates[textureCoordIndex++] = texCoordScratch.x; textureCoordinates[textureCoordIndex++] = texCoordScratch.y; } if ( vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent || shadowVolume ) { normal = ellipsoid.geodeticSurfaceNormal(position, normal); if (shadowVolume) { extrudeNormals[i + bottomOffset] = -normal.x; extrudeNormals[i1 + bottomOffset] = -normal.y; extrudeNormals[i2 + bottomOffset] = -normal.z; } if ( vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent ) { if (vertexFormat.tangent || vertexFormat.bitangent) { tangent = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross(Matrix2.Cartesian3.UNIT_Z, normal, tangent), tangent ); Matrix2.Matrix3.multiplyByVector(tangentMatrix, tangent, tangent); } if (vertexFormat.normal) { normals[i] = normal.x; normals[i1] = normal.y; normals[i2] = normal.z; if (extrude) { normals[i + bottomOffset] = -normal.x; normals[i1 + bottomOffset] = -normal.y; normals[i2 + bottomOffset] = -normal.z; } } if (vertexFormat.tangent) { tangents[i] = tangent.x; tangents[i1] = tangent.y; tangents[i2] = tangent.z; if (extrude) { tangents[i + bottomOffset] = -tangent.x; tangents[i1 + bottomOffset] = -tangent.y; tangents[i2 + bottomOffset] = -tangent.z; } } if (vertexFormat.bitangent) { bitangent = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross(normal, tangent, bitangent), bitangent ); bitangents[i] = bitangent.x; bitangents[i1] = bitangent.y; bitangents[i2] = bitangent.z; if (extrude) { bitangents[i + bottomOffset] = bitangent.x; bitangents[i1 + bottomOffset] = bitangent.y; bitangents[i2 + bottomOffset] = bitangent.z; } } } } } if (vertexFormat.st) { length = textureCoordinates.length; for (let k = 0; k < length; k += 2) { textureCoordinates[k] = (textureCoordinates[k] - minTexCoord.x) / (maxTexCoord.x - minTexCoord.x); textureCoordinates[k + 1] = (textureCoordinates[k + 1] - minTexCoord.y) / (maxTexCoord.y - minTexCoord.y); } } const attributes = new GeometryAttributes.GeometryAttributes(); if (vertexFormat.position) { const finalPositions = EllipseGeometryLibrary.EllipseGeometryLibrary.raisePositionsToHeight( positions, options, extrude ); attributes.position = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: finalPositions, }); } if (vertexFormat.st) { attributes.st = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: textureCoordinates, }); } if (vertexFormat.normal) { attributes.normal = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: normals, }); } if (vertexFormat.tangent) { attributes.tangent = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: tangents, }); } if (vertexFormat.bitangent) { attributes.bitangent = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: bitangents, }); } if (shadowVolume) { attributes.extrudeDirection = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: extrudeNormals, }); } if (extrude && when.defined(options.offsetAttribute)) { let offsetAttribute = new Uint8Array(size); if (options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP) { offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, 1, 0, size / 2); } else { const offsetValue = options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1; offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, offsetValue); } attributes.applyOffset = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute: 1, values: offsetAttribute, }); } return attributes; } function topIndices(numPts) { // numTriangles in half = 3 + 8 + 12 + ... = -1 + 4 + (4 + 4) + (4 + 4 + 4) + ... = -1 + 4 * (1 + 2 + 3 + ...) // = -1 + 4 * ((n * ( n + 1)) / 2) // total triangles = 2 * numTrangles in half // indices = total triangles * 3; // Substitute numPts for n above const indices = new Array(12 * (numPts * (numPts + 1)) - 6); let indicesIndex = 0; let prevIndex; let numInterior; let positionIndex; let i; let j; // Indices triangles to the 'right' of the north vector prevIndex = 0; positionIndex = 1; for (i = 0; i < 3; i++) { indices[indicesIndex++] = positionIndex++; indices[indicesIndex++] = prevIndex; indices[indicesIndex++] = positionIndex; } for (i = 2; i < numPts + 1; ++i) { positionIndex = i * (i + 1) - 1; prevIndex = (i - 1) * i - 1; indices[indicesIndex++] = positionIndex++; indices[indicesIndex++] = prevIndex; indices[indicesIndex++] = positionIndex; numInterior = 2 * i; for (j = 0; j < numInterior - 1; ++j) { indices[indicesIndex++] = positionIndex; indices[indicesIndex++] = prevIndex++; indices[indicesIndex++] = prevIndex; indices[indicesIndex++] = positionIndex++; indices[indicesIndex++] = prevIndex; indices[indicesIndex++] = positionIndex; } indices[indicesIndex++] = positionIndex++; indices[indicesIndex++] = prevIndex; indices[indicesIndex++] = positionIndex; } // Indices for center column of triangles numInterior = numPts * 2; ++positionIndex; ++prevIndex; for (i = 0; i < numInterior - 1; ++i) { indices[indicesIndex++] = positionIndex; indices[indicesIndex++] = prevIndex++; indices[indicesIndex++] = prevIndex; indices[indicesIndex++] = positionIndex++; indices[indicesIndex++] = prevIndex; indices[indicesIndex++] = positionIndex; } indices[indicesIndex++] = positionIndex; indices[indicesIndex++] = prevIndex++; indices[indicesIndex++] = prevIndex; indices[indicesIndex++] = positionIndex++; indices[indicesIndex++] = prevIndex++; indices[indicesIndex++] = prevIndex; // Reverse the process creating indices to the 'left' of the north vector ++prevIndex; for (i = numPts - 1; i > 1; --i) { indices[indicesIndex++] = prevIndex++; indices[indicesIndex++] = prevIndex; indices[indicesIndex++] = positionIndex; numInterior = 2 * i; for (j = 0; j < numInterior - 1; ++j) { indices[indicesIndex++] = positionIndex; indices[indicesIndex++] = prevIndex++; indices[indicesIndex++] = prevIndex; indices[indicesIndex++] = positionIndex++; indices[indicesIndex++] = prevIndex; indices[indicesIndex++] = positionIndex; } indices[indicesIndex++] = prevIndex++; indices[indicesIndex++] = prevIndex++; indices[indicesIndex++] = positionIndex++; } for (i = 0; i < 3; i++) { indices[indicesIndex++] = prevIndex++; indices[indicesIndex++] = prevIndex; indices[indicesIndex++] = positionIndex; } return indices; } let boundingSphereCenter = new Matrix2.Cartesian3(); function computeEllipse(options) { const center = options.center; boundingSphereCenter = Matrix2.Cartesian3.multiplyByScalar( options.ellipsoid.geodeticSurfaceNormal(center, boundingSphereCenter), options.height, boundingSphereCenter ); boundingSphereCenter = Matrix2.Cartesian3.add( center, boundingSphereCenter, boundingSphereCenter ); const boundingSphere = new Transforms.BoundingSphere( boundingSphereCenter, options.semiMajorAxis ); const cep = EllipseGeometryLibrary.EllipseGeometryLibrary.computeEllipsePositions( options, true, false ); const positions = cep.positions; const numPts = cep.numPts; const attributes = computeTopBottomAttributes(positions, options, false); let indices = topIndices(numPts); indices = IndexDatatype.IndexDatatype.createTypedArray(positions.length / 3, indices); return { boundingSphere: boundingSphere, attributes: attributes, indices: indices, }; } function computeWallAttributes(positions, options) { const vertexFormat = options.vertexFormat; const center = options.center; const semiMajorAxis = options.semiMajorAxis; const semiMinorAxis = options.semiMinorAxis; const ellipsoid = options.ellipsoid; const height = options.height; const extrudedHeight = options.extrudedHeight; const stRotation = options.stRotation; const size = (positions.length / 3) * 2; const finalPositions = new Float64Array(size * 3); const textureCoordinates = vertexFormat.st ? new Float32Array(size * 2) : undefined; const normals = vertexFormat.normal ? new Float32Array(size * 3) : undefined; const tangents = vertexFormat.tangent ? new Float32Array(size * 3) : undefined; const bitangents = vertexFormat.bitangent ? new Float32Array(size * 3) : undefined; const shadowVolume = options.shadowVolume; const extrudeNormals = shadowVolume ? new Float32Array(size * 3) : undefined; let textureCoordIndex = 0; // Raise positions to a height above the ellipsoid and compute the // texture coordinates, normals, tangents, and bitangents. let normal = scratchNormal; let tangent = scratchTangent; let bitangent = scratchBitangent; const projection = new Transforms.GeographicProjection(ellipsoid); const projectedCenter = projection.project( ellipsoid.cartesianToCartographic(center, scratchCartographic), projectedCenterScratch ); const geodeticNormal = ellipsoid.scaleToGeodeticSurface( center, scratchCartesian1 ); ellipsoid.geodeticSurfaceNormal(geodeticNormal, geodeticNormal); const rotation = Transforms.Quaternion.fromAxisAngle( geodeticNormal, stRotation, quaternionScratch ); const textureMatrix = Matrix2.Matrix3.fromQuaternion(rotation, textureMatrixScratch); const minTexCoord = Matrix2.Cartesian2.fromElements( Number.POSITIVE_INFINITY, Number.POSITIVE_INFINITY, scratchMinTexCoord ); const maxTexCoord = Matrix2.Cartesian2.fromElements( Number.NEGATIVE_INFINITY, Number.NEGATIVE_INFINITY, scratchMaxTexCoord ); let length = positions.length; const stOffset = (length / 3) * 2; for (let i = 0; i < length; i += 3) { const i1 = i + 1; const i2 = i + 2; let position = Matrix2.Cartesian3.fromArray(positions, i, scratchCartesian1); let extrudedPosition; if (vertexFormat.st) { const rotatedPoint = Matrix2.Matrix3.multiplyByVector( textureMatrix, position, scratchCartesian2 ); const projectedPoint = projection.project( ellipsoid.cartesianToCartographic(rotatedPoint, scratchCartographic), scratchCartesian3 ); Matrix2.Cartesian3.subtract(projectedPoint, projectedCenter, projectedPoint); texCoordScratch.x = (projectedPoint.x + semiMajorAxis) / (2.0 * semiMajorAxis); texCoordScratch.y = (projectedPoint.y + semiMinorAxis) / (2.0 * semiMinorAxis); minTexCoord.x = Math.min(texCoordScratch.x, minTexCoord.x); minTexCoord.y = Math.min(texCoordScratch.y, minTexCoord.y); maxTexCoord.x = Math.max(texCoordScratch.x, maxTexCoord.x); maxTexCoord.y = Math.max(texCoordScratch.y, maxTexCoord.y); textureCoordinates[textureCoordIndex + stOffset] = texCoordScratch.x; textureCoordinates[textureCoordIndex + 1 + stOffset] = texCoordScratch.y; textureCoordinates[textureCoordIndex++] = texCoordScratch.x; textureCoordinates[textureCoordIndex++] = texCoordScratch.y; } position = ellipsoid.scaleToGeodeticSurface(position, position); extrudedPosition = Matrix2.Cartesian3.clone(position, scratchCartesian2); normal = ellipsoid.geodeticSurfaceNormal(position, normal); if (shadowVolume) { extrudeNormals[i + length] = -normal.x; extrudeNormals[i1 + length] = -normal.y; extrudeNormals[i2 + length] = -normal.z; } let scaledNormal = Matrix2.Cartesian3.multiplyByScalar( normal, height, scratchCartesian4 ); position = Matrix2.Cartesian3.add(position, scaledNormal, position); scaledNormal = Matrix2.Cartesian3.multiplyByScalar( normal, extrudedHeight, scaledNormal ); extrudedPosition = Matrix2.Cartesian3.add( extrudedPosition, scaledNormal, extrudedPosition ); if (vertexFormat.position) { finalPositions[i + length] = extrudedPosition.x; finalPositions[i1 + length] = extrudedPosition.y; finalPositions[i2 + length] = extrudedPosition.z; finalPositions[i] = position.x; finalPositions[i1] = position.y; finalPositions[i2] = position.z; } if (vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent) { bitangent = Matrix2.Cartesian3.clone(normal, bitangent); const next = Matrix2.Cartesian3.fromArray( positions, (i + 3) % length, scratchCartesian4 ); Matrix2.Cartesian3.subtract(next, position, next); const bottom = Matrix2.Cartesian3.subtract( extrudedPosition, position, scratchCartesian3 ); normal = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross(bottom, next, normal), normal ); if (vertexFormat.normal) { normals[i] = normal.x; normals[i1] = normal.y; normals[i2] = normal.z; normals[i + length] = normal.x; normals[i1 + length] = normal.y; normals[i2 + length] = normal.z; } if (vertexFormat.tangent) { tangent = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross(bitangent, normal, tangent), tangent ); tangents[i] = tangent.x; tangents[i1] = tangent.y; tangents[i2] = tangent.z; tangents[i + length] = tangent.x; tangents[i + 1 + length] = tangent.y; tangents[i + 2 + length] = tangent.z; } if (vertexFormat.bitangent) { bitangents[i] = bitangent.x; bitangents[i1] = bitangent.y; bitangents[i2] = bitangent.z; bitangents[i + length] = bitangent.x; bitangents[i1 + length] = bitangent.y; bitangents[i2 + length] = bitangent.z; } } } if (vertexFormat.st) { length = textureCoordinates.length; for (let k = 0; k < length; k += 2) { textureCoordinates[k] = (textureCoordinates[k] - minTexCoord.x) / (maxTexCoord.x - minTexCoord.x); textureCoordinates[k + 1] = (textureCoordinates[k + 1] - minTexCoord.y) / (maxTexCoord.y - minTexCoord.y); } } const attributes = new GeometryAttributes.GeometryAttributes(); if (vertexFormat.position) { attributes.position = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: finalPositions, }); } if (vertexFormat.st) { attributes.st = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: textureCoordinates, }); } if (vertexFormat.normal) { attributes.normal = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: normals, }); } if (vertexFormat.tangent) { attributes.tangent = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: tangents, }); } if (vertexFormat.bitangent) { attributes.bitangent = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: bitangents, }); } if (shadowVolume) { attributes.extrudeDirection = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: extrudeNormals, }); } if (when.defined(options.offsetAttribute)) { let offsetAttribute = new Uint8Array(size); if (options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP) { offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, 1, 0, size / 2); } else { const offsetValue = options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1; offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, offsetValue); } attributes.applyOffset = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute: 1, values: offsetAttribute, }); } return attributes; } function computeWallIndices(positions) { const length = positions.length / 3; const indices = IndexDatatype.IndexDatatype.createTypedArray(length, length * 6); let index = 0; for (let i = 0; i < length; i++) { const UL = i; const LL = i + length; const UR = (UL + 1) % length; const LR = UR + length; indices[index++] = UL; indices[index++] = LL; indices[index++] = UR; indices[index++] = UR; indices[index++] = LL; indices[index++] = LR; } return indices; } const topBoundingSphere = new Transforms.BoundingSphere(); const bottomBoundingSphere = new Transforms.BoundingSphere(); function computeExtrudedEllipse(options) { const center = options.center; const ellipsoid = options.ellipsoid; const semiMajorAxis = options.semiMajorAxis; let scaledNormal = Matrix2.Cartesian3.multiplyByScalar( ellipsoid.geodeticSurfaceNormal(center, scratchCartesian1), options.height, scratchCartesian1 ); topBoundingSphere.center = Matrix2.Cartesian3.add( center, scaledNormal, topBoundingSphere.center ); topBoundingSphere.radius = semiMajorAxis; scaledNormal = Matrix2.Cartesian3.multiplyByScalar( ellipsoid.geodeticSurfaceNormal(center, scaledNormal), options.extrudedHeight, scaledNormal ); bottomBoundingSphere.center = Matrix2.Cartesian3.add( center, scaledNormal, bottomBoundingSphere.center ); bottomBoundingSphere.radius = semiMajorAxis; const cep = EllipseGeometryLibrary.EllipseGeometryLibrary.computeEllipsePositions( options, true, true ); const positions = cep.positions; const numPts = cep.numPts; const outerPositions = cep.outerPositions; const boundingSphere = Transforms.BoundingSphere.union( topBoundingSphere, bottomBoundingSphere ); const topBottomAttributes = computeTopBottomAttributes( positions, options, true ); let indices = topIndices(numPts); const length = indices.length; indices.length = length * 2; const posLength = positions.length / 3; for (let i = 0; i < length; i += 3) { indices[i + length] = indices[i + 2] + posLength; indices[i + 1 + length] = indices[i + 1] + posLength; indices[i + 2 + length] = indices[i] + posLength; } const topBottomIndices = IndexDatatype.IndexDatatype.createTypedArray( (posLength * 2) / 3, indices ); const topBottomGeo = new GeometryAttribute.Geometry({ attributes: topBottomAttributes, indices: topBottomIndices, primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES, }); const wallAttributes = computeWallAttributes(outerPositions, options); indices = computeWallIndices(outerPositions); const wallIndices = IndexDatatype.IndexDatatype.createTypedArray( (outerPositions.length * 2) / 3, indices ); const wallGeo = new GeometryAttribute.Geometry({ attributes: wallAttributes, indices: wallIndices, primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES, }); const geo = GeometryPipeline.GeometryPipeline.combineInstances([ new GeometryInstance.GeometryInstance({ geometry: topBottomGeo, }), new GeometryInstance.GeometryInstance({ geometry: wallGeo, }), ]); return { boundingSphere: boundingSphere, attributes: geo[0].attributes, indices: geo[0].indices, }; } function computeRectangle( center, semiMajorAxis, semiMinorAxis, rotation, granularity, ellipsoid, result ) { const cep = EllipseGeometryLibrary.EllipseGeometryLibrary.computeEllipsePositions( { center: center, semiMajorAxis: semiMajorAxis, semiMinorAxis: semiMinorAxis, rotation: rotation, granularity: granularity, }, false, true ); const positionsFlat = cep.outerPositions; const positionsCount = positionsFlat.length / 3; const positions = new Array(positionsCount); for (let i = 0; i < positionsCount; ++i) { positions[i] = Matrix2.Cartesian3.fromArray(positionsFlat, i * 3); } const rectangle = Matrix2.Rectangle.fromCartesianArray(positions, ellipsoid, result); // Rectangle width goes beyond 180 degrees when the ellipse crosses a pole. // When this happens, make the rectangle into a "circle" around the pole if (rectangle.width > ComponentDatatype.CesiumMath.PI) { rectangle.north = rectangle.north > 0.0 ? ComponentDatatype.CesiumMath.PI_OVER_TWO - ComponentDatatype.CesiumMath.EPSILON7 : rectangle.north; rectangle.south = rectangle.south < 0.0 ? ComponentDatatype.CesiumMath.EPSILON7 - ComponentDatatype.CesiumMath.PI_OVER_TWO : rectangle.south; rectangle.east = ComponentDatatype.CesiumMath.PI; rectangle.west = -ComponentDatatype.CesiumMath.PI; } return rectangle; } /** * A description of an ellipse on an ellipsoid. Ellipse geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}. * * @alias EllipseGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {Cartesian3} options.center The ellipse's center point in the fixed frame. * @param {Number} options.semiMajorAxis The length of the ellipse's semi-major axis in meters. * @param {Number} options.semiMinorAxis The length of the ellipse's semi-minor axis in meters. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid the ellipse will be on. * @param {Number} [options.height=0.0] The distance in meters between the ellipse and the ellipsoid surface. * @param {Number} [options.extrudedHeight] The distance in meters between the ellipse's extruded face and the ellipsoid surface. * @param {Number} [options.rotation=0.0] The angle of rotation counter-clockwise from north. * @param {Number} [options.stRotation=0.0] The rotation of the texture coordinates counter-clockwise from north. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The angular distance between points on the ellipse in radians. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * * @exception {DeveloperError} semiMajorAxis and semiMinorAxis must be greater than zero. * @exception {DeveloperError} semiMajorAxis must be greater than or equal to the semiMinorAxis. * @exception {DeveloperError} granularity must be greater than zero. * * * @example * // Create an ellipse. * const ellipse = new Cesium.EllipseGeometry({ * center : Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883), * semiMajorAxis : 500000.0, * semiMinorAxis : 300000.0, * rotation : Cesium.Math.toRadians(60.0) * }); * const geometry = Cesium.EllipseGeometry.createGeometry(ellipse); * * @see EllipseGeometry.createGeometry */ function EllipseGeometry(options) { options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT); const center = options.center; const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84); const semiMajorAxis = options.semiMajorAxis; const semiMinorAxis = options.semiMinorAxis; const granularity = when.defaultValue( options.granularity, ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE ); const vertexFormat = when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT); //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("options.center", center); RuntimeError.Check.typeOf.number("options.semiMajorAxis", semiMajorAxis); RuntimeError.Check.typeOf.number("options.semiMinorAxis", semiMinorAxis); if (semiMajorAxis < semiMinorAxis) { throw new RuntimeError.DeveloperError( "semiMajorAxis must be greater than or equal to the semiMinorAxis." ); } if (granularity <= 0.0) { throw new RuntimeError.DeveloperError("granularity must be greater than zero."); } //>>includeEnd('debug'); const height = when.defaultValue(options.height, 0.0); const extrudedHeight = when.defaultValue(options.extrudedHeight, height); this._center = Matrix2.Cartesian3.clone(center); this._semiMajorAxis = semiMajorAxis; this._semiMinorAxis = semiMinorAxis; this._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid); this._rotation = when.defaultValue(options.rotation, 0.0); this._stRotation = when.defaultValue(options.stRotation, 0.0); this._height = Math.max(extrudedHeight, height); this._granularity = granularity; this._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat); this._extrudedHeight = Math.min(extrudedHeight, height); this._shadowVolume = when.defaultValue(options.shadowVolume, false); this._workerName = "createEllipseGeometry"; this._offsetAttribute = options.offsetAttribute; this._rectangle = undefined; this._textureCoordinateRotationPoints = undefined; } /** * The number of elements used to pack the object into an array. * @type {Number} */ EllipseGeometry.packedLength = Matrix2.Cartesian3.packedLength + Matrix2.Ellipsoid.packedLength + VertexFormat.VertexFormat.packedLength + 9; /** * Stores the provided instance into the provided array. * * @param {EllipseGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ EllipseGeometry.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("value", value); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); Matrix2.Cartesian3.pack(value._center, array, startingIndex); startingIndex += Matrix2.Cartesian3.packedLength; Matrix2.Ellipsoid.pack(value._ellipsoid, array, startingIndex); startingIndex += Matrix2.Ellipsoid.packedLength; VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex); startingIndex += VertexFormat.VertexFormat.packedLength; array[startingIndex++] = value._semiMajorAxis; array[startingIndex++] = value._semiMinorAxis; array[startingIndex++] = value._rotation; array[startingIndex++] = value._stRotation; array[startingIndex++] = value._height; array[startingIndex++] = value._granularity; array[startingIndex++] = value._extrudedHeight; array[startingIndex++] = value._shadowVolume ? 1.0 : 0.0; array[startingIndex] = when.defaultValue(value._offsetAttribute, -1); return array; }; const scratchCenter = new Matrix2.Cartesian3(); const scratchEllipsoid = new Matrix2.Ellipsoid(); const scratchVertexFormat = new VertexFormat.VertexFormat(); const scratchOptions = { center: scratchCenter, ellipsoid: scratchEllipsoid, vertexFormat: scratchVertexFormat, semiMajorAxis: undefined, semiMinorAxis: undefined, rotation: undefined, stRotation: undefined, height: undefined, granularity: undefined, extrudedHeight: undefined, shadowVolume: undefined, offsetAttribute: undefined, }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {EllipseGeometry} [result] The object into which to store the result. * @returns {EllipseGeometry} The modified result parameter or a new EllipseGeometry instance if one was not provided. */ EllipseGeometry.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); const center = Matrix2.Cartesian3.unpack(array, startingIndex, scratchCenter); startingIndex += Matrix2.Cartesian3.packedLength; const ellipsoid = Matrix2.Ellipsoid.unpack(array, startingIndex, scratchEllipsoid); startingIndex += Matrix2.Ellipsoid.packedLength; const vertexFormat = VertexFormat.VertexFormat.unpack( array, startingIndex, scratchVertexFormat ); startingIndex += VertexFormat.VertexFormat.packedLength; const semiMajorAxis = array[startingIndex++]; const semiMinorAxis = array[startingIndex++]; const rotation = array[startingIndex++]; const stRotation = array[startingIndex++]; const height = array[startingIndex++]; const granularity = array[startingIndex++]; const extrudedHeight = array[startingIndex++]; const shadowVolume = array[startingIndex++] === 1.0; const offsetAttribute = array[startingIndex]; if (!when.defined(result)) { scratchOptions.height = height; scratchOptions.extrudedHeight = extrudedHeight; scratchOptions.granularity = granularity; scratchOptions.stRotation = stRotation; scratchOptions.rotation = rotation; scratchOptions.semiMajorAxis = semiMajorAxis; scratchOptions.semiMinorAxis = semiMinorAxis; scratchOptions.shadowVolume = shadowVolume; scratchOptions.offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return new EllipseGeometry(scratchOptions); } result._center = Matrix2.Cartesian3.clone(center, result._center); result._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid, result._ellipsoid); result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat); result._semiMajorAxis = semiMajorAxis; result._semiMinorAxis = semiMinorAxis; result._rotation = rotation; result._stRotation = stRotation; result._height = height; result._granularity = granularity; result._extrudedHeight = extrudedHeight; result._shadowVolume = shadowVolume; result._offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return result; }; /** * Computes the bounding rectangle based on the provided options * * @param {Object} options Object with the following properties: * @param {Cartesian3} options.center The ellipse's center point in the fixed frame. * @param {Number} options.semiMajorAxis The length of the ellipse's semi-major axis in meters. * @param {Number} options.semiMinorAxis The length of the ellipse's semi-minor axis in meters. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid the ellipse will be on. * @param {Number} [options.rotation=0.0] The angle of rotation counter-clockwise from north. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The angular distance between points on the ellipse in radians. * @param {Rectangle} [result] An object in which to store the result * * @returns {Rectangle} The result rectangle */ EllipseGeometry.computeRectangle = function (options, result) { options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT); const center = options.center; const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84); const semiMajorAxis = options.semiMajorAxis; const semiMinorAxis = options.semiMinorAxis; const granularity = when.defaultValue( options.granularity, ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE ); const rotation = when.defaultValue(options.rotation, 0.0); //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("options.center", center); RuntimeError.Check.typeOf.number("options.semiMajorAxis", semiMajorAxis); RuntimeError.Check.typeOf.number("options.semiMinorAxis", semiMinorAxis); if (semiMajorAxis < semiMinorAxis) { throw new RuntimeError.DeveloperError( "semiMajorAxis must be greater than or equal to the semiMinorAxis." ); } if (granularity <= 0.0) { throw new RuntimeError.DeveloperError("granularity must be greater than zero."); } //>>includeEnd('debug'); return computeRectangle( center, semiMajorAxis, semiMinorAxis, rotation, granularity, ellipsoid, result ); }; /** * Computes the geometric representation of a ellipse on an ellipsoid, including its vertices, indices, and a bounding sphere. * * @param {EllipseGeometry} ellipseGeometry A description of the ellipse. * @returns {Geometry|undefined} The computed vertices and indices. */ EllipseGeometry.createGeometry = function (ellipseGeometry) { if ( ellipseGeometry._semiMajorAxis <= 0.0 || ellipseGeometry._semiMinorAxis <= 0.0 ) { return; } const height = ellipseGeometry._height; const extrudedHeight = ellipseGeometry._extrudedHeight; const extrude = !ComponentDatatype.CesiumMath.equalsEpsilon( height, extrudedHeight, 0, ComponentDatatype.CesiumMath.EPSILON2 ); ellipseGeometry._center = ellipseGeometry._ellipsoid.scaleToGeodeticSurface( ellipseGeometry._center, ellipseGeometry._center ); const options = { center: ellipseGeometry._center, semiMajorAxis: ellipseGeometry._semiMajorAxis, semiMinorAxis: ellipseGeometry._semiMinorAxis, ellipsoid: ellipseGeometry._ellipsoid, rotation: ellipseGeometry._rotation, height: height, granularity: ellipseGeometry._granularity, vertexFormat: ellipseGeometry._vertexFormat, stRotation: ellipseGeometry._stRotation, }; let geometry; if (extrude) { options.extrudedHeight = extrudedHeight; options.shadowVolume = ellipseGeometry._shadowVolume; options.offsetAttribute = ellipseGeometry._offsetAttribute; geometry = computeExtrudedEllipse(options); } else { geometry = computeEllipse(options); if (when.defined(ellipseGeometry._offsetAttribute)) { const length = geometry.attributes.position.values.length; const applyOffset = new Uint8Array(length / 3); const offsetValue = ellipseGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1; GeometryOffsetAttribute.arrayFill(applyOffset, offsetValue); geometry.attributes.applyOffset = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute: 1, values: applyOffset, }); } } return new GeometryAttribute.Geometry({ attributes: geometry.attributes, indices: geometry.indices, primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES, boundingSphere: geometry.boundingSphere, offsetAttribute: ellipseGeometry._offsetAttribute, }); }; /** * @private */ EllipseGeometry.createShadowVolume = function ( ellipseGeometry, minHeightFunc, maxHeightFunc ) { const granularity = ellipseGeometry._granularity; const ellipsoid = ellipseGeometry._ellipsoid; const minHeight = minHeightFunc(granularity, ellipsoid); const maxHeight = maxHeightFunc(granularity, ellipsoid); return new EllipseGeometry({ center: ellipseGeometry._center, semiMajorAxis: ellipseGeometry._semiMajorAxis, semiMinorAxis: ellipseGeometry._semiMinorAxis, ellipsoid: ellipsoid, rotation: ellipseGeometry._rotation, stRotation: ellipseGeometry._stRotation, granularity: granularity, extrudedHeight: minHeight, height: maxHeight, vertexFormat: VertexFormat.VertexFormat.POSITION_ONLY, shadowVolume: true, }); }; function textureCoordinateRotationPoints(ellipseGeometry) { const stRotation = -ellipseGeometry._stRotation; if (stRotation === 0.0) { return [0, 0, 0, 1, 1, 0]; } const cep = EllipseGeometryLibrary.EllipseGeometryLibrary.computeEllipsePositions( { center: ellipseGeometry._center, semiMajorAxis: ellipseGeometry._semiMajorAxis, semiMinorAxis: ellipseGeometry._semiMinorAxis, rotation: ellipseGeometry._rotation, granularity: ellipseGeometry._granularity, }, false, true ); const positionsFlat = cep.outerPositions; const positionsCount = positionsFlat.length / 3; const positions = new Array(positionsCount); for (let i = 0; i < positionsCount; ++i) { positions[i] = Matrix2.Cartesian3.fromArray(positionsFlat, i * 3); } const ellipsoid = ellipseGeometry._ellipsoid; const boundingRectangle = ellipseGeometry.rectangle; return GeometryAttribute.Geometry._textureCoordinateRotationPoints( positions, stRotation, ellipsoid, boundingRectangle ); } Object.defineProperties(EllipseGeometry.prototype, { /** * @private */ rectangle: { get: function () { if (!when.defined(this._rectangle)) { this._rectangle = computeRectangle( this._center, this._semiMajorAxis, this._semiMinorAxis, this._rotation, this._granularity, this._ellipsoid ); } return this._rectangle; }, }, /** * For remapping texture coordinates when rendering EllipseGeometries as GroundPrimitives. * @private */ textureCoordinateRotationPoints: { get: function () { if (!when.defined(this._textureCoordinateRotationPoints)) { this._textureCoordinateRotationPoints = textureCoordinateRotationPoints( this ); } return this._textureCoordinateRotationPoints; }, }, }); exports.EllipseGeometry = EllipseGeometry; })); //# sourceMappingURL=EllipseGeometry-3ffe669c.js.map