qd-changjing/public/static/Build/CesiumUnminified/Workers/createPolylineGeometry.js

596 lines
21 KiB
JavaScript
Raw Normal View History

2022-07-05 16:56:29 +08:00
/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['./when-4bbc8319', './Matrix2-265d9610', './ArcType-fc72c06c', './arrayRemoveDuplicates-65de6756', './Transforms-8b90e17c', './Color-cc989747', './ComponentDatatype-aad54330', './RuntimeError-5b082e8f', './GeometryAttribute-4bcb785f', './GeometryAttributes-7827a6c2', './IndexDatatype-6739e544', './PolylinePipeline-b9913663', './VertexFormat-07539138', './combine-e9466e32', './WebGLConstants-508b9636', './EllipsoidGeodesic-ed024f16', './EllipsoidRhumbLine-d09d563f', './IntersectionTests-596e31ec', './Plane-616c9c0a'], (function (when, Matrix2, ArcType, arrayRemoveDuplicates, Transforms, Color, ComponentDatatype, RuntimeError, GeometryAttribute, GeometryAttributes, IndexDatatype, PolylinePipeline, VertexFormat, combine, WebGLConstants, EllipsoidGeodesic, EllipsoidRhumbLine, IntersectionTests, Plane) { 'use strict';
const scratchInterpolateColorsArray = [];
function interpolateColors(p0, p1, color0, color1, numPoints) {
const colors = scratchInterpolateColorsArray;
colors.length = numPoints;
let i;
const r0 = color0.red;
const g0 = color0.green;
const b0 = color0.blue;
const a0 = color0.alpha;
const r1 = color1.red;
const g1 = color1.green;
const b1 = color1.blue;
const a1 = color1.alpha;
if (Color.Color.equals(color0, color1)) {
for (i = 0; i < numPoints; i++) {
colors[i] = Color.Color.clone(color0);
}
return colors;
}
const redPerVertex = (r1 - r0) / numPoints;
const greenPerVertex = (g1 - g0) / numPoints;
const bluePerVertex = (b1 - b0) / numPoints;
const alphaPerVertex = (a1 - a0) / numPoints;
for (i = 0; i < numPoints; i++) {
colors[i] = new Color.Color(
r0 + i * redPerVertex,
g0 + i * greenPerVertex,
b0 + i * bluePerVertex,
a0 + i * alphaPerVertex
);
}
return colors;
}
/**
* A description of a polyline modeled as a line strip; the first two positions define a line segment,
* and each additional position defines a line segment from the previous position. The polyline is capable of
* displaying with a material.
*
* @alias PolylineGeometry
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {Cartesian3[]} options.positions An array of {@link Cartesian3} defining the positions in the polyline as a line strip.
* @param {Number} [options.width=1.0] The width in pixels.
* @param {Color[]} [options.colors] An Array of {@link Color} defining the per vertex or per segment colors.
* @param {Boolean} [options.colorsPerVertex=false] A boolean that determines whether the colors will be flat across each segment of the line or interpolated across the vertices.
* @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polyline segments must follow.
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude if options.arcType is not ArcType.NONE. Determines the number of positions in the buffer.
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference.
*
* @exception {DeveloperError} At least two positions are required.
* @exception {DeveloperError} width must be greater than or equal to one.
* @exception {DeveloperError} colors has an invalid length.
*
* @see PolylineGeometry#createGeometry
*
* @demo {@link https://sandcastle.cesium.com/index.html?src=Polyline.html|Cesium Sandcastle Polyline Demo}
*
* @example
* // A polyline with two connected line segments
* const polyline = new Cesium.PolylineGeometry({
* positions : Cesium.Cartesian3.fromDegreesArray([
* 0.0, 0.0,
* 5.0, 0.0,
* 5.0, 5.0
* ]),
* width : 10.0
* });
* const geometry = Cesium.PolylineGeometry.createGeometry(polyline);
*/
function PolylineGeometry(options) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
const positions = options.positions;
const colors = options.colors;
const width = when.defaultValue(options.width, 1.0);
const colorsPerVertex = when.defaultValue(options.colorsPerVertex, false);
//>>includeStart('debug', pragmas.debug);
if (!when.defined(positions) || positions.length < 2) {
throw new RuntimeError.DeveloperError("At least two positions are required.");
}
if (typeof width !== "number") {
throw new RuntimeError.DeveloperError("width must be a number");
}
if (
when.defined(colors) &&
((colorsPerVertex && colors.length < positions.length) ||
(!colorsPerVertex && colors.length < positions.length - 1))
) {
throw new RuntimeError.DeveloperError("colors has an invalid length.");
}
//>>includeEnd('debug');
this._positions = positions;
this._colors = colors;
this._width = width;
this._colorsPerVertex = colorsPerVertex;
this._vertexFormat = VertexFormat.VertexFormat.clone(
when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT)
);
this._arcType = when.defaultValue(options.arcType, ArcType.ArcType.GEODESIC);
this._granularity = when.defaultValue(
options.granularity,
ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE
);
this._ellipsoid = Matrix2.Ellipsoid.clone(
when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84)
);
this._workerName = "createPolylineGeometry";
let numComponents = 1 + positions.length * Matrix2.Cartesian3.packedLength;
numComponents += when.defined(colors) ? 1 + colors.length * Color.Color.packedLength : 1;
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
this.packedLength =
numComponents + Matrix2.Ellipsoid.packedLength + VertexFormat.VertexFormat.packedLength + 4;
}
/**
* Stores the provided instance into the provided array.
*
* @param {PolylineGeometry} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
PolylineGeometry.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(value)) {
throw new RuntimeError.DeveloperError("value is required");
}
if (!when.defined(array)) {
throw new RuntimeError.DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
let i;
const positions = value._positions;
let length = positions.length;
array[startingIndex++] = length;
for (i = 0; i < length; ++i, startingIndex += Matrix2.Cartesian3.packedLength) {
Matrix2.Cartesian3.pack(positions[i], array, startingIndex);
}
const colors = value._colors;
length = when.defined(colors) ? colors.length : 0.0;
array[startingIndex++] = length;
for (i = 0; i < length; ++i, startingIndex += Color.Color.packedLength) {
Color.Color.pack(colors[i], array, startingIndex);
}
Matrix2.Ellipsoid.pack(value._ellipsoid, array, startingIndex);
startingIndex += Matrix2.Ellipsoid.packedLength;
VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat.VertexFormat.packedLength;
array[startingIndex++] = value._width;
array[startingIndex++] = value._colorsPerVertex ? 1.0 : 0.0;
array[startingIndex++] = value._arcType;
array[startingIndex] = value._granularity;
return array;
};
const scratchEllipsoid = Matrix2.Ellipsoid.clone(Matrix2.Ellipsoid.UNIT_SPHERE);
const scratchVertexFormat = new VertexFormat.VertexFormat();
const scratchOptions = {
positions: undefined,
colors: undefined,
ellipsoid: scratchEllipsoid,
vertexFormat: scratchVertexFormat,
width: undefined,
colorsPerVertex: undefined,
arcType: undefined,
granularity: undefined,
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {PolylineGeometry} [result] The object into which to store the result.
* @returns {PolylineGeometry} The modified result parameter or a new PolylineGeometry instance if one was not provided.
*/
PolylineGeometry.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!when.defined(array)) {
throw new RuntimeError.DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
let i;
let length = array[startingIndex++];
const positions = new Array(length);
for (i = 0; i < length; ++i, startingIndex += Matrix2.Cartesian3.packedLength) {
positions[i] = Matrix2.Cartesian3.unpack(array, startingIndex);
}
length = array[startingIndex++];
const colors = length > 0 ? new Array(length) : undefined;
for (i = 0; i < length; ++i, startingIndex += Color.Color.packedLength) {
colors[i] = Color.Color.unpack(array, startingIndex);
}
const ellipsoid = Matrix2.Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);
startingIndex += Matrix2.Ellipsoid.packedLength;
const vertexFormat = VertexFormat.VertexFormat.unpack(
array,
startingIndex,
scratchVertexFormat
);
startingIndex += VertexFormat.VertexFormat.packedLength;
const width = array[startingIndex++];
const colorsPerVertex = array[startingIndex++] === 1.0;
const arcType = array[startingIndex++];
const granularity = array[startingIndex];
if (!when.defined(result)) {
scratchOptions.positions = positions;
scratchOptions.colors = colors;
scratchOptions.width = width;
scratchOptions.colorsPerVertex = colorsPerVertex;
scratchOptions.arcType = arcType;
scratchOptions.granularity = granularity;
return new PolylineGeometry(scratchOptions);
}
result._positions = positions;
result._colors = colors;
result._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid, result._ellipsoid);
result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat);
result._width = width;
result._colorsPerVertex = colorsPerVertex;
result._arcType = arcType;
result._granularity = granularity;
return result;
};
const scratchCartesian3 = new Matrix2.Cartesian3();
const scratchPosition = new Matrix2.Cartesian3();
const scratchPrevPosition = new Matrix2.Cartesian3();
const scratchNextPosition = new Matrix2.Cartesian3();
/**
* Computes the geometric representation of a polyline, including its vertices, indices, and a bounding sphere.
*
* @param {PolylineGeometry} polylineGeometry A description of the polyline.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
PolylineGeometry.createGeometry = function (polylineGeometry) {
const width = polylineGeometry._width;
const vertexFormat = polylineGeometry._vertexFormat;
let colors = polylineGeometry._colors;
const colorsPerVertex = polylineGeometry._colorsPerVertex;
const arcType = polylineGeometry._arcType;
const granularity = polylineGeometry._granularity;
const ellipsoid = polylineGeometry._ellipsoid;
let i;
let j;
let k;
const removedIndices = [];
let positions = arrayRemoveDuplicates.arrayRemoveDuplicates(
polylineGeometry._positions,
Matrix2.Cartesian3.equalsEpsilon,
false,
removedIndices
);
if (when.defined(colors) && removedIndices.length > 0) {
let removedArrayIndex = 0;
let nextRemovedIndex = removedIndices[0];
colors = colors.filter(function (color, index) {
let remove = false;
if (colorsPerVertex) {
remove =
index === nextRemovedIndex || (index === 0 && nextRemovedIndex === 1);
} else {
remove = index + 1 === nextRemovedIndex;
}
if (remove) {
removedArrayIndex++;
nextRemovedIndex = removedIndices[removedArrayIndex];
return false;
}
return true;
});
}
let positionsLength = positions.length;
// A width of a pixel or less is not a valid geometry, but in order to support external data
// that may have errors we treat this as an empty geometry.
if (positionsLength < 2 || width <= 0.0) {
return undefined;
}
if (arcType === ArcType.ArcType.GEODESIC || arcType === ArcType.ArcType.RHUMB) {
let subdivisionSize;
let numberOfPointsFunction;
if (arcType === ArcType.ArcType.GEODESIC) {
subdivisionSize = ComponentDatatype.CesiumMath.chordLength(
granularity,
ellipsoid.maximumRadius
);
numberOfPointsFunction = PolylinePipeline.PolylinePipeline.numberOfPoints;
} else {
subdivisionSize = granularity;
numberOfPointsFunction = PolylinePipeline.PolylinePipeline.numberOfPointsRhumbLine;
}
const heights = PolylinePipeline.PolylinePipeline.extractHeights(positions, ellipsoid);
if (when.defined(colors)) {
let colorLength = 1;
for (i = 0; i < positionsLength - 1; ++i) {
colorLength += numberOfPointsFunction(
positions[i],
positions[i + 1],
subdivisionSize
);
}
const newColors = new Array(colorLength);
let newColorIndex = 0;
for (i = 0; i < positionsLength - 1; ++i) {
const p0 = positions[i];
const p1 = positions[i + 1];
const c0 = colors[i];
const numColors = numberOfPointsFunction(p0, p1, subdivisionSize);
if (colorsPerVertex && i < colorLength) {
const c1 = colors[i + 1];
const interpolatedColors = interpolateColors(
p0,
p1,
c0,
c1,
numColors
);
const interpolatedColorsLength = interpolatedColors.length;
for (j = 0; j < interpolatedColorsLength; ++j) {
newColors[newColorIndex++] = interpolatedColors[j];
}
} else {
for (j = 0; j < numColors; ++j) {
newColors[newColorIndex++] = Color.Color.clone(c0);
}
}
}
newColors[newColorIndex] = Color.Color.clone(colors[colors.length - 1]);
colors = newColors;
scratchInterpolateColorsArray.length = 0;
}
if (arcType === ArcType.ArcType.GEODESIC) {
positions = PolylinePipeline.PolylinePipeline.generateCartesianArc({
positions: positions,
minDistance: subdivisionSize,
ellipsoid: ellipsoid,
height: heights,
});
} else {
positions = PolylinePipeline.PolylinePipeline.generateCartesianRhumbArc({
positions: positions,
granularity: subdivisionSize,
ellipsoid: ellipsoid,
height: heights,
});
}
}
positionsLength = positions.length;
const size = positionsLength * 4.0 - 4.0;
const finalPositions = new Float64Array(size * 3);
const prevPositions = new Float64Array(size * 3);
const nextPositions = new Float64Array(size * 3);
const expandAndWidth = new Float32Array(size * 2);
const st = vertexFormat.st ? new Float32Array(size * 2) : undefined;
const finalColors = when.defined(colors) ? new Uint8Array(size * 4) : undefined;
let positionIndex = 0;
let expandAndWidthIndex = 0;
let stIndex = 0;
let colorIndex = 0;
let position;
for (j = 0; j < positionsLength; ++j) {
if (j === 0) {
position = scratchCartesian3;
Matrix2.Cartesian3.subtract(positions[0], positions[1], position);
Matrix2.Cartesian3.add(positions[0], position, position);
} else {
position = positions[j - 1];
}
Matrix2.Cartesian3.clone(position, scratchPrevPosition);
Matrix2.Cartesian3.clone(positions[j], scratchPosition);
if (j === positionsLength - 1) {
position = scratchCartesian3;
Matrix2.Cartesian3.subtract(
positions[positionsLength - 1],
positions[positionsLength - 2],
position
);
Matrix2.Cartesian3.add(positions[positionsLength - 1], position, position);
} else {
position = positions[j + 1];
}
Matrix2.Cartesian3.clone(position, scratchNextPosition);
let color0, color1;
if (when.defined(finalColors)) {
if (j !== 0 && !colorsPerVertex) {
color0 = colors[j - 1];
} else {
color0 = colors[j];
}
if (j !== positionsLength - 1) {
color1 = colors[j];
}
}
const startK = j === 0 ? 2 : 0;
const endK = j === positionsLength - 1 ? 2 : 4;
for (k = startK; k < endK; ++k) {
Matrix2.Cartesian3.pack(scratchPosition, finalPositions, positionIndex);
Matrix2.Cartesian3.pack(scratchPrevPosition, prevPositions, positionIndex);
Matrix2.Cartesian3.pack(scratchNextPosition, nextPositions, positionIndex);
positionIndex += 3;
const direction = k - 2 < 0 ? -1.0 : 1.0;
expandAndWidth[expandAndWidthIndex++] = 2 * (k % 2) - 1; // expand direction
expandAndWidth[expandAndWidthIndex++] = direction * width;
if (vertexFormat.st) {
st[stIndex++] = j / (positionsLength - 1);
st[stIndex++] = Math.max(expandAndWidth[expandAndWidthIndex - 2], 0.0);
}
if (when.defined(finalColors)) {
const color = k < 2 ? color0 : color1;
finalColors[colorIndex++] = Color.Color.floatToByte(color.red);
finalColors[colorIndex++] = Color.Color.floatToByte(color.green);
finalColors[colorIndex++] = Color.Color.floatToByte(color.blue);
finalColors[colorIndex++] = Color.Color.floatToByte(color.alpha);
}
}
}
const attributes = new GeometryAttributes.GeometryAttributes();
attributes.position = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: finalPositions,
});
attributes.prevPosition = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: prevPositions,
});
attributes.nextPosition = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: nextPositions,
});
attributes.expandAndWidth = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: expandAndWidth,
});
if (vertexFormat.st) {
attributes.st = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: st,
});
}
if (when.defined(finalColors)) {
attributes.color = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 4,
values: finalColors,
normalize: true,
});
}
const indices = IndexDatatype.IndexDatatype.createTypedArray(size, positionsLength * 6 - 6);
let index = 0;
let indicesIndex = 0;
const length = positionsLength - 1.0;
for (j = 0; j < length; ++j) {
indices[indicesIndex++] = index;
indices[indicesIndex++] = index + 2;
indices[indicesIndex++] = index + 1;
indices[indicesIndex++] = index + 1;
indices[indicesIndex++] = index + 2;
indices[indicesIndex++] = index + 3;
index += 4;
}
return new GeometryAttribute.Geometry({
attributes: attributes,
indices: indices,
primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES,
boundingSphere: Transforms.BoundingSphere.fromPoints(positions),
geometryType: GeometryAttribute.GeometryType.POLYLINES,
});
};
function createPolylineGeometry(polylineGeometry, offset) {
if (when.defined(offset)) {
polylineGeometry = PolylineGeometry.unpack(polylineGeometry, offset);
}
polylineGeometry._ellipsoid = Matrix2.Ellipsoid.clone(polylineGeometry._ellipsoid);
return PolylineGeometry.createGeometry(polylineGeometry);
}
return createPolylineGeometry;
}));
//# sourceMappingURL=createPolylineGeometry.js.map