qd-changjing/public/static/Build/CesiumUnminified/Workers/Plane-616c9c0a.js

334 lines
11 KiB
JavaScript
Raw Normal View History

2022-07-05 16:56:29 +08:00
/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['exports', './Matrix2-265d9610', './RuntimeError-5b082e8f', './when-4bbc8319', './ComponentDatatype-aad54330'], (function (exports, Matrix2, RuntimeError, when, ComponentDatatype) { 'use strict';
/**
* A plane in Hessian Normal Form defined by
* <pre>
* ax + by + cz + d = 0
* </pre>
* where (a, b, c) is the plane's <code>normal</code>, d is the signed
* <code>distance</code> to the plane, and (x, y, z) is any point on
* the plane.
*
* @alias Plane
* @constructor
*
* @param {Cartesian3} normal The plane's normal (normalized).
* @param {Number} distance The shortest distance from the origin to the plane. The sign of
* <code>distance</code> determines which side of the plane the origin
* is on. If <code>distance</code> is positive, the origin is in the half-space
* in the direction of the normal; if negative, the origin is in the half-space
* opposite to the normal; if zero, the plane passes through the origin.
*
* @example
* // The plane x=0
* const plane = new Cesium.Plane(Cesium.Cartesian3.UNIT_X, 0.0);
*
* @exception {DeveloperError} Normal must be normalized
*/
function Plane(normal, distance) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("normal", normal);
if (
!ComponentDatatype.CesiumMath.equalsEpsilon(
Matrix2.Cartesian3.magnitude(normal),
1.0,
ComponentDatatype.CesiumMath.EPSILON6
)
) {
throw new RuntimeError.DeveloperError("normal must be normalized.");
}
RuntimeError.Check.typeOf.number("distance", distance);
//>>includeEnd('debug');
/**
* The plane's normal.
*
* @type {Cartesian3}
*/
this.normal = Matrix2.Cartesian3.clone(normal);
/**
* The shortest distance from the origin to the plane. The sign of
* <code>distance</code> determines which side of the plane the origin
* is on. If <code>distance</code> is positive, the origin is in the half-space
* in the direction of the normal; if negative, the origin is in the half-space
* opposite to the normal; if zero, the plane passes through the origin.
*
* @type {Number}
*/
this.distance = distance;
}
/**
* Creates a plane from a normal and a point on the plane.
*
* @param {Cartesian3} point The point on the plane.
* @param {Cartesian3} normal The plane's normal (normalized).
* @param {Plane} [result] The object onto which to store the result.
* @returns {Plane} A new plane instance or the modified result parameter.
*
* @example
* const point = Cesium.Cartesian3.fromDegrees(-72.0, 40.0);
* const normal = ellipsoid.geodeticSurfaceNormal(point);
* const tangentPlane = Cesium.Plane.fromPointNormal(point, normal);
*
* @exception {DeveloperError} Normal must be normalized
*/
Plane.fromPointNormal = function (point, normal, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("point", point);
RuntimeError.Check.typeOf.object("normal", normal);
if (
!ComponentDatatype.CesiumMath.equalsEpsilon(
Matrix2.Cartesian3.magnitude(normal),
1.0,
ComponentDatatype.CesiumMath.EPSILON6
)
) {
throw new RuntimeError.DeveloperError("normal must be normalized.");
}
//>>includeEnd('debug');
const distance = -Matrix2.Cartesian3.dot(normal, point);
if (!when.defined(result)) {
return new Plane(normal, distance);
}
Matrix2.Cartesian3.clone(normal, result.normal);
result.distance = distance;
return result;
};
const scratchNormal = new Matrix2.Cartesian3();
/**
* Creates a plane from the general equation
*
* @param {Cartesian4} coefficients The plane's normal (normalized).
* @param {Plane} [result] The object onto which to store the result.
* @returns {Plane} A new plane instance or the modified result parameter.
*
* @exception {DeveloperError} Normal must be normalized
*/
Plane.fromCartesian4 = function (coefficients, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("coefficients", coefficients);
//>>includeEnd('debug');
const normal = Matrix2.Cartesian3.fromCartesian4(coefficients, scratchNormal);
const distance = coefficients.w;
//>>includeStart('debug', pragmas.debug);
if (
!ComponentDatatype.CesiumMath.equalsEpsilon(
Matrix2.Cartesian3.magnitude(normal),
1.0,
ComponentDatatype.CesiumMath.EPSILON6
)
) {
throw new RuntimeError.DeveloperError("normal must be normalized.");
}
//>>includeEnd('debug');
if (!when.defined(result)) {
return new Plane(normal, distance);
}
Matrix2.Cartesian3.clone(normal, result.normal);
result.distance = distance;
return result;
};
/**
* Computes the signed shortest distance of a point to a plane.
* The sign of the distance determines which side of the plane the point
* is on. If the distance is positive, the point is in the half-space
* in the direction of the normal; if negative, the point is in the half-space
* opposite to the normal; if zero, the plane passes through the point.
*
* @param {Plane} plane The plane.
* @param {Cartesian3} point The point.
* @returns {Number} The signed shortest distance of the point to the plane.
*/
Plane.getPointDistance = function (plane, point) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("plane", plane);
RuntimeError.Check.typeOf.object("point", point);
//>>includeEnd('debug');
return Matrix2.Cartesian3.dot(plane.normal, point) + plane.distance;
};
const scratchCartesian = new Matrix2.Cartesian3();
/**
* Projects a point onto the plane.
* @param {Plane} plane The plane to project the point onto
* @param {Cartesian3} point The point to project onto the plane
* @param {Cartesian3} [result] The result point. If undefined, a new Cartesian3 will be created.
* @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
*/
Plane.projectPointOntoPlane = function (plane, point, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("plane", plane);
RuntimeError.Check.typeOf.object("point", point);
//>>includeEnd('debug');
if (!when.defined(result)) {
result = new Matrix2.Cartesian3();
}
// projectedPoint = point - (normal.point + scale) * normal
const pointDistance = Plane.getPointDistance(plane, point);
const scaledNormal = Matrix2.Cartesian3.multiplyByScalar(
plane.normal,
pointDistance,
scratchCartesian
);
return Matrix2.Cartesian3.subtract(point, scaledNormal, result);
};
const scratchInverseTranspose = new Matrix2.Matrix4();
const scratchPlaneCartesian4 = new Matrix2.Cartesian4();
const scratchTransformNormal = new Matrix2.Cartesian3();
/**
* Transforms the plane by the given transformation matrix.
*
* @param {Plane} plane The plane.
* @param {Matrix4} transform The transformation matrix.
* @param {Plane} [result] The object into which to store the result.
* @returns {Plane} The plane transformed by the given transformation matrix.
*/
Plane.transform = function (plane, transform, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("plane", plane);
RuntimeError.Check.typeOf.object("transform", transform);
//>>includeEnd('debug');
const normal = plane.normal;
const distance = plane.distance;
const inverseTranspose = Matrix2.Matrix4.inverseTranspose(
transform,
scratchInverseTranspose
);
let planeAsCartesian4 = Matrix2.Cartesian4.fromElements(
normal.x,
normal.y,
normal.z,
distance,
scratchPlaneCartesian4
);
planeAsCartesian4 = Matrix2.Matrix4.multiplyByVector(
inverseTranspose,
planeAsCartesian4,
planeAsCartesian4
);
// Convert the transformed plane to Hessian Normal Form
const transformedNormal = Matrix2.Cartesian3.fromCartesian4(
planeAsCartesian4,
scratchTransformNormal
);
planeAsCartesian4 = Matrix2.Cartesian4.divideByScalar(
planeAsCartesian4,
Matrix2.Cartesian3.magnitude(transformedNormal),
planeAsCartesian4
);
return Plane.fromCartesian4(planeAsCartesian4, result);
};
/**
* Duplicates a Plane instance.
*
* @param {Plane} plane The plane to duplicate.
* @param {Plane} [result] The object onto which to store the result.
* @returns {Plane} The modified result parameter or a new Plane instance if one was not provided.
*/
Plane.clone = function (plane, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("plane", plane);
//>>includeEnd('debug');
if (!when.defined(result)) {
return new Plane(plane.normal, plane.distance);
}
Matrix2.Cartesian3.clone(plane.normal, result.normal);
result.distance = plane.distance;
return result;
};
/**
* Compares the provided Planes by normal and distance and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {Plane} left The first plane.
* @param {Plane} right The second plane.
* @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
*/
Plane.equals = function (left, right) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("left", left);
RuntimeError.Check.typeOf.object("right", right);
//>>includeEnd('debug');
return (
left.distance === right.distance &&
Matrix2.Cartesian3.equals(left.normal, right.normal)
);
};
/**
* A constant initialized to the XY plane passing through the origin, with normal in positive Z.
*
* @type {Plane}
* @constant
*/
Plane.ORIGIN_XY_PLANE = Object.freeze(new Plane(Matrix2.Cartesian3.UNIT_Z, 0.0));
/**
* A constant initialized to the YZ plane passing through the origin, with normal in positive X.
*
* @type {Plane}
* @constant
*/
Plane.ORIGIN_YZ_PLANE = Object.freeze(new Plane(Matrix2.Cartesian3.UNIT_X, 0.0));
/**
* A constant initialized to the ZX plane passing through the origin, with normal in positive Y.
*
* @type {Plane}
* @constant
*/
Plane.ORIGIN_ZX_PLANE = Object.freeze(new Plane(Matrix2.Cartesian3.UNIT_Y, 0.0));
exports.Plane = Plane;
}));
//# sourceMappingURL=Plane-616c9c0a.js.map