2159 lines
75 KiB
JavaScript
2159 lines
75 KiB
JavaScript
|
/**
|
||
|
* Cesium - https://github.com/CesiumGS/cesium
|
||
|
*
|
||
|
* Copyright 2011-2020 Cesium Contributors
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*
|
||
|
* Columbus View (Pat. Pend.)
|
||
|
*
|
||
|
* Portions licensed separately.
|
||
|
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
|
||
|
*/
|
||
|
|
||
|
define(['./Transforms-8b90e17c', './Matrix2-265d9610', './RuntimeError-5b082e8f', './when-4bbc8319', './ComponentDatatype-aad54330', './ArcType-fc72c06c', './arrayRemoveDuplicates-65de6756', './EllipsoidGeodesic-ed024f16', './EllipsoidRhumbLine-d09d563f', './EncodedCartesian3-da8f96bc', './GeometryAttribute-4bcb785f', './IntersectionTests-596e31ec', './Plane-616c9c0a', './WebMercatorProjection-d67afe4b', './combine-e9466e32', './WebGLConstants-508b9636'], (function (Transforms, Matrix2, RuntimeError, when, ComponentDatatype, ArcType, arrayRemoveDuplicates, EllipsoidGeodesic, EllipsoidRhumbLine, EncodedCartesian3, GeometryAttribute, IntersectionTests, Plane, WebMercatorProjection, combine, WebGLConstants) { 'use strict';
|
||
|
|
||
|
/**
|
||
|
* A tiling scheme for geometry referenced to a simple {@link GeographicProjection} where
|
||
|
* longitude and latitude are directly mapped to X and Y. This projection is commonly
|
||
|
* known as geographic, equirectangular, equidistant cylindrical, or plate carrée.
|
||
|
*
|
||
|
* @alias GeographicTilingScheme
|
||
|
* @constructor
|
||
|
*
|
||
|
* @param {Object} [options] Object with the following properties:
|
||
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid whose surface is being tiled. Defaults to
|
||
|
* the WGS84 ellipsoid.
|
||
|
* @param {Rectangle} [options.rectangle=Rectangle.MAX_VALUE] The rectangle, in radians, covered by the tiling scheme.
|
||
|
* @param {Number} [options.numberOfLevelZeroTilesX=2] The number of tiles in the X direction at level zero of
|
||
|
* the tile tree.
|
||
|
* @param {Number} [options.numberOfLevelZeroTilesY=1] The number of tiles in the Y direction at level zero of
|
||
|
* the tile tree.
|
||
|
*/
|
||
|
function GeographicTilingScheme(options) {
|
||
|
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
|
||
|
|
||
|
this._ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84);
|
||
|
this._rectangle = when.defaultValue(options.rectangle, Matrix2.Rectangle.MAX_VALUE);
|
||
|
this._projection = new Transforms.GeographicProjection(this._ellipsoid);
|
||
|
this._numberOfLevelZeroTilesX = when.defaultValue(
|
||
|
options.numberOfLevelZeroTilesX,
|
||
|
2
|
||
|
);
|
||
|
this._numberOfLevelZeroTilesY = when.defaultValue(
|
||
|
options.numberOfLevelZeroTilesY,
|
||
|
1
|
||
|
);
|
||
|
}
|
||
|
|
||
|
Object.defineProperties(GeographicTilingScheme.prototype, {
|
||
|
/**
|
||
|
* Gets the ellipsoid that is tiled by this tiling scheme.
|
||
|
* @memberof GeographicTilingScheme.prototype
|
||
|
* @type {Ellipsoid}
|
||
|
*/
|
||
|
ellipsoid: {
|
||
|
get: function () {
|
||
|
return this._ellipsoid;
|
||
|
},
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Gets the rectangle, in radians, covered by this tiling scheme.
|
||
|
* @memberof GeographicTilingScheme.prototype
|
||
|
* @type {Rectangle}
|
||
|
*/
|
||
|
rectangle: {
|
||
|
get: function () {
|
||
|
return this._rectangle;
|
||
|
},
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Gets the map projection used by this tiling scheme.
|
||
|
* @memberof GeographicTilingScheme.prototype
|
||
|
* @type {MapProjection}
|
||
|
*/
|
||
|
projection: {
|
||
|
get: function () {
|
||
|
return this._projection;
|
||
|
},
|
||
|
},
|
||
|
});
|
||
|
|
||
|
/**
|
||
|
* Gets the total number of tiles in the X direction at a specified level-of-detail.
|
||
|
*
|
||
|
* @param {Number} level The level-of-detail.
|
||
|
* @returns {Number} The number of tiles in the X direction at the given level.
|
||
|
*/
|
||
|
GeographicTilingScheme.prototype.getNumberOfXTilesAtLevel = function (level) {
|
||
|
return this._numberOfLevelZeroTilesX << level;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Gets the total number of tiles in the Y direction at a specified level-of-detail.
|
||
|
*
|
||
|
* @param {Number} level The level-of-detail.
|
||
|
* @returns {Number} The number of tiles in the Y direction at the given level.
|
||
|
*/
|
||
|
GeographicTilingScheme.prototype.getNumberOfYTilesAtLevel = function (level) {
|
||
|
return this._numberOfLevelZeroTilesY << level;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Transforms a rectangle specified in geodetic radians to the native coordinate system
|
||
|
* of this tiling scheme.
|
||
|
*
|
||
|
* @param {Rectangle} rectangle The rectangle to transform.
|
||
|
* @param {Rectangle} [result] The instance to which to copy the result, or undefined if a new instance
|
||
|
* should be created.
|
||
|
* @returns {Rectangle} The specified 'result', or a new object containing the native rectangle if 'result'
|
||
|
* is undefined.
|
||
|
*/
|
||
|
GeographicTilingScheme.prototype.rectangleToNativeRectangle = function (
|
||
|
rectangle,
|
||
|
result
|
||
|
) {
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
RuntimeError.Check.defined("rectangle", rectangle);
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
const west = ComponentDatatype.CesiumMath.toDegrees(rectangle.west);
|
||
|
const south = ComponentDatatype.CesiumMath.toDegrees(rectangle.south);
|
||
|
const east = ComponentDatatype.CesiumMath.toDegrees(rectangle.east);
|
||
|
const north = ComponentDatatype.CesiumMath.toDegrees(rectangle.north);
|
||
|
|
||
|
if (!when.defined(result)) {
|
||
|
return new Matrix2.Rectangle(west, south, east, north);
|
||
|
}
|
||
|
|
||
|
result.west = west;
|
||
|
result.south = south;
|
||
|
result.east = east;
|
||
|
result.north = north;
|
||
|
return result;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Converts tile x, y coordinates and level to a rectangle expressed in the native coordinates
|
||
|
* of the tiling scheme.
|
||
|
*
|
||
|
* @param {Number} x The integer x coordinate of the tile.
|
||
|
* @param {Number} y The integer y coordinate of the tile.
|
||
|
* @param {Number} level The tile level-of-detail. Zero is the least detailed.
|
||
|
* @param {Object} [result] The instance to which to copy the result, or undefined if a new instance
|
||
|
* should be created.
|
||
|
* @returns {Rectangle} The specified 'result', or a new object containing the rectangle
|
||
|
* if 'result' is undefined.
|
||
|
*/
|
||
|
GeographicTilingScheme.prototype.tileXYToNativeRectangle = function (
|
||
|
x,
|
||
|
y,
|
||
|
level,
|
||
|
result
|
||
|
) {
|
||
|
const rectangleRadians = this.tileXYToRectangle(x, y, level, result);
|
||
|
rectangleRadians.west = ComponentDatatype.CesiumMath.toDegrees(rectangleRadians.west);
|
||
|
rectangleRadians.south = ComponentDatatype.CesiumMath.toDegrees(rectangleRadians.south);
|
||
|
rectangleRadians.east = ComponentDatatype.CesiumMath.toDegrees(rectangleRadians.east);
|
||
|
rectangleRadians.north = ComponentDatatype.CesiumMath.toDegrees(rectangleRadians.north);
|
||
|
return rectangleRadians;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Converts tile x, y coordinates and level to a cartographic rectangle in radians.
|
||
|
*
|
||
|
* @param {Number} x The integer x coordinate of the tile.
|
||
|
* @param {Number} y The integer y coordinate of the tile.
|
||
|
* @param {Number} level The tile level-of-detail. Zero is the least detailed.
|
||
|
* @param {Object} [result] The instance to which to copy the result, or undefined if a new instance
|
||
|
* should be created.
|
||
|
* @returns {Rectangle} The specified 'result', or a new object containing the rectangle
|
||
|
* if 'result' is undefined.
|
||
|
*/
|
||
|
GeographicTilingScheme.prototype.tileXYToRectangle = function (
|
||
|
x,
|
||
|
y,
|
||
|
level,
|
||
|
result
|
||
|
) {
|
||
|
const rectangle = this._rectangle;
|
||
|
|
||
|
const xTiles = this.getNumberOfXTilesAtLevel(level);
|
||
|
const yTiles = this.getNumberOfYTilesAtLevel(level);
|
||
|
|
||
|
const xTileWidth = rectangle.width / xTiles;
|
||
|
const west = x * xTileWidth + rectangle.west;
|
||
|
const east = (x + 1) * xTileWidth + rectangle.west;
|
||
|
|
||
|
const yTileHeight = rectangle.height / yTiles;
|
||
|
const north = rectangle.north - y * yTileHeight;
|
||
|
const south = rectangle.north - (y + 1) * yTileHeight;
|
||
|
|
||
|
if (!when.defined(result)) {
|
||
|
result = new Matrix2.Rectangle(west, south, east, north);
|
||
|
}
|
||
|
|
||
|
result.west = west;
|
||
|
result.south = south;
|
||
|
result.east = east;
|
||
|
result.north = north;
|
||
|
return result;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Calculates the tile x, y coordinates of the tile containing
|
||
|
* a given cartographic position.
|
||
|
*
|
||
|
* @param {Cartographic} position The position.
|
||
|
* @param {Number} level The tile level-of-detail. Zero is the least detailed.
|
||
|
* @param {Cartesian2} [result] The instance to which to copy the result, or undefined if a new instance
|
||
|
* should be created.
|
||
|
* @returns {Cartesian2} The specified 'result', or a new object containing the tile x, y coordinates
|
||
|
* if 'result' is undefined.
|
||
|
*/
|
||
|
GeographicTilingScheme.prototype.positionToTileXY = function (
|
||
|
position,
|
||
|
level,
|
||
|
result
|
||
|
) {
|
||
|
const rectangle = this._rectangle;
|
||
|
if (!Matrix2.Rectangle.contains(rectangle, position)) {
|
||
|
// outside the bounds of the tiling scheme
|
||
|
return undefined;
|
||
|
}
|
||
|
|
||
|
const xTiles = this.getNumberOfXTilesAtLevel(level);
|
||
|
const yTiles = this.getNumberOfYTilesAtLevel(level);
|
||
|
|
||
|
const xTileWidth = rectangle.width / xTiles;
|
||
|
const yTileHeight = rectangle.height / yTiles;
|
||
|
|
||
|
let longitude = position.longitude;
|
||
|
if (rectangle.east < rectangle.west) {
|
||
|
longitude += ComponentDatatype.CesiumMath.TWO_PI;
|
||
|
}
|
||
|
|
||
|
let xTileCoordinate = ((longitude - rectangle.west) / xTileWidth) | 0;
|
||
|
if (xTileCoordinate >= xTiles) {
|
||
|
xTileCoordinate = xTiles - 1;
|
||
|
}
|
||
|
|
||
|
let yTileCoordinate =
|
||
|
((rectangle.north - position.latitude) / yTileHeight) | 0;
|
||
|
if (yTileCoordinate >= yTiles) {
|
||
|
yTileCoordinate = yTiles - 1;
|
||
|
}
|
||
|
|
||
|
if (!when.defined(result)) {
|
||
|
return new Matrix2.Cartesian2(xTileCoordinate, yTileCoordinate);
|
||
|
}
|
||
|
|
||
|
result.x = xTileCoordinate;
|
||
|
result.y = yTileCoordinate;
|
||
|
return result;
|
||
|
};
|
||
|
|
||
|
const scratchDiagonalCartesianNE = new Matrix2.Cartesian3();
|
||
|
const scratchDiagonalCartesianSW = new Matrix2.Cartesian3();
|
||
|
const scratchDiagonalCartographic = new Matrix2.Cartographic();
|
||
|
const scratchCenterCartesian = new Matrix2.Cartesian3();
|
||
|
const scratchSurfaceCartesian = new Matrix2.Cartesian3();
|
||
|
|
||
|
const scratchBoundingSphere = new Transforms.BoundingSphere();
|
||
|
const tilingScheme = new GeographicTilingScheme();
|
||
|
const scratchCorners = [
|
||
|
new Matrix2.Cartographic(),
|
||
|
new Matrix2.Cartographic(),
|
||
|
new Matrix2.Cartographic(),
|
||
|
new Matrix2.Cartographic(),
|
||
|
];
|
||
|
const scratchTileXY = new Matrix2.Cartesian2();
|
||
|
|
||
|
/**
|
||
|
* A collection of functions for approximating terrain height
|
||
|
* @private
|
||
|
*/
|
||
|
const ApproximateTerrainHeights = {};
|
||
|
|
||
|
/**
|
||
|
* Initializes the minimum and maximum terrain heights
|
||
|
* @return {Promise<void>}
|
||
|
*/
|
||
|
ApproximateTerrainHeights.initialize = function () {
|
||
|
let initPromise = ApproximateTerrainHeights._initPromise;
|
||
|
if (when.defined(initPromise)) {
|
||
|
return initPromise;
|
||
|
}
|
||
|
|
||
|
initPromise = Transforms.Resource.fetchJson(
|
||
|
Transforms.buildModuleUrl("Assets/approximateTerrainHeights.json")
|
||
|
).then(function (json) {
|
||
|
ApproximateTerrainHeights._terrainHeights = json;
|
||
|
});
|
||
|
ApproximateTerrainHeights._initPromise = initPromise;
|
||
|
|
||
|
return initPromise;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Computes the minimum and maximum terrain heights for a given rectangle
|
||
|
* @param {Rectangle} rectangle The bounding rectangle
|
||
|
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid
|
||
|
* @return {{minimumTerrainHeight: Number, maximumTerrainHeight: Number}}
|
||
|
*/
|
||
|
ApproximateTerrainHeights.getMinimumMaximumHeights = function (
|
||
|
rectangle,
|
||
|
ellipsoid
|
||
|
) {
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
RuntimeError.Check.defined("rectangle", rectangle);
|
||
|
if (!when.defined(ApproximateTerrainHeights._terrainHeights)) {
|
||
|
throw new RuntimeError.DeveloperError(
|
||
|
"You must call ApproximateTerrainHeights.initialize and wait for the promise to resolve before using this function"
|
||
|
);
|
||
|
}
|
||
|
//>>includeEnd('debug');
|
||
|
ellipsoid = when.defaultValue(ellipsoid, Matrix2.Ellipsoid.WGS84);
|
||
|
|
||
|
const xyLevel = getTileXYLevel(rectangle);
|
||
|
|
||
|
// Get the terrain min/max for that tile
|
||
|
let minTerrainHeight = ApproximateTerrainHeights._defaultMinTerrainHeight;
|
||
|
let maxTerrainHeight = ApproximateTerrainHeights._defaultMaxTerrainHeight;
|
||
|
if (when.defined(xyLevel)) {
|
||
|
const key = `${xyLevel.level}-${xyLevel.x}-${xyLevel.y}`;
|
||
|
const heights = ApproximateTerrainHeights._terrainHeights[key];
|
||
|
if (when.defined(heights)) {
|
||
|
minTerrainHeight = heights[0];
|
||
|
maxTerrainHeight = heights[1];
|
||
|
}
|
||
|
|
||
|
// Compute min by taking the center of the NE->SW diagonal and finding distance to the surface
|
||
|
ellipsoid.cartographicToCartesian(
|
||
|
Matrix2.Rectangle.northeast(rectangle, scratchDiagonalCartographic),
|
||
|
scratchDiagonalCartesianNE
|
||
|
);
|
||
|
ellipsoid.cartographicToCartesian(
|
||
|
Matrix2.Rectangle.southwest(rectangle, scratchDiagonalCartographic),
|
||
|
scratchDiagonalCartesianSW
|
||
|
);
|
||
|
|
||
|
Matrix2.Cartesian3.midpoint(
|
||
|
scratchDiagonalCartesianSW,
|
||
|
scratchDiagonalCartesianNE,
|
||
|
scratchCenterCartesian
|
||
|
);
|
||
|
const surfacePosition = ellipsoid.scaleToGeodeticSurface(
|
||
|
scratchCenterCartesian,
|
||
|
scratchSurfaceCartesian
|
||
|
);
|
||
|
if (when.defined(surfacePosition)) {
|
||
|
const distance = Matrix2.Cartesian3.distance(
|
||
|
scratchCenterCartesian,
|
||
|
surfacePosition
|
||
|
);
|
||
|
minTerrainHeight = Math.min(minTerrainHeight, -distance);
|
||
|
} else {
|
||
|
minTerrainHeight = ApproximateTerrainHeights._defaultMinTerrainHeight;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
minTerrainHeight = Math.max(
|
||
|
ApproximateTerrainHeights._defaultMinTerrainHeight,
|
||
|
minTerrainHeight
|
||
|
);
|
||
|
|
||
|
return {
|
||
|
minimumTerrainHeight: minTerrainHeight,
|
||
|
maximumTerrainHeight: maxTerrainHeight,
|
||
|
};
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Computes the bounding sphere based on the tile heights in the rectangle
|
||
|
* @param {Rectangle} rectangle The bounding rectangle
|
||
|
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid
|
||
|
* @return {BoundingSphere} The result bounding sphere
|
||
|
*/
|
||
|
ApproximateTerrainHeights.getBoundingSphere = function (rectangle, ellipsoid) {
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
RuntimeError.Check.defined("rectangle", rectangle);
|
||
|
if (!when.defined(ApproximateTerrainHeights._terrainHeights)) {
|
||
|
throw new RuntimeError.DeveloperError(
|
||
|
"You must call ApproximateTerrainHeights.initialize and wait for the promise to resolve before using this function"
|
||
|
);
|
||
|
}
|
||
|
//>>includeEnd('debug');
|
||
|
ellipsoid = when.defaultValue(ellipsoid, Matrix2.Ellipsoid.WGS84);
|
||
|
|
||
|
const xyLevel = getTileXYLevel(rectangle);
|
||
|
|
||
|
// Get the terrain max for that tile
|
||
|
let maxTerrainHeight = ApproximateTerrainHeights._defaultMaxTerrainHeight;
|
||
|
if (when.defined(xyLevel)) {
|
||
|
const key = `${xyLevel.level}-${xyLevel.x}-${xyLevel.y}`;
|
||
|
const heights = ApproximateTerrainHeights._terrainHeights[key];
|
||
|
if (when.defined(heights)) {
|
||
|
maxTerrainHeight = heights[1];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const result = Transforms.BoundingSphere.fromRectangle3D(rectangle, ellipsoid, 0.0);
|
||
|
Transforms.BoundingSphere.fromRectangle3D(
|
||
|
rectangle,
|
||
|
ellipsoid,
|
||
|
maxTerrainHeight,
|
||
|
scratchBoundingSphere
|
||
|
);
|
||
|
|
||
|
return Transforms.BoundingSphere.union(result, scratchBoundingSphere, result);
|
||
|
};
|
||
|
|
||
|
function getTileXYLevel(rectangle) {
|
||
|
Matrix2.Cartographic.fromRadians(
|
||
|
rectangle.east,
|
||
|
rectangle.north,
|
||
|
0.0,
|
||
|
scratchCorners[0]
|
||
|
);
|
||
|
Matrix2.Cartographic.fromRadians(
|
||
|
rectangle.west,
|
||
|
rectangle.north,
|
||
|
0.0,
|
||
|
scratchCorners[1]
|
||
|
);
|
||
|
Matrix2.Cartographic.fromRadians(
|
||
|
rectangle.east,
|
||
|
rectangle.south,
|
||
|
0.0,
|
||
|
scratchCorners[2]
|
||
|
);
|
||
|
Matrix2.Cartographic.fromRadians(
|
||
|
rectangle.west,
|
||
|
rectangle.south,
|
||
|
0.0,
|
||
|
scratchCorners[3]
|
||
|
);
|
||
|
|
||
|
// Determine which tile the bounding rectangle is in
|
||
|
let lastLevelX = 0,
|
||
|
lastLevelY = 0;
|
||
|
let currentX = 0,
|
||
|
currentY = 0;
|
||
|
const maxLevel = ApproximateTerrainHeights._terrainHeightsMaxLevel;
|
||
|
let i;
|
||
|
for (i = 0; i <= maxLevel; ++i) {
|
||
|
let failed = false;
|
||
|
for (let j = 0; j < 4; ++j) {
|
||
|
const corner = scratchCorners[j];
|
||
|
tilingScheme.positionToTileXY(corner, i, scratchTileXY);
|
||
|
if (j === 0) {
|
||
|
currentX = scratchTileXY.x;
|
||
|
currentY = scratchTileXY.y;
|
||
|
} else if (currentX !== scratchTileXY.x || currentY !== scratchTileXY.y) {
|
||
|
failed = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (failed) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
lastLevelX = currentX;
|
||
|
lastLevelY = currentY;
|
||
|
}
|
||
|
|
||
|
if (i === 0) {
|
||
|
return undefined;
|
||
|
}
|
||
|
|
||
|
return {
|
||
|
x: lastLevelX,
|
||
|
y: lastLevelY,
|
||
|
level: i > maxLevel ? maxLevel : i - 1,
|
||
|
};
|
||
|
}
|
||
|
|
||
|
ApproximateTerrainHeights._terrainHeightsMaxLevel = 6;
|
||
|
ApproximateTerrainHeights._defaultMaxTerrainHeight = 9000.0;
|
||
|
ApproximateTerrainHeights._defaultMinTerrainHeight = -100000.0;
|
||
|
ApproximateTerrainHeights._terrainHeights = undefined;
|
||
|
ApproximateTerrainHeights._initPromise = undefined;
|
||
|
|
||
|
Object.defineProperties(ApproximateTerrainHeights, {
|
||
|
/**
|
||
|
* Determines if the terrain heights are initialized and ready to use. To initialize the terrain heights,
|
||
|
* call {@link ApproximateTerrainHeights#initialize} and wait for the returned promise to resolve.
|
||
|
* @type {Boolean}
|
||
|
* @readonly
|
||
|
* @memberof ApproximateTerrainHeights
|
||
|
*/
|
||
|
initialized: {
|
||
|
get: function () {
|
||
|
return when.defined(ApproximateTerrainHeights._terrainHeights);
|
||
|
},
|
||
|
},
|
||
|
});
|
||
|
|
||
|
const PROJECTIONS = [Transforms.GeographicProjection, WebMercatorProjection.WebMercatorProjection];
|
||
|
const PROJECTION_COUNT = PROJECTIONS.length;
|
||
|
|
||
|
const MITER_BREAK_SMALL = Math.cos(ComponentDatatype.CesiumMath.toRadians(30.0));
|
||
|
const MITER_BREAK_LARGE = Math.cos(ComponentDatatype.CesiumMath.toRadians(150.0));
|
||
|
|
||
|
// Initial heights for constructing the wall.
|
||
|
// Keeping WALL_INITIAL_MIN_HEIGHT near the ellipsoid surface helps
|
||
|
// prevent precision problems with planes in the shader.
|
||
|
// Putting the start point of a plane at ApproximateTerrainHeights._defaultMinTerrainHeight,
|
||
|
// which is a highly conservative bound, usually puts the plane origin several thousands
|
||
|
// of meters away from the actual terrain, causing floating point problems when checking
|
||
|
// fragments on terrain against the plane.
|
||
|
// Ellipsoid height is generally much closer.
|
||
|
// The initial max height is arbitrary.
|
||
|
// Both heights are corrected using ApproximateTerrainHeights for computing the actual volume geometry.
|
||
|
const WALL_INITIAL_MIN_HEIGHT = 0.0;
|
||
|
const WALL_INITIAL_MAX_HEIGHT = 1000.0;
|
||
|
|
||
|
/**
|
||
|
* A description of a polyline on terrain or 3D Tiles. Only to be used with {@link GroundPolylinePrimitive}.
|
||
|
*
|
||
|
* @alias GroundPolylineGeometry
|
||
|
* @constructor
|
||
|
*
|
||
|
* @param {Object} options Options with the following properties:
|
||
|
* @param {Cartesian3[]} options.positions An array of {@link Cartesian3} defining the polyline's points. Heights above the ellipsoid will be ignored.
|
||
|
* @param {Number} [options.width=1.0] The screen space width in pixels.
|
||
|
* @param {Number} [options.granularity=9999.0] The distance interval in meters used for interpolating options.points. Defaults to 9999.0 meters. Zero indicates no interpolation.
|
||
|
* @param {Boolean} [options.loop=false] Whether during geometry creation a line segment will be added between the last and first line positions to make this Polyline a loop.
|
||
|
* @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polyline segments must follow. Valid options are {@link ArcType.GEODESIC} and {@link ArcType.RHUMB}.
|
||
|
*
|
||
|
* @exception {DeveloperError} At least two positions are required.
|
||
|
*
|
||
|
* @see GroundPolylinePrimitive
|
||
|
*
|
||
|
* @example
|
||
|
* const positions = Cesium.Cartesian3.fromDegreesArray([
|
||
|
* -112.1340164450331, 36.05494287836128,
|
||
|
* -112.08821010582645, 36.097804071380715,
|
||
|
* -112.13296079730024, 36.168769146801104
|
||
|
* ]);
|
||
|
*
|
||
|
* const geometry = new Cesium.GroundPolylineGeometry({
|
||
|
* positions : positions
|
||
|
* });
|
||
|
*/
|
||
|
function GroundPolylineGeometry(options) {
|
||
|
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
|
||
|
const positions = options.positions;
|
||
|
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
if (!when.defined(positions) || positions.length < 2) {
|
||
|
throw new RuntimeError.DeveloperError("At least two positions are required.");
|
||
|
}
|
||
|
if (
|
||
|
when.defined(options.arcType) &&
|
||
|
options.arcType !== ArcType.ArcType.GEODESIC &&
|
||
|
options.arcType !== ArcType.ArcType.RHUMB
|
||
|
) {
|
||
|
throw new RuntimeError.DeveloperError(
|
||
|
"Valid options for arcType are ArcType.GEODESIC and ArcType.RHUMB."
|
||
|
);
|
||
|
}
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
/**
|
||
|
* The screen space width in pixels.
|
||
|
* @type {Number}
|
||
|
*/
|
||
|
this.width = when.defaultValue(options.width, 1.0); // Doesn't get packed, not necessary for computing geometry.
|
||
|
|
||
|
this._positions = positions;
|
||
|
|
||
|
/**
|
||
|
* The distance interval used for interpolating options.points. Zero indicates no interpolation.
|
||
|
* Default of 9999.0 allows centimeter accuracy with 32 bit floating point.
|
||
|
* @type {Boolean}
|
||
|
* @default 9999.0
|
||
|
*/
|
||
|
this.granularity = when.defaultValue(options.granularity, 9999.0);
|
||
|
|
||
|
/**
|
||
|
* Whether during geometry creation a line segment will be added between the last and first line positions to make this Polyline a loop.
|
||
|
* If the geometry has two positions this parameter will be ignored.
|
||
|
* @type {Boolean}
|
||
|
* @default false
|
||
|
*/
|
||
|
this.loop = when.defaultValue(options.loop, false);
|
||
|
|
||
|
/**
|
||
|
* The type of path the polyline must follow. Valid options are {@link ArcType.GEODESIC} and {@link ArcType.RHUMB}.
|
||
|
* @type {ArcType}
|
||
|
* @default ArcType.GEODESIC
|
||
|
*/
|
||
|
this.arcType = when.defaultValue(options.arcType, ArcType.ArcType.GEODESIC);
|
||
|
|
||
|
this._ellipsoid = Matrix2.Ellipsoid.WGS84;
|
||
|
|
||
|
// MapProjections can't be packed, so store the index to a known MapProjection.
|
||
|
this._projectionIndex = 0;
|
||
|
this._workerName = "createGroundPolylineGeometry";
|
||
|
|
||
|
// Used by GroundPolylinePrimitive to signal worker that scenemode is 3D only.
|
||
|
this._scene3DOnly = false;
|
||
|
}
|
||
|
|
||
|
Object.defineProperties(GroundPolylineGeometry.prototype, {
|
||
|
/**
|
||
|
* The number of elements used to pack the object into an array.
|
||
|
* @memberof GroundPolylineGeometry.prototype
|
||
|
* @type {Number}
|
||
|
* @readonly
|
||
|
* @private
|
||
|
*/
|
||
|
packedLength: {
|
||
|
get: function () {
|
||
|
return (
|
||
|
1.0 +
|
||
|
this._positions.length * 3 +
|
||
|
1.0 +
|
||
|
1.0 +
|
||
|
1.0 +
|
||
|
Matrix2.Ellipsoid.packedLength +
|
||
|
1.0 +
|
||
|
1.0
|
||
|
);
|
||
|
},
|
||
|
},
|
||
|
});
|
||
|
|
||
|
/**
|
||
|
* Set the GroundPolylineGeometry's projection and ellipsoid.
|
||
|
* Used by GroundPolylinePrimitive to signal scene information to the geometry for generating 2D attributes.
|
||
|
*
|
||
|
* @param {GroundPolylineGeometry} groundPolylineGeometry GroundPolylinGeometry describing a polyline on terrain or 3D Tiles.
|
||
|
* @param {Projection} mapProjection A MapProjection used for projecting cartographic coordinates to 2D.
|
||
|
* @private
|
||
|
*/
|
||
|
GroundPolylineGeometry.setProjectionAndEllipsoid = function (
|
||
|
groundPolylineGeometry,
|
||
|
mapProjection
|
||
|
) {
|
||
|
let projectionIndex = 0;
|
||
|
for (let i = 0; i < PROJECTION_COUNT; i++) {
|
||
|
if (mapProjection instanceof PROJECTIONS[i]) {
|
||
|
projectionIndex = i;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
groundPolylineGeometry._projectionIndex = projectionIndex;
|
||
|
groundPolylineGeometry._ellipsoid = mapProjection.ellipsoid;
|
||
|
};
|
||
|
|
||
|
const cart3Scratch1 = new Matrix2.Cartesian3();
|
||
|
const cart3Scratch2 = new Matrix2.Cartesian3();
|
||
|
const cart3Scratch3 = new Matrix2.Cartesian3();
|
||
|
function computeRightNormal(start, end, maxHeight, ellipsoid, result) {
|
||
|
const startBottom = getPosition(ellipsoid, start, 0.0, cart3Scratch1);
|
||
|
const startTop = getPosition(ellipsoid, start, maxHeight, cart3Scratch2);
|
||
|
const endBottom = getPosition(ellipsoid, end, 0.0, cart3Scratch3);
|
||
|
|
||
|
const up = direction(startTop, startBottom, cart3Scratch2);
|
||
|
const forward = direction(endBottom, startBottom, cart3Scratch3);
|
||
|
|
||
|
Matrix2.Cartesian3.cross(forward, up, result);
|
||
|
return Matrix2.Cartesian3.normalize(result, result);
|
||
|
}
|
||
|
|
||
|
const interpolatedCartographicScratch = new Matrix2.Cartographic();
|
||
|
const interpolatedBottomScratch = new Matrix2.Cartesian3();
|
||
|
const interpolatedTopScratch = new Matrix2.Cartesian3();
|
||
|
const interpolatedNormalScratch = new Matrix2.Cartesian3();
|
||
|
function interpolateSegment(
|
||
|
start,
|
||
|
end,
|
||
|
minHeight,
|
||
|
maxHeight,
|
||
|
granularity,
|
||
|
arcType,
|
||
|
ellipsoid,
|
||
|
normalsArray,
|
||
|
bottomPositionsArray,
|
||
|
topPositionsArray,
|
||
|
cartographicsArray
|
||
|
) {
|
||
|
if (granularity === 0.0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
let ellipsoidLine;
|
||
|
if (arcType === ArcType.ArcType.GEODESIC) {
|
||
|
ellipsoidLine = new EllipsoidGeodesic.EllipsoidGeodesic(start, end, ellipsoid);
|
||
|
} else if (arcType === ArcType.ArcType.RHUMB) {
|
||
|
ellipsoidLine = new EllipsoidRhumbLine.EllipsoidRhumbLine(start, end, ellipsoid);
|
||
|
}
|
||
|
|
||
|
const surfaceDistance = ellipsoidLine.surfaceDistance;
|
||
|
if (surfaceDistance < granularity) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Compute rightwards normal applicable at all interpolated points
|
||
|
const interpolatedNormal = computeRightNormal(
|
||
|
start,
|
||
|
end,
|
||
|
maxHeight,
|
||
|
ellipsoid,
|
||
|
interpolatedNormalScratch
|
||
|
);
|
||
|
|
||
|
const segments = Math.ceil(surfaceDistance / granularity);
|
||
|
const interpointDistance = surfaceDistance / segments;
|
||
|
let distanceFromStart = interpointDistance;
|
||
|
const pointsToAdd = segments - 1;
|
||
|
let packIndex = normalsArray.length;
|
||
|
for (let i = 0; i < pointsToAdd; i++) {
|
||
|
const interpolatedCartographic = ellipsoidLine.interpolateUsingSurfaceDistance(
|
||
|
distanceFromStart,
|
||
|
interpolatedCartographicScratch
|
||
|
);
|
||
|
const interpolatedBottom = getPosition(
|
||
|
ellipsoid,
|
||
|
interpolatedCartographic,
|
||
|
minHeight,
|
||
|
interpolatedBottomScratch
|
||
|
);
|
||
|
const interpolatedTop = getPosition(
|
||
|
ellipsoid,
|
||
|
interpolatedCartographic,
|
||
|
maxHeight,
|
||
|
interpolatedTopScratch
|
||
|
);
|
||
|
|
||
|
Matrix2.Cartesian3.pack(interpolatedNormal, normalsArray, packIndex);
|
||
|
Matrix2.Cartesian3.pack(interpolatedBottom, bottomPositionsArray, packIndex);
|
||
|
Matrix2.Cartesian3.pack(interpolatedTop, topPositionsArray, packIndex);
|
||
|
cartographicsArray.push(interpolatedCartographic.latitude);
|
||
|
cartographicsArray.push(interpolatedCartographic.longitude);
|
||
|
|
||
|
packIndex += 3;
|
||
|
distanceFromStart += interpointDistance;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const heightlessCartographicScratch = new Matrix2.Cartographic();
|
||
|
function getPosition(ellipsoid, cartographic, height, result) {
|
||
|
Matrix2.Cartographic.clone(cartographic, heightlessCartographicScratch);
|
||
|
heightlessCartographicScratch.height = height;
|
||
|
return Matrix2.Cartographic.toCartesian(
|
||
|
heightlessCartographicScratch,
|
||
|
ellipsoid,
|
||
|
result
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Stores the provided instance into the provided array.
|
||
|
*
|
||
|
* @param {PolygonGeometry} value The value to pack.
|
||
|
* @param {Number[]} array The array to pack into.
|
||
|
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
|
||
|
*
|
||
|
* @returns {Number[]} The array that was packed into
|
||
|
*/
|
||
|
GroundPolylineGeometry.pack = function (value, array, startingIndex) {
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
RuntimeError.Check.typeOf.object("value", value);
|
||
|
RuntimeError.Check.defined("array", array);
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
let index = when.defaultValue(startingIndex, 0);
|
||
|
|
||
|
const positions = value._positions;
|
||
|
const positionsLength = positions.length;
|
||
|
|
||
|
array[index++] = positionsLength;
|
||
|
|
||
|
for (let i = 0; i < positionsLength; ++i) {
|
||
|
const cartesian = positions[i];
|
||
|
Matrix2.Cartesian3.pack(cartesian, array, index);
|
||
|
index += 3;
|
||
|
}
|
||
|
|
||
|
array[index++] = value.granularity;
|
||
|
array[index++] = value.loop ? 1.0 : 0.0;
|
||
|
array[index++] = value.arcType;
|
||
|
|
||
|
Matrix2.Ellipsoid.pack(value._ellipsoid, array, index);
|
||
|
index += Matrix2.Ellipsoid.packedLength;
|
||
|
|
||
|
array[index++] = value._projectionIndex;
|
||
|
array[index++] = value._scene3DOnly ? 1.0 : 0.0;
|
||
|
|
||
|
return array;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Retrieves an instance from a packed array.
|
||
|
*
|
||
|
* @param {Number[]} array The packed array.
|
||
|
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
|
||
|
* @param {PolygonGeometry} [result] The object into which to store the result.
|
||
|
*/
|
||
|
GroundPolylineGeometry.unpack = function (array, startingIndex, result) {
|
||
|
//>>includeStart('debug', pragmas.debug);
|
||
|
RuntimeError.Check.defined("array", array);
|
||
|
//>>includeEnd('debug');
|
||
|
|
||
|
let index = when.defaultValue(startingIndex, 0);
|
||
|
const positionsLength = array[index++];
|
||
|
const positions = new Array(positionsLength);
|
||
|
|
||
|
for (let i = 0; i < positionsLength; i++) {
|
||
|
positions[i] = Matrix2.Cartesian3.unpack(array, index);
|
||
|
index += 3;
|
||
|
}
|
||
|
|
||
|
const granularity = array[index++];
|
||
|
const loop = array[index++] === 1.0;
|
||
|
const arcType = array[index++];
|
||
|
|
||
|
const ellipsoid = Matrix2.Ellipsoid.unpack(array, index);
|
||
|
index += Matrix2.Ellipsoid.packedLength;
|
||
|
|
||
|
const projectionIndex = array[index++];
|
||
|
const scene3DOnly = array[index++] === 1.0;
|
||
|
|
||
|
if (!when.defined(result)) {
|
||
|
result = new GroundPolylineGeometry({
|
||
|
positions: positions,
|
||
|
});
|
||
|
}
|
||
|
|
||
|
result._positions = positions;
|
||
|
result.granularity = granularity;
|
||
|
result.loop = loop;
|
||
|
result.arcType = arcType;
|
||
|
result._ellipsoid = ellipsoid;
|
||
|
result._projectionIndex = projectionIndex;
|
||
|
result._scene3DOnly = scene3DOnly;
|
||
|
|
||
|
return result;
|
||
|
};
|
||
|
|
||
|
function direction(target, origin, result) {
|
||
|
Matrix2.Cartesian3.subtract(target, origin, result);
|
||
|
Matrix2.Cartesian3.normalize(result, result);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
function tangentDirection(target, origin, up, result) {
|
||
|
result = direction(target, origin, result);
|
||
|
|
||
|
// orthogonalize
|
||
|
result = Matrix2.Cartesian3.cross(result, up, result);
|
||
|
result = Matrix2.Cartesian3.normalize(result, result);
|
||
|
result = Matrix2.Cartesian3.cross(up, result, result);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
const toPreviousScratch = new Matrix2.Cartesian3();
|
||
|
const toNextScratch = new Matrix2.Cartesian3();
|
||
|
const forwardScratch = new Matrix2.Cartesian3();
|
||
|
const vertexUpScratch = new Matrix2.Cartesian3();
|
||
|
const cosine90 = 0.0;
|
||
|
const cosine180 = -1.0;
|
||
|
function computeVertexMiterNormal(
|
||
|
previousBottom,
|
||
|
vertexBottom,
|
||
|
vertexTop,
|
||
|
nextBottom,
|
||
|
result
|
||
|
) {
|
||
|
const up = direction(vertexTop, vertexBottom, vertexUpScratch);
|
||
|
|
||
|
// Compute vectors pointing towards neighboring points but tangent to this point on the ellipsoid
|
||
|
const toPrevious = tangentDirection(
|
||
|
previousBottom,
|
||
|
vertexBottom,
|
||
|
up,
|
||
|
toPreviousScratch
|
||
|
);
|
||
|
const toNext = tangentDirection(nextBottom, vertexBottom, up, toNextScratch);
|
||
|
|
||
|
// Check if tangents are almost opposite - if so, no need to miter.
|
||
|
if (
|
||
|
ComponentDatatype.CesiumMath.equalsEpsilon(
|
||
|
Matrix2.Cartesian3.dot(toPrevious, toNext),
|
||
|
cosine180,
|
||
|
ComponentDatatype.CesiumMath.EPSILON5
|
||
|
)
|
||
|
) {
|
||
|
result = Matrix2.Cartesian3.cross(up, toPrevious, result);
|
||
|
result = Matrix2.Cartesian3.normalize(result, result);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
// Average directions to previous and to next in the plane of Up
|
||
|
result = Matrix2.Cartesian3.add(toNext, toPrevious, result);
|
||
|
result = Matrix2.Cartesian3.normalize(result, result);
|
||
|
|
||
|
// Flip the normal if it isn't pointing roughly bound right (aka if forward is pointing more "backwards")
|
||
|
const forward = Matrix2.Cartesian3.cross(up, result, forwardScratch);
|
||
|
if (Matrix2.Cartesian3.dot(toNext, forward) < cosine90) {
|
||
|
result = Matrix2.Cartesian3.negate(result, result);
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
const XZ_PLANE = Plane.Plane.fromPointNormal(Matrix2.Cartesian3.ZERO, Matrix2.Cartesian3.UNIT_Y);
|
||
|
|
||
|
const previousBottomScratch = new Matrix2.Cartesian3();
|
||
|
const vertexBottomScratch = new Matrix2.Cartesian3();
|
||
|
const vertexTopScratch = new Matrix2.Cartesian3();
|
||
|
const nextBottomScratch = new Matrix2.Cartesian3();
|
||
|
const vertexNormalScratch = new Matrix2.Cartesian3();
|
||
|
const intersectionScratch = new Matrix2.Cartesian3();
|
||
|
const cartographicScratch0 = new Matrix2.Cartographic();
|
||
|
const cartographicScratch1 = new Matrix2.Cartographic();
|
||
|
const cartographicIntersectionScratch = new Matrix2.Cartographic();
|
||
|
/**
|
||
|
* Computes shadow volumes for the ground polyline, consisting of its vertices, indices, and a bounding sphere.
|
||
|
* Vertices are "fat," packing all the data needed in each volume to describe a line on terrain or 3D Tiles.
|
||
|
* Should not be called independent of {@link GroundPolylinePrimitive}.
|
||
|
*
|
||
|
* @param {GroundPolylineGeometry} groundPolylineGeometry
|
||
|
* @private
|
||
|
*/
|
||
|
GroundPolylineGeometry.createGeometry = function (groundPolylineGeometry) {
|
||
|
const compute2dAttributes = !groundPolylineGeometry._scene3DOnly;
|
||
|
let loop = groundPolylineGeometry.loop;
|
||
|
const ellipsoid = groundPolylineGeometry._ellipsoid;
|
||
|
const granularity = groundPolylineGeometry.granularity;
|
||
|
const arcType = groundPolylineGeometry.arcType;
|
||
|
const projection = new PROJECTIONS[groundPolylineGeometry._projectionIndex](
|
||
|
ellipsoid
|
||
|
);
|
||
|
|
||
|
const minHeight = WALL_INITIAL_MIN_HEIGHT;
|
||
|
const maxHeight = WALL_INITIAL_MAX_HEIGHT;
|
||
|
|
||
|
let index;
|
||
|
let i;
|
||
|
|
||
|
const positions = groundPolylineGeometry._positions;
|
||
|
const positionsLength = positions.length;
|
||
|
|
||
|
if (positionsLength === 2) {
|
||
|
loop = false;
|
||
|
}
|
||
|
|
||
|
// Split positions across the IDL and the Prime Meridian as well.
|
||
|
// Split across prime meridian because very large geometries crossing the Prime Meridian but not the IDL
|
||
|
// may get split by the plane of IDL + Prime Meridian.
|
||
|
let p0;
|
||
|
let p1;
|
||
|
let c0;
|
||
|
let c1;
|
||
|
const rhumbLine = new EllipsoidRhumbLine.EllipsoidRhumbLine(undefined, undefined, ellipsoid);
|
||
|
let intersection;
|
||
|
let intersectionCartographic;
|
||
|
let intersectionLongitude;
|
||
|
const splitPositions = [positions[0]];
|
||
|
for (i = 0; i < positionsLength - 1; i++) {
|
||
|
p0 = positions[i];
|
||
|
p1 = positions[i + 1];
|
||
|
intersection = IntersectionTests.IntersectionTests.lineSegmentPlane(
|
||
|
p0,
|
||
|
p1,
|
||
|
XZ_PLANE,
|
||
|
intersectionScratch
|
||
|
);
|
||
|
if (
|
||
|
when.defined(intersection) &&
|
||
|
!Matrix2.Cartesian3.equalsEpsilon(intersection, p0, ComponentDatatype.CesiumMath.EPSILON7) &&
|
||
|
!Matrix2.Cartesian3.equalsEpsilon(intersection, p1, ComponentDatatype.CesiumMath.EPSILON7)
|
||
|
) {
|
||
|
if (groundPolylineGeometry.arcType === ArcType.ArcType.GEODESIC) {
|
||
|
splitPositions.push(Matrix2.Cartesian3.clone(intersection));
|
||
|
} else if (groundPolylineGeometry.arcType === ArcType.ArcType.RHUMB) {
|
||
|
intersectionLongitude = ellipsoid.cartesianToCartographic(
|
||
|
intersection,
|
||
|
cartographicScratch0
|
||
|
).longitude;
|
||
|
c0 = ellipsoid.cartesianToCartographic(p0, cartographicScratch0);
|
||
|
c1 = ellipsoid.cartesianToCartographic(p1, cartographicScratch1);
|
||
|
rhumbLine.setEndPoints(c0, c1);
|
||
|
intersectionCartographic = rhumbLine.findIntersectionWithLongitude(
|
||
|
intersectionLongitude,
|
||
|
cartographicIntersectionScratch
|
||
|
);
|
||
|
intersection = ellipsoid.cartographicToCartesian(
|
||
|
intersectionCartographic,
|
||
|
intersectionScratch
|
||
|
);
|
||
|
if (
|
||
|
when.defined(intersection) &&
|
||
|
!Matrix2.Cartesian3.equalsEpsilon(intersection, p0, ComponentDatatype.CesiumMath.EPSILON7) &&
|
||
|
!Matrix2.Cartesian3.equalsEpsilon(intersection, p1, ComponentDatatype.CesiumMath.EPSILON7)
|
||
|
) {
|
||
|
splitPositions.push(Matrix2.Cartesian3.clone(intersection));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
splitPositions.push(p1);
|
||
|
}
|
||
|
|
||
|
if (loop) {
|
||
|
p0 = positions[positionsLength - 1];
|
||
|
p1 = positions[0];
|
||
|
intersection = IntersectionTests.IntersectionTests.lineSegmentPlane(
|
||
|
p0,
|
||
|
p1,
|
||
|
XZ_PLANE,
|
||
|
intersectionScratch
|
||
|
);
|
||
|
if (
|
||
|
when.defined(intersection) &&
|
||
|
!Matrix2.Cartesian3.equalsEpsilon(intersection, p0, ComponentDatatype.CesiumMath.EPSILON7) &&
|
||
|
!Matrix2.Cartesian3.equalsEpsilon(intersection, p1, ComponentDatatype.CesiumMath.EPSILON7)
|
||
|
) {
|
||
|
if (groundPolylineGeometry.arcType === ArcType.ArcType.GEODESIC) {
|
||
|
splitPositions.push(Matrix2.Cartesian3.clone(intersection));
|
||
|
} else if (groundPolylineGeometry.arcType === ArcType.ArcType.RHUMB) {
|
||
|
intersectionLongitude = ellipsoid.cartesianToCartographic(
|
||
|
intersection,
|
||
|
cartographicScratch0
|
||
|
).longitude;
|
||
|
c0 = ellipsoid.cartesianToCartographic(p0, cartographicScratch0);
|
||
|
c1 = ellipsoid.cartesianToCartographic(p1, cartographicScratch1);
|
||
|
rhumbLine.setEndPoints(c0, c1);
|
||
|
intersectionCartographic = rhumbLine.findIntersectionWithLongitude(
|
||
|
intersectionLongitude,
|
||
|
cartographicIntersectionScratch
|
||
|
);
|
||
|
intersection = ellipsoid.cartographicToCartesian(
|
||
|
intersectionCartographic,
|
||
|
intersectionScratch
|
||
|
);
|
||
|
if (
|
||
|
when.defined(intersection) &&
|
||
|
!Matrix2.Cartesian3.equalsEpsilon(intersection, p0, ComponentDatatype.CesiumMath.EPSILON7) &&
|
||
|
!Matrix2.Cartesian3.equalsEpsilon(intersection, p1, ComponentDatatype.CesiumMath.EPSILON7)
|
||
|
) {
|
||
|
splitPositions.push(Matrix2.Cartesian3.clone(intersection));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
let cartographicsLength = splitPositions.length;
|
||
|
|
||
|
let cartographics = new Array(cartographicsLength);
|
||
|
for (i = 0; i < cartographicsLength; i++) {
|
||
|
const cartographic = Matrix2.Cartographic.fromCartesian(
|
||
|
splitPositions[i],
|
||
|
ellipsoid
|
||
|
);
|
||
|
cartographic.height = 0.0;
|
||
|
cartographics[i] = cartographic;
|
||
|
}
|
||
|
|
||
|
cartographics = arrayRemoveDuplicates.arrayRemoveDuplicates(
|
||
|
cartographics,
|
||
|
Matrix2.Cartographic.equalsEpsilon
|
||
|
);
|
||
|
cartographicsLength = cartographics.length;
|
||
|
|
||
|
if (cartographicsLength < 2) {
|
||
|
return undefined;
|
||
|
}
|
||
|
|
||
|
/**** Build heap-side arrays for positions, interpolated cartographics, and normals from which to compute vertices ****/
|
||
|
// We build a "wall" and then decompose it into separately connected component "volumes" because we need a lot
|
||
|
// of information about the wall. Also, this simplifies interpolation.
|
||
|
// Convention: "next" and "end" are locally forward to each segment of the wall,
|
||
|
// and we are computing normals pointing towards the local right side of the vertices in each segment.
|
||
|
const cartographicsArray = [];
|
||
|
const normalsArray = [];
|
||
|
const bottomPositionsArray = [];
|
||
|
const topPositionsArray = [];
|
||
|
|
||
|
let previousBottom = previousBottomScratch;
|
||
|
let vertexBottom = vertexBottomScratch;
|
||
|
let vertexTop = vertexTopScratch;
|
||
|
let nextBottom = nextBottomScratch;
|
||
|
let vertexNormal = vertexNormalScratch;
|
||
|
|
||
|
// First point - either loop or attach a "perpendicular" normal
|
||
|
const startCartographic = cartographics[0];
|
||
|
const nextCartographic = cartographics[1];
|
||
|
|
||
|
const prestartCartographic = cartographics[cartographicsLength - 1];
|
||
|
previousBottom = getPosition(
|
||
|
ellipsoid,
|
||
|
prestartCartographic,
|
||
|
minHeight,
|
||
|
previousBottom
|
||
|
);
|
||
|
nextBottom = getPosition(ellipsoid, nextCartographic, minHeight, nextBottom);
|
||
|
vertexBottom = getPosition(
|
||
|
ellipsoid,
|
||
|
startCartographic,
|
||
|
minHeight,
|
||
|
vertexBottom
|
||
|
);
|
||
|
vertexTop = getPosition(ellipsoid, startCartographic, maxHeight, vertexTop);
|
||
|
|
||
|
if (loop) {
|
||
|
vertexNormal = computeVertexMiterNormal(
|
||
|
previousBottom,
|
||
|
vertexBottom,
|
||
|
vertexTop,
|
||
|
nextBottom,
|
||
|
vertexNormal
|
||
|
);
|
||
|
} else {
|
||
|
vertexNormal = computeRightNormal(
|
||
|
startCartographic,
|
||
|
nextCartographic,
|
||
|
maxHeight,
|
||
|
ellipsoid,
|
||
|
vertexNormal
|
||
|
);
|
||
|
}
|
||
|
|
||
|
Matrix2.Cartesian3.pack(vertexNormal, normalsArray, 0);
|
||
|
Matrix2.Cartesian3.pack(vertexBottom, bottomPositionsArray, 0);
|
||
|
Matrix2.Cartesian3.pack(vertexTop, topPositionsArray, 0);
|
||
|
cartographicsArray.push(startCartographic.latitude);
|
||
|
cartographicsArray.push(startCartographic.longitude);
|
||
|
|
||
|
interpolateSegment(
|
||
|
startCartographic,
|
||
|
nextCartographic,
|
||
|
minHeight,
|
||
|
maxHeight,
|
||
|
granularity,
|
||
|
arcType,
|
||
|
ellipsoid,
|
||
|
normalsArray,
|
||
|
bottomPositionsArray,
|
||
|
topPositionsArray,
|
||
|
cartographicsArray
|
||
|
);
|
||
|
|
||
|
// All inbetween points
|
||
|
for (i = 1; i < cartographicsLength - 1; ++i) {
|
||
|
previousBottom = Matrix2.Cartesian3.clone(vertexBottom, previousBottom);
|
||
|
vertexBottom = Matrix2.Cartesian3.clone(nextBottom, vertexBottom);
|
||
|
const vertexCartographic = cartographics[i];
|
||
|
getPosition(ellipsoid, vertexCartographic, maxHeight, vertexTop);
|
||
|
getPosition(ellipsoid, cartographics[i + 1], minHeight, nextBottom);
|
||
|
|
||
|
computeVertexMiterNormal(
|
||
|
previousBottom,
|
||
|
vertexBottom,
|
||
|
vertexTop,
|
||
|
nextBottom,
|
||
|
vertexNormal
|
||
|
);
|
||
|
|
||
|
index = normalsArray.length;
|
||
|
Matrix2.Cartesian3.pack(vertexNormal, normalsArray, index);
|
||
|
Matrix2.Cartesian3.pack(vertexBottom, bottomPositionsArray, index);
|
||
|
Matrix2.Cartesian3.pack(vertexTop, topPositionsArray, index);
|
||
|
cartographicsArray.push(vertexCartographic.latitude);
|
||
|
cartographicsArray.push(vertexCartographic.longitude);
|
||
|
|
||
|
interpolateSegment(
|
||
|
cartographics[i],
|
||
|
cartographics[i + 1],
|
||
|
minHeight,
|
||
|
maxHeight,
|
||
|
granularity,
|
||
|
arcType,
|
||
|
ellipsoid,
|
||
|
normalsArray,
|
||
|
bottomPositionsArray,
|
||
|
topPositionsArray,
|
||
|
cartographicsArray
|
||
|
);
|
||
|
}
|
||
|
|
||
|
// Last point - either loop or attach a normal "perpendicular" to the wall.
|
||
|
const endCartographic = cartographics[cartographicsLength - 1];
|
||
|
const preEndCartographic = cartographics[cartographicsLength - 2];
|
||
|
|
||
|
vertexBottom = getPosition(
|
||
|
ellipsoid,
|
||
|
endCartographic,
|
||
|
minHeight,
|
||
|
vertexBottom
|
||
|
);
|
||
|
vertexTop = getPosition(ellipsoid, endCartographic, maxHeight, vertexTop);
|
||
|
|
||
|
if (loop) {
|
||
|
const postEndCartographic = cartographics[0];
|
||
|
previousBottom = getPosition(
|
||
|
ellipsoid,
|
||
|
preEndCartographic,
|
||
|
minHeight,
|
||
|
previousBottom
|
||
|
);
|
||
|
nextBottom = getPosition(
|
||
|
ellipsoid,
|
||
|
postEndCartographic,
|
||
|
minHeight,
|
||
|
nextBottom
|
||
|
);
|
||
|
|
||
|
vertexNormal = computeVertexMiterNormal(
|
||
|
previousBottom,
|
||
|
vertexBottom,
|
||
|
vertexTop,
|
||
|
nextBottom,
|
||
|
vertexNormal
|
||
|
);
|
||
|
} else {
|
||
|
vertexNormal = computeRightNormal(
|
||
|
preEndCartographic,
|
||
|
endCartographic,
|
||
|
maxHeight,
|
||
|
ellipsoid,
|
||
|
vertexNormal
|
||
|
);
|
||
|
}
|
||
|
|
||
|
index = normalsArray.length;
|
||
|
Matrix2.Cartesian3.pack(vertexNormal, normalsArray, index);
|
||
|
Matrix2.Cartesian3.pack(vertexBottom, bottomPositionsArray, index);
|
||
|
Matrix2.Cartesian3.pack(vertexTop, topPositionsArray, index);
|
||
|
cartographicsArray.push(endCartographic.latitude);
|
||
|
cartographicsArray.push(endCartographic.longitude);
|
||
|
|
||
|
if (loop) {
|
||
|
interpolateSegment(
|
||
|
endCartographic,
|
||
|
startCartographic,
|
||
|
minHeight,
|
||
|
maxHeight,
|
||
|
granularity,
|
||
|
arcType,
|
||
|
ellipsoid,
|
||
|
normalsArray,
|
||
|
bottomPositionsArray,
|
||
|
topPositionsArray,
|
||
|
cartographicsArray
|
||
|
);
|
||
|
index = normalsArray.length;
|
||
|
for (i = 0; i < 3; ++i) {
|
||
|
normalsArray[index + i] = normalsArray[i];
|
||
|
bottomPositionsArray[index + i] = bottomPositionsArray[i];
|
||
|
topPositionsArray[index + i] = topPositionsArray[i];
|
||
|
}
|
||
|
cartographicsArray.push(startCartographic.latitude);
|
||
|
cartographicsArray.push(startCartographic.longitude);
|
||
|
}
|
||
|
|
||
|
return generateGeometryAttributes(
|
||
|
loop,
|
||
|
projection,
|
||
|
bottomPositionsArray,
|
||
|
topPositionsArray,
|
||
|
normalsArray,
|
||
|
cartographicsArray,
|
||
|
compute2dAttributes
|
||
|
);
|
||
|
};
|
||
|
|
||
|
// If the end normal angle is too steep compared to the direction of the line segment,
|
||
|
// "break" the miter by rotating the normal 90 degrees around the "up" direction at the point
|
||
|
// For ultra precision we would want to project into a plane, but in practice this is sufficient.
|
||
|
const lineDirectionScratch = new Matrix2.Cartesian3();
|
||
|
const matrix3Scratch = new Matrix2.Matrix3();
|
||
|
const quaternionScratch = new Transforms.Quaternion();
|
||
|
function breakMiter(endGeometryNormal, startBottom, endBottom, endTop) {
|
||
|
const lineDirection = direction(endBottom, startBottom, lineDirectionScratch);
|
||
|
|
||
|
const dot = Matrix2.Cartesian3.dot(lineDirection, endGeometryNormal);
|
||
|
if (dot > MITER_BREAK_SMALL || dot < MITER_BREAK_LARGE) {
|
||
|
const vertexUp = direction(endTop, endBottom, vertexUpScratch);
|
||
|
const angle =
|
||
|
dot < MITER_BREAK_LARGE
|
||
|
? ComponentDatatype.CesiumMath.PI_OVER_TWO
|
||
|
: -ComponentDatatype.CesiumMath.PI_OVER_TWO;
|
||
|
const quaternion = Transforms.Quaternion.fromAxisAngle(
|
||
|
vertexUp,
|
||
|
angle,
|
||
|
quaternionScratch
|
||
|
);
|
||
|
const rotationMatrix = Matrix2.Matrix3.fromQuaternion(quaternion, matrix3Scratch);
|
||
|
Matrix2.Matrix3.multiplyByVector(
|
||
|
rotationMatrix,
|
||
|
endGeometryNormal,
|
||
|
endGeometryNormal
|
||
|
);
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
const endPosCartographicScratch = new Matrix2.Cartographic();
|
||
|
const normalStartpointScratch = new Matrix2.Cartesian3();
|
||
|
const normalEndpointScratch = new Matrix2.Cartesian3();
|
||
|
function projectNormal(
|
||
|
projection,
|
||
|
cartographic,
|
||
|
normal,
|
||
|
projectedPosition,
|
||
|
result
|
||
|
) {
|
||
|
const position = Matrix2.Cartographic.toCartesian(
|
||
|
cartographic,
|
||
|
projection._ellipsoid,
|
||
|
normalStartpointScratch
|
||
|
);
|
||
|
let normalEndpoint = Matrix2.Cartesian3.add(position, normal, normalEndpointScratch);
|
||
|
let flipNormal = false;
|
||
|
|
||
|
const ellipsoid = projection._ellipsoid;
|
||
|
let normalEndpointCartographic = ellipsoid.cartesianToCartographic(
|
||
|
normalEndpoint,
|
||
|
endPosCartographicScratch
|
||
|
);
|
||
|
// If normal crosses the IDL, go the other way and flip the result.
|
||
|
// In practice this almost never happens because the cartographic start
|
||
|
// and end points of each segment are "nudged" to be on the same side
|
||
|
// of the IDL and slightly away from the IDL.
|
||
|
if (
|
||
|
Math.abs(cartographic.longitude - normalEndpointCartographic.longitude) >
|
||
|
ComponentDatatype.CesiumMath.PI_OVER_TWO
|
||
|
) {
|
||
|
flipNormal = true;
|
||
|
normalEndpoint = Matrix2.Cartesian3.subtract(
|
||
|
position,
|
||
|
normal,
|
||
|
normalEndpointScratch
|
||
|
);
|
||
|
normalEndpointCartographic = ellipsoid.cartesianToCartographic(
|
||
|
normalEndpoint,
|
||
|
endPosCartographicScratch
|
||
|
);
|
||
|
}
|
||
|
|
||
|
normalEndpointCartographic.height = 0.0;
|
||
|
const normalEndpointProjected = projection.project(
|
||
|
normalEndpointCartographic,
|
||
|
result
|
||
|
);
|
||
|
result = Matrix2.Cartesian3.subtract(
|
||
|
normalEndpointProjected,
|
||
|
projectedPosition,
|
||
|
result
|
||
|
);
|
||
|
result.z = 0.0;
|
||
|
result = Matrix2.Cartesian3.normalize(result, result);
|
||
|
if (flipNormal) {
|
||
|
Matrix2.Cartesian3.negate(result, result);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
const adjustHeightNormalScratch = new Matrix2.Cartesian3();
|
||
|
const adjustHeightOffsetScratch = new Matrix2.Cartesian3();
|
||
|
function adjustHeights(
|
||
|
bottom,
|
||
|
top,
|
||
|
minHeight,
|
||
|
maxHeight,
|
||
|
adjustHeightBottom,
|
||
|
adjustHeightTop
|
||
|
) {
|
||
|
// bottom and top should be at WALL_INITIAL_MIN_HEIGHT and WALL_INITIAL_MAX_HEIGHT, respectively
|
||
|
const adjustHeightNormal = Matrix2.Cartesian3.subtract(
|
||
|
top,
|
||
|
bottom,
|
||
|
adjustHeightNormalScratch
|
||
|
);
|
||
|
Matrix2.Cartesian3.normalize(adjustHeightNormal, adjustHeightNormal);
|
||
|
|
||
|
const distanceForBottom = minHeight - WALL_INITIAL_MIN_HEIGHT;
|
||
|
let adjustHeightOffset = Matrix2.Cartesian3.multiplyByScalar(
|
||
|
adjustHeightNormal,
|
||
|
distanceForBottom,
|
||
|
adjustHeightOffsetScratch
|
||
|
);
|
||
|
Matrix2.Cartesian3.add(bottom, adjustHeightOffset, adjustHeightBottom);
|
||
|
|
||
|
const distanceForTop = maxHeight - WALL_INITIAL_MAX_HEIGHT;
|
||
|
adjustHeightOffset = Matrix2.Cartesian3.multiplyByScalar(
|
||
|
adjustHeightNormal,
|
||
|
distanceForTop,
|
||
|
adjustHeightOffsetScratch
|
||
|
);
|
||
|
Matrix2.Cartesian3.add(top, adjustHeightOffset, adjustHeightTop);
|
||
|
}
|
||
|
|
||
|
const nudgeDirectionScratch = new Matrix2.Cartesian3();
|
||
|
function nudgeXZ(start, end) {
|
||
|
const startToXZdistance = Plane.Plane.getPointDistance(XZ_PLANE, start);
|
||
|
const endToXZdistance = Plane.Plane.getPointDistance(XZ_PLANE, end);
|
||
|
let offset = nudgeDirectionScratch;
|
||
|
// Larger epsilon than what's used in GeometryPipeline, a centimeter in world space
|
||
|
if (ComponentDatatype.CesiumMath.equalsEpsilon(startToXZdistance, 0.0, ComponentDatatype.CesiumMath.EPSILON2)) {
|
||
|
offset = direction(end, start, offset);
|
||
|
Matrix2.Cartesian3.multiplyByScalar(offset, ComponentDatatype.CesiumMath.EPSILON2, offset);
|
||
|
Matrix2.Cartesian3.add(start, offset, start);
|
||
|
} else if (
|
||
|
ComponentDatatype.CesiumMath.equalsEpsilon(endToXZdistance, 0.0, ComponentDatatype.CesiumMath.EPSILON2)
|
||
|
) {
|
||
|
offset = direction(start, end, offset);
|
||
|
Matrix2.Cartesian3.multiplyByScalar(offset, ComponentDatatype.CesiumMath.EPSILON2, offset);
|
||
|
Matrix2.Cartesian3.add(end, offset, end);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// "Nudge" cartographic coordinates so start and end are on the same side of the IDL.
|
||
|
// Nudge amounts are tiny, basically just an IDL flip.
|
||
|
// Only used for 2D/CV.
|
||
|
function nudgeCartographic(start, end) {
|
||
|
const absStartLon = Math.abs(start.longitude);
|
||
|
const absEndLon = Math.abs(end.longitude);
|
||
|
if (
|
||
|
ComponentDatatype.CesiumMath.equalsEpsilon(absStartLon, ComponentDatatype.CesiumMath.PI, ComponentDatatype.CesiumMath.EPSILON11)
|
||
|
) {
|
||
|
const endSign = ComponentDatatype.CesiumMath.sign(end.longitude);
|
||
|
start.longitude = endSign * (absStartLon - ComponentDatatype.CesiumMath.EPSILON11);
|
||
|
return 1;
|
||
|
} else if (
|
||
|
ComponentDatatype.CesiumMath.equalsEpsilon(absEndLon, ComponentDatatype.CesiumMath.PI, ComponentDatatype.CesiumMath.EPSILON11)
|
||
|
) {
|
||
|
const startSign = ComponentDatatype.CesiumMath.sign(start.longitude);
|
||
|
end.longitude = startSign * (absEndLon - ComponentDatatype.CesiumMath.EPSILON11);
|
||
|
return 2;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
const startCartographicScratch = new Matrix2.Cartographic();
|
||
|
const endCartographicScratch = new Matrix2.Cartographic();
|
||
|
|
||
|
const segmentStartTopScratch = new Matrix2.Cartesian3();
|
||
|
const segmentEndTopScratch = new Matrix2.Cartesian3();
|
||
|
const segmentStartBottomScratch = new Matrix2.Cartesian3();
|
||
|
const segmentEndBottomScratch = new Matrix2.Cartesian3();
|
||
|
const segmentStartNormalScratch = new Matrix2.Cartesian3();
|
||
|
const segmentEndNormalScratch = new Matrix2.Cartesian3();
|
||
|
|
||
|
const getHeightCartographics = [
|
||
|
startCartographicScratch,
|
||
|
endCartographicScratch,
|
||
|
];
|
||
|
const getHeightRectangleScratch = new Matrix2.Rectangle();
|
||
|
|
||
|
const adjustHeightStartTopScratch = new Matrix2.Cartesian3();
|
||
|
const adjustHeightEndTopScratch = new Matrix2.Cartesian3();
|
||
|
const adjustHeightStartBottomScratch = new Matrix2.Cartesian3();
|
||
|
const adjustHeightEndBottomScratch = new Matrix2.Cartesian3();
|
||
|
|
||
|
const segmentStart2DScratch = new Matrix2.Cartesian3();
|
||
|
const segmentEnd2DScratch = new Matrix2.Cartesian3();
|
||
|
const segmentStartNormal2DScratch = new Matrix2.Cartesian3();
|
||
|
const segmentEndNormal2DScratch = new Matrix2.Cartesian3();
|
||
|
|
||
|
const offsetScratch = new Matrix2.Cartesian3();
|
||
|
const startUpScratch = new Matrix2.Cartesian3();
|
||
|
const endUpScratch = new Matrix2.Cartesian3();
|
||
|
const rightScratch = new Matrix2.Cartesian3();
|
||
|
const startPlaneNormalScratch = new Matrix2.Cartesian3();
|
||
|
const endPlaneNormalScratch = new Matrix2.Cartesian3();
|
||
|
const encodeScratch = new EncodedCartesian3.EncodedCartesian3();
|
||
|
|
||
|
const encodeScratch2D = new EncodedCartesian3.EncodedCartesian3();
|
||
|
const forwardOffset2DScratch = new Matrix2.Cartesian3();
|
||
|
const right2DScratch = new Matrix2.Cartesian3();
|
||
|
|
||
|
const normalNudgeScratch = new Matrix2.Cartesian3();
|
||
|
|
||
|
const scratchBoundingSpheres = [new Transforms.BoundingSphere(), new Transforms.BoundingSphere()];
|
||
|
|
||
|
// Winding order is reversed so each segment's volume is inside-out
|
||
|
const REFERENCE_INDICES = [
|
||
|
0,
|
||
|
2,
|
||
|
1,
|
||
|
0,
|
||
|
3,
|
||
|
2, // right
|
||
|
0,
|
||
|
7,
|
||
|
3,
|
||
|
0,
|
||
|
4,
|
||
|
7, // start
|
||
|
0,
|
||
|
5,
|
||
|
4,
|
||
|
0,
|
||
|
1,
|
||
|
5, // bottom
|
||
|
5,
|
||
|
7,
|
||
|
4,
|
||
|
5,
|
||
|
6,
|
||
|
7, // left
|
||
|
5,
|
||
|
2,
|
||
|
6,
|
||
|
5,
|
||
|
1,
|
||
|
2, // end
|
||
|
3,
|
||
|
6,
|
||
|
2,
|
||
|
3,
|
||
|
7,
|
||
|
6, // top
|
||
|
];
|
||
|
const REFERENCE_INDICES_LENGTH = REFERENCE_INDICES.length;
|
||
|
|
||
|
// Decompose the "wall" into a series of shadow volumes.
|
||
|
// Each shadow volume's vertices encode a description of the line it contains,
|
||
|
// including mitering planes at the end points, a plane along the line itself,
|
||
|
// and attributes for computing length-wise texture coordinates.
|
||
|
function generateGeometryAttributes(
|
||
|
loop,
|
||
|
projection,
|
||
|
bottomPositionsArray,
|
||
|
topPositionsArray,
|
||
|
normalsArray,
|
||
|
cartographicsArray,
|
||
|
compute2dAttributes
|
||
|
) {
|
||
|
let i;
|
||
|
let index;
|
||
|
const ellipsoid = projection._ellipsoid;
|
||
|
|
||
|
// Each segment will have 8 vertices
|
||
|
const segmentCount = bottomPositionsArray.length / 3 - 1;
|
||
|
const vertexCount = segmentCount * 8;
|
||
|
const arraySizeVec4 = vertexCount * 4;
|
||
|
const indexCount = segmentCount * 36;
|
||
|
|
||
|
const indices =
|
||
|
vertexCount > 65535
|
||
|
? new Uint32Array(indexCount)
|
||
|
: new Uint16Array(indexCount);
|
||
|
const positionsArray = new Float64Array(vertexCount * 3);
|
||
|
|
||
|
const startHiAndForwardOffsetX = new Float32Array(arraySizeVec4);
|
||
|
const startLoAndForwardOffsetY = new Float32Array(arraySizeVec4);
|
||
|
const startNormalAndForwardOffsetZ = new Float32Array(arraySizeVec4);
|
||
|
const endNormalAndTextureCoordinateNormalizationX = new Float32Array(
|
||
|
arraySizeVec4
|
||
|
);
|
||
|
const rightNormalAndTextureCoordinateNormalizationY = new Float32Array(
|
||
|
arraySizeVec4
|
||
|
);
|
||
|
|
||
|
let startHiLo2D;
|
||
|
let offsetAndRight2D;
|
||
|
let startEndNormals2D;
|
||
|
let texcoordNormalization2D;
|
||
|
|
||
|
if (compute2dAttributes) {
|
||
|
startHiLo2D = new Float32Array(arraySizeVec4);
|
||
|
offsetAndRight2D = new Float32Array(arraySizeVec4);
|
||
|
startEndNormals2D = new Float32Array(arraySizeVec4);
|
||
|
texcoordNormalization2D = new Float32Array(vertexCount * 2);
|
||
|
}
|
||
|
|
||
|
/*** Compute total lengths for texture coordinate normalization ***/
|
||
|
// 2D
|
||
|
const cartographicsLength = cartographicsArray.length / 2;
|
||
|
let length2D = 0.0;
|
||
|
|
||
|
const startCartographic = startCartographicScratch;
|
||
|
startCartographic.height = 0.0;
|
||
|
const endCartographic = endCartographicScratch;
|
||
|
endCartographic.height = 0.0;
|
||
|
|
||
|
let segmentStartCartesian = segmentStartTopScratch;
|
||
|
let segmentEndCartesian = segmentEndTopScratch;
|
||
|
|
||
|
if (compute2dAttributes) {
|
||
|
index = 0;
|
||
|
for (i = 1; i < cartographicsLength; i++) {
|
||
|
// Don't clone anything from previous segment b/c possible IDL touch
|
||
|
startCartographic.latitude = cartographicsArray[index];
|
||
|
startCartographic.longitude = cartographicsArray[index + 1];
|
||
|
endCartographic.latitude = cartographicsArray[index + 2];
|
||
|
endCartographic.longitude = cartographicsArray[index + 3];
|
||
|
|
||
|
segmentStartCartesian = projection.project(
|
||
|
startCartographic,
|
||
|
segmentStartCartesian
|
||
|
);
|
||
|
segmentEndCartesian = projection.project(
|
||
|
endCartographic,
|
||
|
segmentEndCartesian
|
||
|
);
|
||
|
length2D += Matrix2.Cartesian3.distance(
|
||
|
segmentStartCartesian,
|
||
|
segmentEndCartesian
|
||
|
);
|
||
|
index += 2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// 3D
|
||
|
const positionsLength = topPositionsArray.length / 3;
|
||
|
segmentEndCartesian = Matrix2.Cartesian3.unpack(
|
||
|
topPositionsArray,
|
||
|
0,
|
||
|
segmentEndCartesian
|
||
|
);
|
||
|
let length3D = 0.0;
|
||
|
|
||
|
index = 3;
|
||
|
for (i = 1; i < positionsLength; i++) {
|
||
|
segmentStartCartesian = Matrix2.Cartesian3.clone(
|
||
|
segmentEndCartesian,
|
||
|
segmentStartCartesian
|
||
|
);
|
||
|
segmentEndCartesian = Matrix2.Cartesian3.unpack(
|
||
|
topPositionsArray,
|
||
|
index,
|
||
|
segmentEndCartesian
|
||
|
);
|
||
|
length3D += Matrix2.Cartesian3.distance(segmentStartCartesian, segmentEndCartesian);
|
||
|
index += 3;
|
||
|
}
|
||
|
|
||
|
/*** Generate segments ***/
|
||
|
let j;
|
||
|
index = 3;
|
||
|
let cartographicsIndex = 0;
|
||
|
let vec2sWriteIndex = 0;
|
||
|
let vec3sWriteIndex = 0;
|
||
|
let vec4sWriteIndex = 0;
|
||
|
let miterBroken = false;
|
||
|
|
||
|
let endBottom = Matrix2.Cartesian3.unpack(
|
||
|
bottomPositionsArray,
|
||
|
0,
|
||
|
segmentEndBottomScratch
|
||
|
);
|
||
|
let endTop = Matrix2.Cartesian3.unpack(topPositionsArray, 0, segmentEndTopScratch);
|
||
|
let endGeometryNormal = Matrix2.Cartesian3.unpack(
|
||
|
normalsArray,
|
||
|
0,
|
||
|
segmentEndNormalScratch
|
||
|
);
|
||
|
|
||
|
if (loop) {
|
||
|
const preEndBottom = Matrix2.Cartesian3.unpack(
|
||
|
bottomPositionsArray,
|
||
|
bottomPositionsArray.length - 6,
|
||
|
segmentStartBottomScratch
|
||
|
);
|
||
|
if (breakMiter(endGeometryNormal, preEndBottom, endBottom, endTop)) {
|
||
|
// Miter broken as if for the last point in the loop, needs to be inverted for first point (clone of endBottom)
|
||
|
endGeometryNormal = Matrix2.Cartesian3.negate(
|
||
|
endGeometryNormal,
|
||
|
endGeometryNormal
|
||
|
);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
let lengthSoFar3D = 0.0;
|
||
|
let lengthSoFar2D = 0.0;
|
||
|
|
||
|
// For translating bounding volume
|
||
|
let sumHeights = 0.0;
|
||
|
|
||
|
for (i = 0; i < segmentCount; i++) {
|
||
|
const startBottom = Matrix2.Cartesian3.clone(endBottom, segmentStartBottomScratch);
|
||
|
const startTop = Matrix2.Cartesian3.clone(endTop, segmentStartTopScratch);
|
||
|
let startGeometryNormal = Matrix2.Cartesian3.clone(
|
||
|
endGeometryNormal,
|
||
|
segmentStartNormalScratch
|
||
|
);
|
||
|
|
||
|
if (miterBroken) {
|
||
|
startGeometryNormal = Matrix2.Cartesian3.negate(
|
||
|
startGeometryNormal,
|
||
|
startGeometryNormal
|
||
|
);
|
||
|
}
|
||
|
|
||
|
endBottom = Matrix2.Cartesian3.unpack(
|
||
|
bottomPositionsArray,
|
||
|
index,
|
||
|
segmentEndBottomScratch
|
||
|
);
|
||
|
endTop = Matrix2.Cartesian3.unpack(topPositionsArray, index, segmentEndTopScratch);
|
||
|
endGeometryNormal = Matrix2.Cartesian3.unpack(
|
||
|
normalsArray,
|
||
|
index,
|
||
|
segmentEndNormalScratch
|
||
|
);
|
||
|
|
||
|
miterBroken = breakMiter(endGeometryNormal, startBottom, endBottom, endTop);
|
||
|
|
||
|
// 2D - don't clone anything from previous segment b/c possible IDL touch
|
||
|
startCartographic.latitude = cartographicsArray[cartographicsIndex];
|
||
|
startCartographic.longitude = cartographicsArray[cartographicsIndex + 1];
|
||
|
endCartographic.latitude = cartographicsArray[cartographicsIndex + 2];
|
||
|
endCartographic.longitude = cartographicsArray[cartographicsIndex + 3];
|
||
|
let start2D;
|
||
|
let end2D;
|
||
|
let startGeometryNormal2D;
|
||
|
let endGeometryNormal2D;
|
||
|
|
||
|
if (compute2dAttributes) {
|
||
|
const nudgeResult = nudgeCartographic(startCartographic, endCartographic);
|
||
|
start2D = projection.project(startCartographic, segmentStart2DScratch);
|
||
|
end2D = projection.project(endCartographic, segmentEnd2DScratch);
|
||
|
const direction2D = direction(end2D, start2D, forwardOffset2DScratch);
|
||
|
direction2D.y = Math.abs(direction2D.y);
|
||
|
|
||
|
startGeometryNormal2D = segmentStartNormal2DScratch;
|
||
|
endGeometryNormal2D = segmentEndNormal2DScratch;
|
||
|
if (
|
||
|
nudgeResult === 0 ||
|
||
|
Matrix2.Cartesian3.dot(direction2D, Matrix2.Cartesian3.UNIT_Y) > MITER_BREAK_SMALL
|
||
|
) {
|
||
|
// No nudge - project the original normal
|
||
|
// Or, if the line's angle relative to the IDL is very acute,
|
||
|
// in which case snapping will produce oddly shaped volumes.
|
||
|
startGeometryNormal2D = projectNormal(
|
||
|
projection,
|
||
|
startCartographic,
|
||
|
startGeometryNormal,
|
||
|
start2D,
|
||
|
segmentStartNormal2DScratch
|
||
|
);
|
||
|
endGeometryNormal2D = projectNormal(
|
||
|
projection,
|
||
|
endCartographic,
|
||
|
endGeometryNormal,
|
||
|
end2D,
|
||
|
segmentEndNormal2DScratch
|
||
|
);
|
||
|
} else if (nudgeResult === 1) {
|
||
|
// Start is close to IDL - snap start normal to align with IDL
|
||
|
endGeometryNormal2D = projectNormal(
|
||
|
projection,
|
||
|
endCartographic,
|
||
|
endGeometryNormal,
|
||
|
end2D,
|
||
|
segmentEndNormal2DScratch
|
||
|
);
|
||
|
startGeometryNormal2D.x = 0.0;
|
||
|
// If start longitude is negative and end longitude is less negative, relative right is unit -Y
|
||
|
// If start longitude is positive and end longitude is less positive, relative right is unit +Y
|
||
|
startGeometryNormal2D.y = ComponentDatatype.CesiumMath.sign(
|
||
|
startCartographic.longitude - Math.abs(endCartographic.longitude)
|
||
|
);
|
||
|
startGeometryNormal2D.z = 0.0;
|
||
|
} else {
|
||
|
// End is close to IDL - snap end normal to align with IDL
|
||
|
startGeometryNormal2D = projectNormal(
|
||
|
projection,
|
||
|
startCartographic,
|
||
|
startGeometryNormal,
|
||
|
start2D,
|
||
|
segmentStartNormal2DScratch
|
||
|
);
|
||
|
endGeometryNormal2D.x = 0.0;
|
||
|
// If end longitude is negative and start longitude is less negative, relative right is unit Y
|
||
|
// If end longitude is positive and start longitude is less positive, relative right is unit -Y
|
||
|
endGeometryNormal2D.y = ComponentDatatype.CesiumMath.sign(
|
||
|
startCartographic.longitude - endCartographic.longitude
|
||
|
);
|
||
|
endGeometryNormal2D.z = 0.0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/****************************************
|
||
|
* Geometry descriptors of a "line on terrain,"
|
||
|
* as opposed to the "shadow volume used to draw
|
||
|
* the line on terrain":
|
||
|
* - position of start + offset to end
|
||
|
* - start, end, and right-facing planes
|
||
|
* - encoded texture coordinate offsets
|
||
|
****************************************/
|
||
|
|
||
|
/* 3D */
|
||
|
const segmentLength3D = Matrix2.Cartesian3.distance(startTop, endTop);
|
||
|
|
||
|
const encodedStart = EncodedCartesian3.EncodedCartesian3.fromCartesian(
|
||
|
startBottom,
|
||
|
encodeScratch
|
||
|
);
|
||
|
const forwardOffset = Matrix2.Cartesian3.subtract(
|
||
|
endBottom,
|
||
|
startBottom,
|
||
|
offsetScratch
|
||
|
);
|
||
|
const forward = Matrix2.Cartesian3.normalize(forwardOffset, rightScratch);
|
||
|
|
||
|
let startUp = Matrix2.Cartesian3.subtract(startTop, startBottom, startUpScratch);
|
||
|
startUp = Matrix2.Cartesian3.normalize(startUp, startUp);
|
||
|
let rightNormal = Matrix2.Cartesian3.cross(forward, startUp, rightScratch);
|
||
|
rightNormal = Matrix2.Cartesian3.normalize(rightNormal, rightNormal);
|
||
|
|
||
|
let startPlaneNormal = Matrix2.Cartesian3.cross(
|
||
|
startUp,
|
||
|
startGeometryNormal,
|
||
|
startPlaneNormalScratch
|
||
|
);
|
||
|
startPlaneNormal = Matrix2.Cartesian3.normalize(startPlaneNormal, startPlaneNormal);
|
||
|
|
||
|
let endUp = Matrix2.Cartesian3.subtract(endTop, endBottom, endUpScratch);
|
||
|
endUp = Matrix2.Cartesian3.normalize(endUp, endUp);
|
||
|
let endPlaneNormal = Matrix2.Cartesian3.cross(
|
||
|
endGeometryNormal,
|
||
|
endUp,
|
||
|
endPlaneNormalScratch
|
||
|
);
|
||
|
endPlaneNormal = Matrix2.Cartesian3.normalize(endPlaneNormal, endPlaneNormal);
|
||
|
|
||
|
const texcoordNormalization3DX = segmentLength3D / length3D;
|
||
|
const texcoordNormalization3DY = lengthSoFar3D / length3D;
|
||
|
|
||
|
/* 2D */
|
||
|
let segmentLength2D = 0.0;
|
||
|
let encodedStart2D;
|
||
|
let forwardOffset2D;
|
||
|
let right2D;
|
||
|
let texcoordNormalization2DX = 0.0;
|
||
|
let texcoordNormalization2DY = 0.0;
|
||
|
if (compute2dAttributes) {
|
||
|
segmentLength2D = Matrix2.Cartesian3.distance(start2D, end2D);
|
||
|
|
||
|
encodedStart2D = EncodedCartesian3.EncodedCartesian3.fromCartesian(
|
||
|
start2D,
|
||
|
encodeScratch2D
|
||
|
);
|
||
|
forwardOffset2D = Matrix2.Cartesian3.subtract(
|
||
|
end2D,
|
||
|
start2D,
|
||
|
forwardOffset2DScratch
|
||
|
);
|
||
|
|
||
|
// Right direction is just forward direction rotated by -90 degrees around Z
|
||
|
// Similarly with plane normals
|
||
|
right2D = Matrix2.Cartesian3.normalize(forwardOffset2D, right2DScratch);
|
||
|
const swap = right2D.x;
|
||
|
right2D.x = right2D.y;
|
||
|
right2D.y = -swap;
|
||
|
|
||
|
texcoordNormalization2DX = segmentLength2D / length2D;
|
||
|
texcoordNormalization2DY = lengthSoFar2D / length2D;
|
||
|
}
|
||
|
/** Pack **/
|
||
|
for (j = 0; j < 8; j++) {
|
||
|
const vec4Index = vec4sWriteIndex + j * 4;
|
||
|
const vec2Index = vec2sWriteIndex + j * 2;
|
||
|
const wIndex = vec4Index + 3;
|
||
|
|
||
|
// Encode sidedness of vertex relative to right plane in texture coordinate normalization X,
|
||
|
// whether vertex is top or bottom of volume in sign/magnitude of normalization Y.
|
||
|
const rightPlaneSide = j < 4 ? 1.0 : -1.0;
|
||
|
const topBottomSide =
|
||
|
j === 2 || j === 3 || j === 6 || j === 7 ? 1.0 : -1.0;
|
||
|
|
||
|
// 3D
|
||
|
Matrix2.Cartesian3.pack(encodedStart.high, startHiAndForwardOffsetX, vec4Index);
|
||
|
startHiAndForwardOffsetX[wIndex] = forwardOffset.x;
|
||
|
|
||
|
Matrix2.Cartesian3.pack(encodedStart.low, startLoAndForwardOffsetY, vec4Index);
|
||
|
startLoAndForwardOffsetY[wIndex] = forwardOffset.y;
|
||
|
|
||
|
Matrix2.Cartesian3.pack(
|
||
|
startPlaneNormal,
|
||
|
startNormalAndForwardOffsetZ,
|
||
|
vec4Index
|
||
|
);
|
||
|
startNormalAndForwardOffsetZ[wIndex] = forwardOffset.z;
|
||
|
|
||
|
Matrix2.Cartesian3.pack(
|
||
|
endPlaneNormal,
|
||
|
endNormalAndTextureCoordinateNormalizationX,
|
||
|
vec4Index
|
||
|
);
|
||
|
endNormalAndTextureCoordinateNormalizationX[wIndex] =
|
||
|
texcoordNormalization3DX * rightPlaneSide;
|
||
|
|
||
|
Matrix2.Cartesian3.pack(
|
||
|
rightNormal,
|
||
|
rightNormalAndTextureCoordinateNormalizationY,
|
||
|
vec4Index
|
||
|
);
|
||
|
|
||
|
let texcoordNormalization = texcoordNormalization3DY * topBottomSide;
|
||
|
if (texcoordNormalization === 0.0 && topBottomSide < 0.0) {
|
||
|
texcoordNormalization = 9.0; // some value greater than 1.0
|
||
|
}
|
||
|
rightNormalAndTextureCoordinateNormalizationY[
|
||
|
wIndex
|
||
|
] = texcoordNormalization;
|
||
|
|
||
|
// 2D
|
||
|
if (compute2dAttributes) {
|
||
|
startHiLo2D[vec4Index] = encodedStart2D.high.x;
|
||
|
startHiLo2D[vec4Index + 1] = encodedStart2D.high.y;
|
||
|
startHiLo2D[vec4Index + 2] = encodedStart2D.low.x;
|
||
|
startHiLo2D[vec4Index + 3] = encodedStart2D.low.y;
|
||
|
|
||
|
startEndNormals2D[vec4Index] = -startGeometryNormal2D.y;
|
||
|
startEndNormals2D[vec4Index + 1] = startGeometryNormal2D.x;
|
||
|
startEndNormals2D[vec4Index + 2] = endGeometryNormal2D.y;
|
||
|
startEndNormals2D[vec4Index + 3] = -endGeometryNormal2D.x;
|
||
|
|
||
|
offsetAndRight2D[vec4Index] = forwardOffset2D.x;
|
||
|
offsetAndRight2D[vec4Index + 1] = forwardOffset2D.y;
|
||
|
offsetAndRight2D[vec4Index + 2] = right2D.x;
|
||
|
offsetAndRight2D[vec4Index + 3] = right2D.y;
|
||
|
|
||
|
texcoordNormalization2D[vec2Index] =
|
||
|
texcoordNormalization2DX * rightPlaneSide;
|
||
|
|
||
|
texcoordNormalization = texcoordNormalization2DY * topBottomSide;
|
||
|
if (texcoordNormalization === 0.0 && topBottomSide < 0.0) {
|
||
|
texcoordNormalization = 9.0; // some value greater than 1.0
|
||
|
}
|
||
|
texcoordNormalization2D[vec2Index + 1] = texcoordNormalization;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Adjust height of volume in 3D
|
||
|
const adjustHeightStartBottom = adjustHeightStartBottomScratch;
|
||
|
const adjustHeightEndBottom = adjustHeightEndBottomScratch;
|
||
|
const adjustHeightStartTop = adjustHeightStartTopScratch;
|
||
|
const adjustHeightEndTop = adjustHeightEndTopScratch;
|
||
|
|
||
|
const getHeightsRectangle = Matrix2.Rectangle.fromCartographicArray(
|
||
|
getHeightCartographics,
|
||
|
getHeightRectangleScratch
|
||
|
);
|
||
|
const minMaxHeights = ApproximateTerrainHeights.getMinimumMaximumHeights(
|
||
|
getHeightsRectangle,
|
||
|
ellipsoid
|
||
|
);
|
||
|
const minHeight = minMaxHeights.minimumTerrainHeight;
|
||
|
const maxHeight = minMaxHeights.maximumTerrainHeight;
|
||
|
|
||
|
sumHeights += minHeight;
|
||
|
sumHeights += maxHeight;
|
||
|
|
||
|
adjustHeights(
|
||
|
startBottom,
|
||
|
startTop,
|
||
|
minHeight,
|
||
|
maxHeight,
|
||
|
adjustHeightStartBottom,
|
||
|
adjustHeightStartTop
|
||
|
);
|
||
|
adjustHeights(
|
||
|
endBottom,
|
||
|
endTop,
|
||
|
minHeight,
|
||
|
maxHeight,
|
||
|
adjustHeightEndBottom,
|
||
|
adjustHeightEndTop
|
||
|
);
|
||
|
|
||
|
// Nudge the positions away from the "polyline" a little bit to prevent errors in GeometryPipeline
|
||
|
let normalNudge = Matrix2.Cartesian3.multiplyByScalar(
|
||
|
rightNormal,
|
||
|
ComponentDatatype.CesiumMath.EPSILON5,
|
||
|
normalNudgeScratch
|
||
|
);
|
||
|
Matrix2.Cartesian3.add(
|
||
|
adjustHeightStartBottom,
|
||
|
normalNudge,
|
||
|
adjustHeightStartBottom
|
||
|
);
|
||
|
Matrix2.Cartesian3.add(adjustHeightEndBottom, normalNudge, adjustHeightEndBottom);
|
||
|
Matrix2.Cartesian3.add(adjustHeightStartTop, normalNudge, adjustHeightStartTop);
|
||
|
Matrix2.Cartesian3.add(adjustHeightEndTop, normalNudge, adjustHeightEndTop);
|
||
|
|
||
|
// If the segment is very close to the XZ plane, nudge the vertices slightly to avoid touching it.
|
||
|
nudgeXZ(adjustHeightStartBottom, adjustHeightEndBottom);
|
||
|
nudgeXZ(adjustHeightStartTop, adjustHeightEndTop);
|
||
|
|
||
|
Matrix2.Cartesian3.pack(adjustHeightStartBottom, positionsArray, vec3sWriteIndex);
|
||
|
Matrix2.Cartesian3.pack(adjustHeightEndBottom, positionsArray, vec3sWriteIndex + 3);
|
||
|
Matrix2.Cartesian3.pack(adjustHeightEndTop, positionsArray, vec3sWriteIndex + 6);
|
||
|
Matrix2.Cartesian3.pack(adjustHeightStartTop, positionsArray, vec3sWriteIndex + 9);
|
||
|
|
||
|
normalNudge = Matrix2.Cartesian3.multiplyByScalar(
|
||
|
rightNormal,
|
||
|
-2.0 * ComponentDatatype.CesiumMath.EPSILON5,
|
||
|
normalNudgeScratch
|
||
|
);
|
||
|
Matrix2.Cartesian3.add(
|
||
|
adjustHeightStartBottom,
|
||
|
normalNudge,
|
||
|
adjustHeightStartBottom
|
||
|
);
|
||
|
Matrix2.Cartesian3.add(adjustHeightEndBottom, normalNudge, adjustHeightEndBottom);
|
||
|
Matrix2.Cartesian3.add(adjustHeightStartTop, normalNudge, adjustHeightStartTop);
|
||
|
Matrix2.Cartesian3.add(adjustHeightEndTop, normalNudge, adjustHeightEndTop);
|
||
|
|
||
|
nudgeXZ(adjustHeightStartBottom, adjustHeightEndBottom);
|
||
|
nudgeXZ(adjustHeightStartTop, adjustHeightEndTop);
|
||
|
|
||
|
Matrix2.Cartesian3.pack(
|
||
|
adjustHeightStartBottom,
|
||
|
positionsArray,
|
||
|
vec3sWriteIndex + 12
|
||
|
);
|
||
|
Matrix2.Cartesian3.pack(
|
||
|
adjustHeightEndBottom,
|
||
|
positionsArray,
|
||
|
vec3sWriteIndex + 15
|
||
|
);
|
||
|
Matrix2.Cartesian3.pack(adjustHeightEndTop, positionsArray, vec3sWriteIndex + 18);
|
||
|
Matrix2.Cartesian3.pack(adjustHeightStartTop, positionsArray, vec3sWriteIndex + 21);
|
||
|
|
||
|
cartographicsIndex += 2;
|
||
|
index += 3;
|
||
|
|
||
|
vec2sWriteIndex += 16;
|
||
|
vec3sWriteIndex += 24;
|
||
|
vec4sWriteIndex += 32;
|
||
|
|
||
|
lengthSoFar3D += segmentLength3D;
|
||
|
lengthSoFar2D += segmentLength2D;
|
||
|
}
|
||
|
|
||
|
index = 0;
|
||
|
let indexOffset = 0;
|
||
|
for (i = 0; i < segmentCount; i++) {
|
||
|
for (j = 0; j < REFERENCE_INDICES_LENGTH; j++) {
|
||
|
indices[index + j] = REFERENCE_INDICES[j] + indexOffset;
|
||
|
}
|
||
|
indexOffset += 8;
|
||
|
index += REFERENCE_INDICES_LENGTH;
|
||
|
}
|
||
|
|
||
|
const boundingSpheres = scratchBoundingSpheres;
|
||
|
Transforms.BoundingSphere.fromVertices(
|
||
|
bottomPositionsArray,
|
||
|
Matrix2.Cartesian3.ZERO,
|
||
|
3,
|
||
|
boundingSpheres[0]
|
||
|
);
|
||
|
Transforms.BoundingSphere.fromVertices(
|
||
|
topPositionsArray,
|
||
|
Matrix2.Cartesian3.ZERO,
|
||
|
3,
|
||
|
boundingSpheres[1]
|
||
|
);
|
||
|
const boundingSphere = Transforms.BoundingSphere.fromBoundingSpheres(boundingSpheres);
|
||
|
|
||
|
// Adjust bounding sphere height and radius to cover more of the volume
|
||
|
boundingSphere.radius += sumHeights / (segmentCount * 2.0);
|
||
|
|
||
|
const attributes = {
|
||
|
position: new GeometryAttribute.GeometryAttribute({
|
||
|
componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
|
||
|
componentsPerAttribute: 3,
|
||
|
normalize: false,
|
||
|
values: positionsArray,
|
||
|
}),
|
||
|
startHiAndForwardOffsetX: getVec4GeometryAttribute(
|
||
|
startHiAndForwardOffsetX
|
||
|
),
|
||
|
startLoAndForwardOffsetY: getVec4GeometryAttribute(
|
||
|
startLoAndForwardOffsetY
|
||
|
),
|
||
|
startNormalAndForwardOffsetZ: getVec4GeometryAttribute(
|
||
|
startNormalAndForwardOffsetZ
|
||
|
),
|
||
|
endNormalAndTextureCoordinateNormalizationX: getVec4GeometryAttribute(
|
||
|
endNormalAndTextureCoordinateNormalizationX
|
||
|
),
|
||
|
rightNormalAndTextureCoordinateNormalizationY: getVec4GeometryAttribute(
|
||
|
rightNormalAndTextureCoordinateNormalizationY
|
||
|
),
|
||
|
};
|
||
|
|
||
|
if (compute2dAttributes) {
|
||
|
attributes.startHiLo2D = getVec4GeometryAttribute(startHiLo2D);
|
||
|
attributes.offsetAndRight2D = getVec4GeometryAttribute(offsetAndRight2D);
|
||
|
attributes.startEndNormals2D = getVec4GeometryAttribute(startEndNormals2D);
|
||
|
attributes.texcoordNormalization2D = new GeometryAttribute.GeometryAttribute({
|
||
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
||
|
componentsPerAttribute: 2,
|
||
|
normalize: false,
|
||
|
values: texcoordNormalization2D,
|
||
|
});
|
||
|
}
|
||
|
|
||
|
return new GeometryAttribute.Geometry({
|
||
|
attributes: attributes,
|
||
|
indices: indices,
|
||
|
boundingSphere: boundingSphere,
|
||
|
});
|
||
|
}
|
||
|
|
||
|
function getVec4GeometryAttribute(typedArray) {
|
||
|
return new GeometryAttribute.GeometryAttribute({
|
||
|
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
|
||
|
componentsPerAttribute: 4,
|
||
|
normalize: false,
|
||
|
values: typedArray,
|
||
|
});
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Approximates an ellipsoid-tangent vector in 2D by projecting the end point into 2D.
|
||
|
* Exposed for testing.
|
||
|
*
|
||
|
* @param {MapProjection} projection Map Projection for projecting coordinates to 2D.
|
||
|
* @param {Cartographic} cartographic The cartographic origin point of the normal.
|
||
|
* Used to check if the normal crosses the IDL during projection.
|
||
|
* @param {Cartesian3} normal The normal in 3D.
|
||
|
* @param {Cartesian3} projectedPosition The projected origin point of the normal in 2D.
|
||
|
* @param {Cartesian3} result Result parameter on which to store the projected normal.
|
||
|
* @private
|
||
|
*/
|
||
|
GroundPolylineGeometry._projectNormal = projectNormal;
|
||
|
|
||
|
function createGroundPolylineGeometry(groundPolylineGeometry, offset) {
|
||
|
return ApproximateTerrainHeights.initialize().then(function () {
|
||
|
if (when.defined(offset)) {
|
||
|
groundPolylineGeometry = GroundPolylineGeometry.unpack(
|
||
|
groundPolylineGeometry,
|
||
|
offset
|
||
|
);
|
||
|
}
|
||
|
return GroundPolylineGeometry.createGeometry(groundPolylineGeometry);
|
||
|
});
|
||
|
}
|
||
|
|
||
|
return createGroundPolylineGeometry;
|
||
|
|
||
|
}));
|
||
|
//# sourceMappingURL=createGroundPolylineGeometry.js.map
|