qd-changjing/public/static/Build/CesiumUnminified/Workers/createPolygonGeometry.js

1368 lines
50 KiB
JavaScript
Raw Normal View History

2022-07-05 16:56:29 +08:00
/**
* Cesium - https://github.com/CesiumGS/cesium
*
* Copyright 2011-2020 Cesium Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Columbus View (Pat. Pend.)
*
* Portions licensed separately.
* See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
*/
define(['./when-4bbc8319', './Matrix2-265d9610', './ArcType-fc72c06c', './GeometryOffsetAttribute-7e016332', './BoundingRectangle-8f2409a1', './Transforms-8b90e17c', './RuntimeError-5b082e8f', './ComponentDatatype-aad54330', './EllipsoidGeodesic-ed024f16', './EllipsoidTangentPlane-f1a69a20', './GeometryAttribute-4bcb785f', './GeometryInstance-d57564f8', './GeometryPipeline-e93f6439', './IndexDatatype-6739e544', './PolygonGeometryLibrary-e329b948', './PolygonPipeline-5fd67ae2', './VertexFormat-07539138', './combine-e9466e32', './WebGLConstants-508b9636', './AxisAlignedBoundingBox-2a0ca7ef', './IntersectionTests-596e31ec', './Plane-616c9c0a', './AttributeCompression-442278a0', './EncodedCartesian3-da8f96bc', './arrayRemoveDuplicates-65de6756', './EllipsoidRhumbLine-d09d563f', './GeometryAttributes-7827a6c2'], (function (when, Matrix2, ArcType, GeometryOffsetAttribute, BoundingRectangle, Transforms, RuntimeError, ComponentDatatype, EllipsoidGeodesic, EllipsoidTangentPlane, GeometryAttribute, GeometryInstance, GeometryPipeline, IndexDatatype, PolygonGeometryLibrary, PolygonPipeline, VertexFormat, combine, WebGLConstants, AxisAlignedBoundingBox, IntersectionTests, Plane, AttributeCompression, EncodedCartesian3, arrayRemoveDuplicates, EllipsoidRhumbLine, GeometryAttributes) { 'use strict';
const scratchCarto1 = new Matrix2.Cartographic();
const scratchCarto2 = new Matrix2.Cartographic();
function adjustPosHeightsForNormal(position, p1, p2, ellipsoid) {
const carto1 = ellipsoid.cartesianToCartographic(position, scratchCarto1);
const height = carto1.height;
const p1Carto = ellipsoid.cartesianToCartographic(p1, scratchCarto2);
p1Carto.height = height;
ellipsoid.cartographicToCartesian(p1Carto, p1);
const p2Carto = ellipsoid.cartesianToCartographic(p2, scratchCarto2);
p2Carto.height = height - 100;
ellipsoid.cartographicToCartesian(p2Carto, p2);
}
const scratchBoundingRectangle = new BoundingRectangle.BoundingRectangle();
const scratchPosition = new Matrix2.Cartesian3();
const scratchNormal = new Matrix2.Cartesian3();
const scratchTangent = new Matrix2.Cartesian3();
const scratchBitangent = new Matrix2.Cartesian3();
const p1Scratch = new Matrix2.Cartesian3();
const p2Scratch = new Matrix2.Cartesian3();
let scratchPerPosNormal = new Matrix2.Cartesian3();
let scratchPerPosTangent = new Matrix2.Cartesian3();
let scratchPerPosBitangent = new Matrix2.Cartesian3();
const appendTextureCoordinatesOrigin = new Matrix2.Cartesian2();
const appendTextureCoordinatesCartesian2 = new Matrix2.Cartesian2();
const appendTextureCoordinatesCartesian3 = new Matrix2.Cartesian3();
const appendTextureCoordinatesQuaternion = new Transforms.Quaternion();
const appendTextureCoordinatesMatrix3 = new Matrix2.Matrix3();
const tangentMatrixScratch = new Matrix2.Matrix3();
function computeAttributes(options) {
const vertexFormat = options.vertexFormat;
const geometry = options.geometry;
const shadowVolume = options.shadowVolume;
const flatPositions = geometry.attributes.position.values;
let length = flatPositions.length;
const wall = options.wall;
const top = options.top || wall;
const bottom = options.bottom || wall;
if (
vertexFormat.st ||
vertexFormat.normal ||
vertexFormat.tangent ||
vertexFormat.bitangent ||
shadowVolume
) {
// PERFORMANCE_IDEA: Compute before subdivision, then just interpolate during subdivision.
// PERFORMANCE_IDEA: Compute with createGeometryFromPositions() for fast path when there's no holes.
const boundingRectangle = options.boundingRectangle;
const tangentPlane = options.tangentPlane;
const ellipsoid = options.ellipsoid;
const stRotation = options.stRotation;
const perPositionHeight = options.perPositionHeight;
const origin = appendTextureCoordinatesOrigin;
origin.x = boundingRectangle.x;
origin.y = boundingRectangle.y;
const textureCoordinates = vertexFormat.st
? new Float32Array(2 * (length / 3))
: undefined;
let normals;
if (vertexFormat.normal) {
if (perPositionHeight && top && !wall) {
normals = geometry.attributes.normal.values;
} else {
normals = new Float32Array(length);
}
}
const tangents = vertexFormat.tangent
? new Float32Array(length)
: undefined;
const bitangents = vertexFormat.bitangent
? new Float32Array(length)
: undefined;
const extrudeNormals = shadowVolume ? new Float32Array(length) : undefined;
let textureCoordIndex = 0;
let attrIndex = 0;
let normal = scratchNormal;
let tangent = scratchTangent;
let bitangent = scratchBitangent;
let recomputeNormal = true;
let textureMatrix = appendTextureCoordinatesMatrix3;
let tangentRotationMatrix = tangentMatrixScratch;
if (stRotation !== 0.0) {
let rotation = Transforms.Quaternion.fromAxisAngle(
tangentPlane._plane.normal,
stRotation,
appendTextureCoordinatesQuaternion
);
textureMatrix = Matrix2.Matrix3.fromQuaternion(rotation, textureMatrix);
rotation = Transforms.Quaternion.fromAxisAngle(
tangentPlane._plane.normal,
-stRotation,
appendTextureCoordinatesQuaternion
);
tangentRotationMatrix = Matrix2.Matrix3.fromQuaternion(
rotation,
tangentRotationMatrix
);
} else {
textureMatrix = Matrix2.Matrix3.clone(Matrix2.Matrix3.IDENTITY, textureMatrix);
tangentRotationMatrix = Matrix2.Matrix3.clone(
Matrix2.Matrix3.IDENTITY,
tangentRotationMatrix
);
}
let bottomOffset = 0;
let bottomOffset2 = 0;
if (top && bottom) {
bottomOffset = length / 2;
bottomOffset2 = length / 3;
length /= 2;
}
for (let i = 0; i < length; i += 3) {
const position = Matrix2.Cartesian3.fromArray(
flatPositions,
i,
appendTextureCoordinatesCartesian3
);
if (vertexFormat.st) {
let p = Matrix2.Matrix3.multiplyByVector(
textureMatrix,
position,
scratchPosition
);
p = ellipsoid.scaleToGeodeticSurface(p, p);
const st = tangentPlane.projectPointOntoPlane(
p,
appendTextureCoordinatesCartesian2
);
Matrix2.Cartesian2.subtract(st, origin, st);
const stx = ComponentDatatype.CesiumMath.clamp(st.x / boundingRectangle.width, 0, 1);
const sty = ComponentDatatype.CesiumMath.clamp(st.y / boundingRectangle.height, 0, 1);
if (bottom) {
textureCoordinates[textureCoordIndex + bottomOffset2] = stx;
textureCoordinates[textureCoordIndex + 1 + bottomOffset2] = sty;
}
if (top) {
textureCoordinates[textureCoordIndex] = stx;
textureCoordinates[textureCoordIndex + 1] = sty;
}
textureCoordIndex += 2;
}
if (
vertexFormat.normal ||
vertexFormat.tangent ||
vertexFormat.bitangent ||
shadowVolume
) {
const attrIndex1 = attrIndex + 1;
const attrIndex2 = attrIndex + 2;
if (wall) {
if (i + 3 < length) {
const p1 = Matrix2.Cartesian3.fromArray(flatPositions, i + 3, p1Scratch);
if (recomputeNormal) {
const p2 = Matrix2.Cartesian3.fromArray(
flatPositions,
i + length,
p2Scratch
);
if (perPositionHeight) {
adjustPosHeightsForNormal(position, p1, p2, ellipsoid);
}
Matrix2.Cartesian3.subtract(p1, position, p1);
Matrix2.Cartesian3.subtract(p2, position, p2);
normal = Matrix2.Cartesian3.normalize(
Matrix2.Cartesian3.cross(p2, p1, normal),
normal
);
recomputeNormal = false;
}
if (Matrix2.Cartesian3.equalsEpsilon(p1, position, ComponentDatatype.CesiumMath.EPSILON10)) {
// if we've reached a corner
recomputeNormal = true;
}
}
if (vertexFormat.tangent || vertexFormat.bitangent) {
bitangent = ellipsoid.geodeticSurfaceNormal(position, bitangent);
if (vertexFormat.tangent) {
tangent = Matrix2.Cartesian3.normalize(
Matrix2.Cartesian3.cross(bitangent, normal, tangent),
tangent
);
}
}
} else {
normal = ellipsoid.geodeticSurfaceNormal(position, normal);
if (vertexFormat.tangent || vertexFormat.bitangent) {
if (perPositionHeight) {
scratchPerPosNormal = Matrix2.Cartesian3.fromArray(
normals,
attrIndex,
scratchPerPosNormal
);
scratchPerPosTangent = Matrix2.Cartesian3.cross(
Matrix2.Cartesian3.UNIT_Z,
scratchPerPosNormal,
scratchPerPosTangent
);
scratchPerPosTangent = Matrix2.Cartesian3.normalize(
Matrix2.Matrix3.multiplyByVector(
tangentRotationMatrix,
scratchPerPosTangent,
scratchPerPosTangent
),
scratchPerPosTangent
);
if (vertexFormat.bitangent) {
scratchPerPosBitangent = Matrix2.Cartesian3.normalize(
Matrix2.Cartesian3.cross(
scratchPerPosNormal,
scratchPerPosTangent,
scratchPerPosBitangent
),
scratchPerPosBitangent
);
}
}
tangent = Matrix2.Cartesian3.cross(Matrix2.Cartesian3.UNIT_Z, normal, tangent);
tangent = Matrix2.Cartesian3.normalize(
Matrix2.Matrix3.multiplyByVector(tangentRotationMatrix, tangent, tangent),
tangent
);
if (vertexFormat.bitangent) {
bitangent = Matrix2.Cartesian3.normalize(
Matrix2.Cartesian3.cross(normal, tangent, bitangent),
bitangent
);
}
}
}
if (vertexFormat.normal) {
if (options.wall) {
normals[attrIndex + bottomOffset] = normal.x;
normals[attrIndex1 + bottomOffset] = normal.y;
normals[attrIndex2 + bottomOffset] = normal.z;
} else if (bottom) {
normals[attrIndex + bottomOffset] = -normal.x;
normals[attrIndex1 + bottomOffset] = -normal.y;
normals[attrIndex2 + bottomOffset] = -normal.z;
}
if ((top && !perPositionHeight) || wall) {
normals[attrIndex] = normal.x;
normals[attrIndex1] = normal.y;
normals[attrIndex2] = normal.z;
}
}
if (shadowVolume) {
if (wall) {
normal = ellipsoid.geodeticSurfaceNormal(position, normal);
}
extrudeNormals[attrIndex + bottomOffset] = -normal.x;
extrudeNormals[attrIndex1 + bottomOffset] = -normal.y;
extrudeNormals[attrIndex2 + bottomOffset] = -normal.z;
}
if (vertexFormat.tangent) {
if (options.wall) {
tangents[attrIndex + bottomOffset] = tangent.x;
tangents[attrIndex1 + bottomOffset] = tangent.y;
tangents[attrIndex2 + bottomOffset] = tangent.z;
} else if (bottom) {
tangents[attrIndex + bottomOffset] = -tangent.x;
tangents[attrIndex1 + bottomOffset] = -tangent.y;
tangents[attrIndex2 + bottomOffset] = -tangent.z;
}
if (top) {
if (perPositionHeight) {
tangents[attrIndex] = scratchPerPosTangent.x;
tangents[attrIndex1] = scratchPerPosTangent.y;
tangents[attrIndex2] = scratchPerPosTangent.z;
} else {
tangents[attrIndex] = tangent.x;
tangents[attrIndex1] = tangent.y;
tangents[attrIndex2] = tangent.z;
}
}
}
if (vertexFormat.bitangent) {
if (bottom) {
bitangents[attrIndex + bottomOffset] = bitangent.x;
bitangents[attrIndex1 + bottomOffset] = bitangent.y;
bitangents[attrIndex2 + bottomOffset] = bitangent.z;
}
if (top) {
if (perPositionHeight) {
bitangents[attrIndex] = scratchPerPosBitangent.x;
bitangents[attrIndex1] = scratchPerPosBitangent.y;
bitangents[attrIndex2] = scratchPerPosBitangent.z;
} else {
bitangents[attrIndex] = bitangent.x;
bitangents[attrIndex1] = bitangent.y;
bitangents[attrIndex2] = bitangent.z;
}
}
}
attrIndex += 3;
}
}
if (vertexFormat.st) {
geometry.attributes.st = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: textureCoordinates,
});
}
if (vertexFormat.normal) {
geometry.attributes.normal = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: normals,
});
}
if (vertexFormat.tangent) {
geometry.attributes.tangent = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: tangents,
});
}
if (vertexFormat.bitangent) {
geometry.attributes.bitangent = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: bitangents,
});
}
if (shadowVolume) {
geometry.attributes.extrudeDirection = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: extrudeNormals,
});
}
}
if (options.extrude && when.defined(options.offsetAttribute)) {
const size = flatPositions.length / 3;
let offsetAttribute = new Uint8Array(size);
if (options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP) {
if ((top && bottom) || wall) {
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, 1, 0, size / 2);
} else if (top) {
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, 1);
}
} else {
const offsetValue =
options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1;
offsetAttribute = GeometryOffsetAttribute.arrayFill(offsetAttribute, offsetValue);
}
geometry.attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: offsetAttribute,
});
}
return geometry;
}
const startCartographicScratch = new Matrix2.Cartographic();
const endCartographicScratch = new Matrix2.Cartographic();
const idlCross = {
westOverIDL: 0.0,
eastOverIDL: 0.0,
};
let ellipsoidGeodesic = new EllipsoidGeodesic.EllipsoidGeodesic();
function computeRectangle(positions, ellipsoid, arcType, granularity, result) {
result = when.defaultValue(result, new Matrix2.Rectangle());
if (!when.defined(positions) || positions.length < 3) {
result.west = 0.0;
result.north = 0.0;
result.south = 0.0;
result.east = 0.0;
return result;
}
if (arcType === ArcType.ArcType.RHUMB) {
return Matrix2.Rectangle.fromCartesianArray(positions, ellipsoid, result);
}
if (!ellipsoidGeodesic.ellipsoid.equals(ellipsoid)) {
ellipsoidGeodesic = new EllipsoidGeodesic.EllipsoidGeodesic(undefined, undefined, ellipsoid);
}
result.west = Number.POSITIVE_INFINITY;
result.east = Number.NEGATIVE_INFINITY;
result.south = Number.POSITIVE_INFINITY;
result.north = Number.NEGATIVE_INFINITY;
idlCross.westOverIDL = Number.POSITIVE_INFINITY;
idlCross.eastOverIDL = Number.NEGATIVE_INFINITY;
const inverseChordLength =
1.0 / ComponentDatatype.CesiumMath.chordLength(granularity, ellipsoid.maximumRadius);
const positionsLength = positions.length;
let endCartographic = ellipsoid.cartesianToCartographic(
positions[0],
endCartographicScratch
);
let startCartographic = startCartographicScratch;
let swap;
for (let i = 1; i < positionsLength; i++) {
swap = startCartographic;
startCartographic = endCartographic;
endCartographic = ellipsoid.cartesianToCartographic(positions[i], swap);
ellipsoidGeodesic.setEndPoints(startCartographic, endCartographic);
interpolateAndGrowRectangle(
ellipsoidGeodesic,
inverseChordLength,
result,
idlCross
);
}
swap = startCartographic;
startCartographic = endCartographic;
endCartographic = ellipsoid.cartesianToCartographic(positions[0], swap);
ellipsoidGeodesic.setEndPoints(startCartographic, endCartographic);
interpolateAndGrowRectangle(
ellipsoidGeodesic,
inverseChordLength,
result,
idlCross
);
if (result.east - result.west > idlCross.eastOverIDL - idlCross.westOverIDL) {
result.west = idlCross.westOverIDL;
result.east = idlCross.eastOverIDL;
if (result.east > ComponentDatatype.CesiumMath.PI) {
result.east = result.east - ComponentDatatype.CesiumMath.TWO_PI;
}
if (result.west > ComponentDatatype.CesiumMath.PI) {
result.west = result.west - ComponentDatatype.CesiumMath.TWO_PI;
}
}
return result;
}
const interpolatedCartographicScratch = new Matrix2.Cartographic();
function interpolateAndGrowRectangle(
ellipsoidGeodesic,
inverseChordLength,
result,
idlCross
) {
const segmentLength = ellipsoidGeodesic.surfaceDistance;
const numPoints = Math.ceil(segmentLength * inverseChordLength);
const subsegmentDistance =
numPoints > 0 ? segmentLength / (numPoints - 1) : Number.POSITIVE_INFINITY;
let interpolationDistance = 0.0;
for (let i = 0; i < numPoints; i++) {
const interpolatedCartographic = ellipsoidGeodesic.interpolateUsingSurfaceDistance(
interpolationDistance,
interpolatedCartographicScratch
);
interpolationDistance += subsegmentDistance;
const longitude = interpolatedCartographic.longitude;
const latitude = interpolatedCartographic.latitude;
result.west = Math.min(result.west, longitude);
result.east = Math.max(result.east, longitude);
result.south = Math.min(result.south, latitude);
result.north = Math.max(result.north, latitude);
const lonAdjusted =
longitude >= 0 ? longitude : longitude + ComponentDatatype.CesiumMath.TWO_PI;
idlCross.westOverIDL = Math.min(idlCross.westOverIDL, lonAdjusted);
idlCross.eastOverIDL = Math.max(idlCross.eastOverIDL, lonAdjusted);
}
}
const createGeometryFromPositionsExtrudedPositions = [];
function createGeometryFromPositionsExtruded(
ellipsoid,
polygon,
granularity,
hierarchy,
perPositionHeight,
closeTop,
closeBottom,
vertexFormat,
arcType
) {
const geos = {
walls: [],
};
let i;
if (closeTop || closeBottom) {
const topGeo = PolygonGeometryLibrary.PolygonGeometryLibrary.createGeometryFromPositions(
ellipsoid,
polygon,
granularity,
perPositionHeight,
vertexFormat,
arcType
);
const edgePoints = topGeo.attributes.position.values;
const indices = topGeo.indices;
let numPositions;
let newIndices;
if (closeTop && closeBottom) {
const topBottomPositions = edgePoints.concat(edgePoints);
numPositions = topBottomPositions.length / 3;
newIndices = IndexDatatype.IndexDatatype.createTypedArray(
numPositions,
indices.length * 2
);
newIndices.set(indices);
const ilength = indices.length;
const length = numPositions / 2;
for (i = 0; i < ilength; i += 3) {
const i0 = newIndices[i] + length;
const i1 = newIndices[i + 1] + length;
const i2 = newIndices[i + 2] + length;
newIndices[i + ilength] = i2;
newIndices[i + 1 + ilength] = i1;
newIndices[i + 2 + ilength] = i0;
}
topGeo.attributes.position.values = topBottomPositions;
if (perPositionHeight && vertexFormat.normal) {
const normals = topGeo.attributes.normal.values;
topGeo.attributes.normal.values = new Float32Array(
topBottomPositions.length
);
topGeo.attributes.normal.values.set(normals);
}
topGeo.indices = newIndices;
} else if (closeBottom) {
numPositions = edgePoints.length / 3;
newIndices = IndexDatatype.IndexDatatype.createTypedArray(numPositions, indices.length);
for (i = 0; i < indices.length; i += 3) {
newIndices[i] = indices[i + 2];
newIndices[i + 1] = indices[i + 1];
newIndices[i + 2] = indices[i];
}
topGeo.indices = newIndices;
}
geos.topAndBottom = new GeometryInstance.GeometryInstance({
geometry: topGeo,
});
}
let outerRing = hierarchy.outerRing;
let tangentPlane = EllipsoidTangentPlane.EllipsoidTangentPlane.fromPoints(outerRing, ellipsoid);
let positions2D = tangentPlane.projectPointsOntoPlane(
outerRing,
createGeometryFromPositionsExtrudedPositions
);
let windingOrder = PolygonPipeline.PolygonPipeline.computeWindingOrder2D(positions2D);
if (windingOrder === PolygonPipeline.WindingOrder.CLOCKWISE) {
outerRing = outerRing.slice().reverse();
}
let wallGeo = PolygonGeometryLibrary.PolygonGeometryLibrary.computeWallGeometry(
outerRing,
ellipsoid,
granularity,
perPositionHeight,
arcType
);
geos.walls.push(
new GeometryInstance.GeometryInstance({
geometry: wallGeo,
})
);
const holes = hierarchy.holes;
for (i = 0; i < holes.length; i++) {
let hole = holes[i];
tangentPlane = EllipsoidTangentPlane.EllipsoidTangentPlane.fromPoints(hole, ellipsoid);
positions2D = tangentPlane.projectPointsOntoPlane(
hole,
createGeometryFromPositionsExtrudedPositions
);
windingOrder = PolygonPipeline.PolygonPipeline.computeWindingOrder2D(positions2D);
if (windingOrder === PolygonPipeline.WindingOrder.COUNTER_CLOCKWISE) {
hole = hole.slice().reverse();
}
wallGeo = PolygonGeometryLibrary.PolygonGeometryLibrary.computeWallGeometry(
hole,
ellipsoid,
granularity,
perPositionHeight,
arcType
);
geos.walls.push(
new GeometryInstance.GeometryInstance({
geometry: wallGeo,
})
);
}
return geos;
}
/**
* A description of a polygon on the ellipsoid. The polygon is defined by a polygon hierarchy. Polygon geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}.
*
* @alias PolygonGeometry
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {PolygonHierarchy} options.polygonHierarchy A polygon hierarchy that can include holes.
* @param {Number} [options.height=0.0] The distance in meters between the polygon and the ellipsoid surface.
* @param {Number} [options.extrudedHeight] The distance in meters between the polygon's extruded face and the ellipsoid surface.
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
* @param {Number} [options.stRotation=0.0] The rotation of the texture coordinates, in radians. A positive rotation is counter-clockwise.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference.
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
* @param {Boolean} [options.perPositionHeight=false] Use the height of options.positions for each position instead of using options.height to determine the height.
* @param {Boolean} [options.closeTop=true] When false, leaves off the top of an extruded polygon open.
* @param {Boolean} [options.closeBottom=true] When false, leaves off the bottom of an extruded polygon open.
* @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polygon edges must follow. Valid options are {@link ArcType.GEODESIC} and {@link ArcType.RHUMB}.
*
* @see PolygonGeometry#createGeometry
* @see PolygonGeometry#fromPositions
*
* @demo {@link https://sandcastle.cesium.com/index.html?src=Polygon.html|Cesium Sandcastle Polygon Demo}
*
* @example
* // 1. create a polygon from points
* const polygon = new Cesium.PolygonGeometry({
* polygonHierarchy : new Cesium.PolygonHierarchy(
* Cesium.Cartesian3.fromDegreesArray([
* -72.0, 40.0,
* -70.0, 35.0,
* -75.0, 30.0,
* -70.0, 30.0,
* -68.0, 40.0
* ])
* )
* });
* const geometry = Cesium.PolygonGeometry.createGeometry(polygon);
*
* // 2. create a nested polygon with holes
* const polygonWithHole = new Cesium.PolygonGeometry({
* polygonHierarchy : new Cesium.PolygonHierarchy(
* Cesium.Cartesian3.fromDegreesArray([
* -109.0, 30.0,
* -95.0, 30.0,
* -95.0, 40.0,
* -109.0, 40.0
* ]),
* [new Cesium.PolygonHierarchy(
* Cesium.Cartesian3.fromDegreesArray([
* -107.0, 31.0,
* -107.0, 39.0,
* -97.0, 39.0,
* -97.0, 31.0
* ]),
* [new Cesium.PolygonHierarchy(
* Cesium.Cartesian3.fromDegreesArray([
* -105.0, 33.0,
* -99.0, 33.0,
* -99.0, 37.0,
* -105.0, 37.0
* ]),
* [new Cesium.PolygonHierarchy(
* Cesium.Cartesian3.fromDegreesArray([
* -103.0, 34.0,
* -101.0, 34.0,
* -101.0, 36.0,
* -103.0, 36.0
* ])
* )]
* )]
* )]
* )
* });
* const geometry = Cesium.PolygonGeometry.createGeometry(polygonWithHole);
*
* // 3. create extruded polygon
* const extrudedPolygon = new Cesium.PolygonGeometry({
* polygonHierarchy : new Cesium.PolygonHierarchy(
* Cesium.Cartesian3.fromDegreesArray([
* -72.0, 40.0,
* -70.0, 35.0,
* -75.0, 30.0,
* -70.0, 30.0,
* -68.0, 40.0
* ])
* ),
* extrudedHeight: 300000
* });
* const geometry = Cesium.PolygonGeometry.createGeometry(extrudedPolygon);
*/
function PolygonGeometry(options) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("options", options);
RuntimeError.Check.typeOf.object("options.polygonHierarchy", options.polygonHierarchy);
if (
when.defined(options.perPositionHeight) &&
options.perPositionHeight &&
when.defined(options.height)
) {
throw new RuntimeError.DeveloperError(
"Cannot use both options.perPositionHeight and options.height"
);
}
if (
when.defined(options.arcType) &&
options.arcType !== ArcType.ArcType.GEODESIC &&
options.arcType !== ArcType.ArcType.RHUMB
) {
throw new RuntimeError.DeveloperError(
"Invalid arcType. Valid options are ArcType.GEODESIC and ArcType.RHUMB."
);
}
//>>includeEnd('debug');
const polygonHierarchy = options.polygonHierarchy;
const vertexFormat = when.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT);
const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84);
const granularity = when.defaultValue(
options.granularity,
ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE
);
const stRotation = when.defaultValue(options.stRotation, 0.0);
const perPositionHeight = when.defaultValue(options.perPositionHeight, false);
const perPositionHeightExtrude =
perPositionHeight && when.defined(options.extrudedHeight);
let height = when.defaultValue(options.height, 0.0);
let extrudedHeight = when.defaultValue(options.extrudedHeight, height);
if (!perPositionHeightExtrude) {
const h = Math.max(height, extrudedHeight);
extrudedHeight = Math.min(height, extrudedHeight);
height = h;
}
this._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat);
this._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid);
this._granularity = granularity;
this._stRotation = stRotation;
this._height = height;
this._extrudedHeight = extrudedHeight;
this._closeTop = when.defaultValue(options.closeTop, true);
this._closeBottom = when.defaultValue(options.closeBottom, true);
this._polygonHierarchy = polygonHierarchy;
this._perPositionHeight = perPositionHeight;
this._perPositionHeightExtrude = perPositionHeightExtrude;
this._shadowVolume = when.defaultValue(options.shadowVolume, false);
this._workerName = "createPolygonGeometry";
this._offsetAttribute = options.offsetAttribute;
this._arcType = when.defaultValue(options.arcType, ArcType.ArcType.GEODESIC);
this._rectangle = undefined;
this._textureCoordinateRotationPoints = undefined;
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
this.packedLength =
PolygonGeometryLibrary.PolygonGeometryLibrary.computeHierarchyPackedLength(polygonHierarchy) +
Matrix2.Ellipsoid.packedLength +
VertexFormat.VertexFormat.packedLength +
12;
}
/**
* A description of a polygon from an array of positions. Polygon geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}.
*
* @param {Object} options Object with the following properties:
* @param {Cartesian3[]} options.positions An array of positions that defined the corner points of the polygon.
* @param {Number} [options.height=0.0] The height of the polygon.
* @param {Number} [options.extrudedHeight] The height of the polygon extrusion.
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
* @param {Number} [options.stRotation=0.0] The rotation of the texture coordinates, in radians. A positive rotation is counter-clockwise.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference.
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
* @param {Boolean} [options.perPositionHeight=false] Use the height of options.positions for each position instead of using options.height to determine the height.
* @param {Boolean} [options.closeTop=true] When false, leaves off the top of an extruded polygon open.
* @param {Boolean} [options.closeBottom=true] When false, leaves off the bottom of an extruded polygon open.
* @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polygon edges must follow. Valid options are {@link ArcType.GEODESIC} and {@link ArcType.RHUMB}.
* @returns {PolygonGeometry}
*
*
* @example
* // create a polygon from points
* const polygon = Cesium.PolygonGeometry.fromPositions({
* positions : Cesium.Cartesian3.fromDegreesArray([
* -72.0, 40.0,
* -70.0, 35.0,
* -75.0, 30.0,
* -70.0, 30.0,
* -68.0, 40.0
* ])
* });
* const geometry = Cesium.PolygonGeometry.createGeometry(polygon);
*
* @see PolygonGeometry#createGeometry
*/
PolygonGeometry.fromPositions = function (options) {
options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("options.positions", options.positions);
//>>includeEnd('debug');
const newOptions = {
polygonHierarchy: {
positions: options.positions,
},
height: options.height,
extrudedHeight: options.extrudedHeight,
vertexFormat: options.vertexFormat,
stRotation: options.stRotation,
ellipsoid: options.ellipsoid,
granularity: options.granularity,
perPositionHeight: options.perPositionHeight,
closeTop: options.closeTop,
closeBottom: options.closeBottom,
offsetAttribute: options.offsetAttribute,
arcType: options.arcType,
};
return new PolygonGeometry(newOptions);
};
/**
* Stores the provided instance into the provided array.
*
* @param {PolygonGeometry} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
PolygonGeometry.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("value", value);
RuntimeError.Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
startingIndex = PolygonGeometryLibrary.PolygonGeometryLibrary.packPolygonHierarchy(
value._polygonHierarchy,
array,
startingIndex
);
Matrix2.Ellipsoid.pack(value._ellipsoid, array, startingIndex);
startingIndex += Matrix2.Ellipsoid.packedLength;
VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat.VertexFormat.packedLength;
array[startingIndex++] = value._height;
array[startingIndex++] = value._extrudedHeight;
array[startingIndex++] = value._granularity;
array[startingIndex++] = value._stRotation;
array[startingIndex++] = value._perPositionHeightExtrude ? 1.0 : 0.0;
array[startingIndex++] = value._perPositionHeight ? 1.0 : 0.0;
array[startingIndex++] = value._closeTop ? 1.0 : 0.0;
array[startingIndex++] = value._closeBottom ? 1.0 : 0.0;
array[startingIndex++] = value._shadowVolume ? 1.0 : 0.0;
array[startingIndex++] = when.defaultValue(value._offsetAttribute, -1);
array[startingIndex++] = value._arcType;
array[startingIndex] = value.packedLength;
return array;
};
const scratchEllipsoid = Matrix2.Ellipsoid.clone(Matrix2.Ellipsoid.UNIT_SPHERE);
const scratchVertexFormat = new VertexFormat.VertexFormat();
//Only used to avoid inability to default construct.
const dummyOptions = {
polygonHierarchy: {},
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {PolygonGeometry} [result] The object into which to store the result.
*/
PolygonGeometry.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = when.defaultValue(startingIndex, 0);
const polygonHierarchy = PolygonGeometryLibrary.PolygonGeometryLibrary.unpackPolygonHierarchy(
array,
startingIndex
);
startingIndex = polygonHierarchy.startingIndex;
delete polygonHierarchy.startingIndex;
const ellipsoid = Matrix2.Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);
startingIndex += Matrix2.Ellipsoid.packedLength;
const vertexFormat = VertexFormat.VertexFormat.unpack(
array,
startingIndex,
scratchVertexFormat
);
startingIndex += VertexFormat.VertexFormat.packedLength;
const height = array[startingIndex++];
const extrudedHeight = array[startingIndex++];
const granularity = array[startingIndex++];
const stRotation = array[startingIndex++];
const perPositionHeightExtrude = array[startingIndex++] === 1.0;
const perPositionHeight = array[startingIndex++] === 1.0;
const closeTop = array[startingIndex++] === 1.0;
const closeBottom = array[startingIndex++] === 1.0;
const shadowVolume = array[startingIndex++] === 1.0;
const offsetAttribute = array[startingIndex++];
const arcType = array[startingIndex++];
const packedLength = array[startingIndex];
if (!when.defined(result)) {
result = new PolygonGeometry(dummyOptions);
}
result._polygonHierarchy = polygonHierarchy;
result._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid, result._ellipsoid);
result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat);
result._height = height;
result._extrudedHeight = extrudedHeight;
result._granularity = granularity;
result._stRotation = stRotation;
result._perPositionHeightExtrude = perPositionHeightExtrude;
result._perPositionHeight = perPositionHeight;
result._closeTop = closeTop;
result._closeBottom = closeBottom;
result._shadowVolume = shadowVolume;
result._offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
result._arcType = arcType;
result.packedLength = packedLength;
return result;
};
/**
* Returns the bounding rectangle given the provided options
*
* @param {Object} options Object with the following properties:
* @param {PolygonHierarchy} options.polygonHierarchy A polygon hierarchy that can include holes.
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions sampled.
* @param {ArcType} [options.arcType=ArcType.GEODESIC] The type of line the polygon edges must follow. Valid options are {@link ArcType.GEODESIC} and {@link ArcType.RHUMB}.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference.
* @param {Rectangle} [result] An object in which to store the result.
*
* @returns {Rectangle} The result rectangle
*/
PolygonGeometry.computeRectangle = function (options, result) {
//>>includeStart('debug', pragmas.debug);
RuntimeError.Check.typeOf.object("options", options);
RuntimeError.Check.typeOf.object("options.polygonHierarchy", options.polygonHierarchy);
//>>includeEnd('debug');
const granularity = when.defaultValue(
options.granularity,
ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE
);
const arcType = when.defaultValue(options.arcType, ArcType.ArcType.GEODESIC);
//>>includeStart('debug', pragmas.debug);
if (arcType !== ArcType.ArcType.GEODESIC && arcType !== ArcType.ArcType.RHUMB) {
throw new RuntimeError.DeveloperError(
"Invalid arcType. Valid options are ArcType.GEODESIC and ArcType.RHUMB."
);
}
//>>includeEnd('debug');
const polygonHierarchy = options.polygonHierarchy;
const ellipsoid = when.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84);
return computeRectangle(
polygonHierarchy.positions,
ellipsoid,
arcType,
granularity,
result
);
};
/**
* Computes the geometric representation of a polygon, including its vertices, indices, and a bounding sphere.
*
* @param {PolygonGeometry} polygonGeometry A description of the polygon.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
PolygonGeometry.createGeometry = function (polygonGeometry) {
const vertexFormat = polygonGeometry._vertexFormat;
const ellipsoid = polygonGeometry._ellipsoid;
const granularity = polygonGeometry._granularity;
const stRotation = polygonGeometry._stRotation;
const polygonHierarchy = polygonGeometry._polygonHierarchy;
const perPositionHeight = polygonGeometry._perPositionHeight;
const closeTop = polygonGeometry._closeTop;
const closeBottom = polygonGeometry._closeBottom;
const arcType = polygonGeometry._arcType;
let outerPositions = polygonHierarchy.positions;
if (outerPositions.length < 3) {
return;
}
const tangentPlane = EllipsoidTangentPlane.EllipsoidTangentPlane.fromPoints(
outerPositions,
ellipsoid
);
const results = PolygonGeometryLibrary.PolygonGeometryLibrary.polygonsFromHierarchy(
polygonHierarchy,
tangentPlane.projectPointsOntoPlane.bind(tangentPlane),
!perPositionHeight,
ellipsoid
);
const hierarchy = results.hierarchy;
const polygons = results.polygons;
if (hierarchy.length === 0) {
return;
}
outerPositions = hierarchy[0].outerRing;
const boundingRectangle = PolygonGeometryLibrary.PolygonGeometryLibrary.computeBoundingRectangle(
tangentPlane.plane.normal,
tangentPlane.projectPointOntoPlane.bind(tangentPlane),
outerPositions,
stRotation,
scratchBoundingRectangle
);
const geometries = [];
const height = polygonGeometry._height;
const extrudedHeight = polygonGeometry._extrudedHeight;
const extrude =
polygonGeometry._perPositionHeightExtrude ||
!ComponentDatatype.CesiumMath.equalsEpsilon(height, extrudedHeight, 0, ComponentDatatype.CesiumMath.EPSILON2);
const options = {
perPositionHeight: perPositionHeight,
vertexFormat: vertexFormat,
geometry: undefined,
tangentPlane: tangentPlane,
boundingRectangle: boundingRectangle,
ellipsoid: ellipsoid,
stRotation: stRotation,
bottom: false,
top: true,
wall: false,
extrude: false,
arcType: arcType,
};
let i;
if (extrude) {
options.extrude = true;
options.top = closeTop;
options.bottom = closeBottom;
options.shadowVolume = polygonGeometry._shadowVolume;
options.offsetAttribute = polygonGeometry._offsetAttribute;
for (i = 0; i < polygons.length; i++) {
const splitGeometry = createGeometryFromPositionsExtruded(
ellipsoid,
polygons[i],
granularity,
hierarchy[i],
perPositionHeight,
closeTop,
closeBottom,
vertexFormat,
arcType
);
let topAndBottom;
if (closeTop && closeBottom) {
topAndBottom = splitGeometry.topAndBottom;
options.geometry = PolygonGeometryLibrary.PolygonGeometryLibrary.scaleToGeodeticHeightExtruded(
topAndBottom.geometry,
height,
extrudedHeight,
ellipsoid,
perPositionHeight
);
} else if (closeTop) {
topAndBottom = splitGeometry.topAndBottom;
topAndBottom.geometry.attributes.position.values = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight(
topAndBottom.geometry.attributes.position.values,
height,
ellipsoid,
!perPositionHeight
);
options.geometry = topAndBottom.geometry;
} else if (closeBottom) {
topAndBottom = splitGeometry.topAndBottom;
topAndBottom.geometry.attributes.position.values = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight(
topAndBottom.geometry.attributes.position.values,
extrudedHeight,
ellipsoid,
true
);
options.geometry = topAndBottom.geometry;
}
if (closeTop || closeBottom) {
options.wall = false;
topAndBottom.geometry = computeAttributes(options);
geometries.push(topAndBottom);
}
const walls = splitGeometry.walls;
options.wall = true;
for (let k = 0; k < walls.length; k++) {
const wall = walls[k];
options.geometry = PolygonGeometryLibrary.PolygonGeometryLibrary.scaleToGeodeticHeightExtruded(
wall.geometry,
height,
extrudedHeight,
ellipsoid,
perPositionHeight
);
wall.geometry = computeAttributes(options);
geometries.push(wall);
}
}
} else {
for (i = 0; i < polygons.length; i++) {
const geometryInstance = new GeometryInstance.GeometryInstance({
geometry: PolygonGeometryLibrary.PolygonGeometryLibrary.createGeometryFromPositions(
ellipsoid,
polygons[i],
granularity,
perPositionHeight,
vertexFormat,
arcType
),
});
geometryInstance.geometry.attributes.position.values = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight(
geometryInstance.geometry.attributes.position.values,
height,
ellipsoid,
!perPositionHeight
);
options.geometry = geometryInstance.geometry;
geometryInstance.geometry = computeAttributes(options);
if (when.defined(polygonGeometry._offsetAttribute)) {
const length =
geometryInstance.geometry.attributes.position.values.length;
const applyOffset = new Uint8Array(length / 3);
const offsetValue =
polygonGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE
? 0
: 1;
GeometryOffsetAttribute.arrayFill(applyOffset, offsetValue);
geometryInstance.geometry.attributes.applyOffset = new GeometryAttribute.GeometryAttribute(
{
componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: applyOffset,
}
);
}
geometries.push(geometryInstance);
}
}
const geometry = GeometryPipeline.GeometryPipeline.combineInstances(geometries)[0];
geometry.attributes.position.values = new Float64Array(
geometry.attributes.position.values
);
geometry.indices = IndexDatatype.IndexDatatype.createTypedArray(
geometry.attributes.position.values.length / 3,
geometry.indices
);
const attributes = geometry.attributes;
const boundingSphere = Transforms.BoundingSphere.fromVertices(
attributes.position.values
);
if (!vertexFormat.position) {
delete attributes.position;
}
return new GeometryAttribute.Geometry({
attributes: attributes,
indices: geometry.indices,
primitiveType: geometry.primitiveType,
boundingSphere: boundingSphere,
offsetAttribute: polygonGeometry._offsetAttribute,
});
};
/**
* @private
*/
PolygonGeometry.createShadowVolume = function (
polygonGeometry,
minHeightFunc,
maxHeightFunc
) {
const granularity = polygonGeometry._granularity;
const ellipsoid = polygonGeometry._ellipsoid;
const minHeight = minHeightFunc(granularity, ellipsoid);
const maxHeight = maxHeightFunc(granularity, ellipsoid);
return new PolygonGeometry({
polygonHierarchy: polygonGeometry._polygonHierarchy,
ellipsoid: ellipsoid,
stRotation: polygonGeometry._stRotation,
granularity: granularity,
perPositionHeight: false,
extrudedHeight: minHeight,
height: maxHeight,
vertexFormat: VertexFormat.VertexFormat.POSITION_ONLY,
shadowVolume: true,
arcType: polygonGeometry._arcType,
});
};
function textureCoordinateRotationPoints(polygonGeometry) {
const stRotation = -polygonGeometry._stRotation;
if (stRotation === 0.0) {
return [0, 0, 0, 1, 1, 0];
}
const ellipsoid = polygonGeometry._ellipsoid;
const positions = polygonGeometry._polygonHierarchy.positions;
const boundingRectangle = polygonGeometry.rectangle;
return GeometryAttribute.Geometry._textureCoordinateRotationPoints(
positions,
stRotation,
ellipsoid,
boundingRectangle
);
}
Object.defineProperties(PolygonGeometry.prototype, {
/**
* @private
*/
rectangle: {
get: function () {
if (!when.defined(this._rectangle)) {
const positions = this._polygonHierarchy.positions;
this._rectangle = computeRectangle(
positions,
this._ellipsoid,
this._arcType,
this._granularity
);
}
return this._rectangle;
},
},
/**
* For remapping texture coordinates when rendering PolygonGeometries as GroundPrimitives.
* @private
*/
textureCoordinateRotationPoints: {
get: function () {
if (!when.defined(this._textureCoordinateRotationPoints)) {
this._textureCoordinateRotationPoints = textureCoordinateRotationPoints(
this
);
}
return this._textureCoordinateRotationPoints;
},
},
});
function createPolygonGeometry(polygonGeometry, offset) {
if (when.defined(offset)) {
polygonGeometry = PolygonGeometry.unpack(polygonGeometry, offset);
}
polygonGeometry._ellipsoid = Matrix2.Ellipsoid.clone(polygonGeometry._ellipsoid);
return PolygonGeometry.createGeometry(polygonGeometry);
}
return createPolygonGeometry;
}));
//# sourceMappingURL=createPolygonGeometry.js.map