hi-ucs/front/public/leaflet/libs/proj4/proj4.js

5486 lines
165 KiB
Vue
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

!function(e){if("object"==typeof exports)module.exports=e();else if("function"==typeof define&&define.amd)define(e);else{var f;"undefined"!=typeof window?f=window:"undefined"!=typeof global?f=global:"undefined"!=typeof self&&(f=self),f.proj4=e()}}(function(){var define,module,exports;return (function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);throw new Error("Cannot find module '"+o+"'")}var f=n[o]={exports:{}};t[o][0].call(f.exports,function(e){var n=t[o][1][e];return s(n?n:e)},f,f.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o<r.length;o++)s(r[o]);return s})({1:[function(_dereq_,module,exports){
var mgrs = _dereq_('mgrs');
function Point(x, y, z) {
if (!(this instanceof Point)) {
return new Point(x, y, z);
}
if (Array.isArray(x)) {
this.x = x[0];
this.y = x[1];
this.z = x[2] || 0.0;
} else if(typeof x === 'object') {
this.x = x.x;
this.y = x.y;
this.z = x.z || 0.0;
} else if (typeof x === 'string' && typeof y === 'undefined') {
var coords = x.split(',');
this.x = parseFloat(coords[0], 10);
this.y = parseFloat(coords[1], 10);
this.z = parseFloat(coords[2], 10) || 0.0;
} else {
this.x = x;
this.y = y;
this.z = z || 0.0;
}
console.warn('proj4.Point will be removed in version 3, use proj4.toPoint');
}
Point.fromMGRS = function(mgrsStr) {
return new Point(mgrs.toPoint(mgrsStr));
};
Point.prototype.toMGRS = function(accuracy) {
return mgrs.forward([this.x, this.y], accuracy);
};
module.exports = Point;
},{"mgrs":67}],2:[function(_dereq_,module,exports){
var parseCode = _dereq_("./parseCode");
var extend = _dereq_('./extend');
var projections = _dereq_('./projections');
var deriveConstants = _dereq_('./deriveConstants');
function Projection(srsCode,callback) {
if (!(this instanceof Projection)) {
return new Projection(srsCode);
}
callback = callback || function(error){
if(error){
throw error;
}
};
var json = parseCode(srsCode);
if(typeof json !== 'object'){
callback(srsCode);
return;
}
var modifiedJSON = deriveConstants(json);
var ourProj = Projection.projections.get(modifiedJSON.projName);
if(ourProj){
extend(this, modifiedJSON);
extend(this, ourProj);
this.init();
callback(null, this);
}else{
callback(srsCode);
}
}
Projection.projections = projections;
Projection.projections.start();
module.exports = Projection;
},{"./deriveConstants":33,"./extend":34,"./parseCode":37,"./projections":39}],3:[function(_dereq_,module,exports){
module.exports = function(crs, denorm, point) {
var xin = point.x,
yin = point.y,
zin = point.z || 0.0;
var v, t, i;
for (i = 0; i < 3; i++) {
if (denorm && i === 2 && point.z === undefined) {
continue;
}
if (i === 0) {
v = xin;
t = 'x';
}
else if (i === 1) {
v = yin;
t = 'y';
}
else {
v = zin;
t = 'z';
}
switch (crs.axis[i]) {
case 'e':
point[t] = v;
break;
case 'w':
point[t] = -v;
break;
case 'n':
point[t] = v;
break;
case 's':
point[t] = -v;
break;
case 'u':
if (point[t] !== undefined) {
point.z = v;
}
break;
case 'd':
if (point[t] !== undefined) {
point.z = -v;
}
break;
default:
//console.log("ERROR: unknow axis ("+crs.axis[i]+") - check definition of "+crs.projName);
return null;
}
}
return point;
};
},{}],4:[function(_dereq_,module,exports){
var HALF_PI = Math.PI/2;
var sign = _dereq_('./sign');
module.exports = function(x) {
return (Math.abs(x) < HALF_PI) ? x : (x - (sign(x) * Math.PI));
};
},{"./sign":21}],5:[function(_dereq_,module,exports){
var TWO_PI = Math.PI * 2;
// SPI is slightly greater than Math.PI, so values that exceed the -180..180
// degree range by a tiny amount don't get wrapped. This prevents points that
// have drifted from their original location along the 180th meridian (due to
// floating point error) from changing their sign.
var SPI = 3.14159265359;
var sign = _dereq_('./sign');
module.exports = function(x) {
return (Math.abs(x) <= SPI) ? x : (x - (sign(x) * TWO_PI));
};
},{"./sign":21}],6:[function(_dereq_,module,exports){
module.exports = function(x) {
if (Math.abs(x) > 1) {
x = (x > 1) ? 1 : -1;
}
return Math.asin(x);
};
},{}],7:[function(_dereq_,module,exports){
module.exports = function(x) {
return (1 - 0.25 * x * (1 + x / 16 * (3 + 1.25 * x)));
};
},{}],8:[function(_dereq_,module,exports){
module.exports = function(x) {
return (0.375 * x * (1 + 0.25 * x * (1 + 0.46875 * x)));
};
},{}],9:[function(_dereq_,module,exports){
module.exports = function(x) {
return (0.05859375 * x * x * (1 + 0.75 * x));
};
},{}],10:[function(_dereq_,module,exports){
module.exports = function(x) {
return (x * x * x * (35 / 3072));
};
},{}],11:[function(_dereq_,module,exports){
module.exports = function(a, e, sinphi) {
var temp = e * sinphi;
return a / Math.sqrt(1 - temp * temp);
};
},{}],12:[function(_dereq_,module,exports){
module.exports = function(ml, e0, e1, e2, e3) {
var phi;
var dphi;
phi = ml / e0;
for (var i = 0; i < 15; i++) {
dphi = (ml - (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi))) / (e0 - 2 * e1 * Math.cos(2 * phi) + 4 * e2 * Math.cos(4 * phi) - 6 * e3 * Math.cos(6 * phi));
phi += dphi;
if (Math.abs(dphi) <= 0.0000000001) {
return phi;
}
}
//..reportError("IMLFN-CONV:Latitude failed to converge after 15 iterations");
return NaN;
};
},{}],13:[function(_dereq_,module,exports){
var HALF_PI = Math.PI/2;
module.exports = function(eccent, q) {
var temp = 1 - (1 - eccent * eccent) / (2 * eccent) * Math.log((1 - eccent) / (1 + eccent));
if (Math.abs(Math.abs(q) - temp) < 1.0E-6) {
if (q < 0) {
return (-1 * HALF_PI);
}
else {
return HALF_PI;
}
}
//var phi = 0.5* q/(1-eccent*eccent);
var phi = Math.asin(0.5 * q);
var dphi;
var sin_phi;
var cos_phi;
var con;
for (var i = 0; i < 30; i++) {
sin_phi = Math.sin(phi);
cos_phi = Math.cos(phi);
con = eccent * sin_phi;
dphi = Math.pow(1 - con * con, 2) / (2 * cos_phi) * (q / (1 - eccent * eccent) - sin_phi / (1 - con * con) + 0.5 / eccent * Math.log((1 - con) / (1 + con)));
phi += dphi;
if (Math.abs(dphi) <= 0.0000000001) {
return phi;
}
}
//console.log("IQSFN-CONV:Latitude failed to converge after 30 iterations");
return NaN;
};
},{}],14:[function(_dereq_,module,exports){
module.exports = function(e0, e1, e2, e3, phi) {
return (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi));
};
},{}],15:[function(_dereq_,module,exports){
module.exports = function(eccent, sinphi, cosphi) {
var con = eccent * sinphi;
return cosphi / (Math.sqrt(1 - con * con));
};
},{}],16:[function(_dereq_,module,exports){
var HALF_PI = Math.PI/2;
module.exports = function(eccent, ts) {
var eccnth = 0.5 * eccent;
var con, dphi;
var phi = HALF_PI - 2 * Math.atan(ts);
for (var i = 0; i <= 15; i++) {
con = eccent * Math.sin(phi);
dphi = HALF_PI - 2 * Math.atan(ts * (Math.pow(((1 - con) / (1 + con)), eccnth))) - phi;
phi += dphi;
if (Math.abs(dphi) <= 0.0000000001) {
return phi;
}
}
//console.log("phi2z has NoConvergence");
return -9999;
};
},{}],17:[function(_dereq_,module,exports){
var C00 = 1;
var C02 = 0.25;
var C04 = 0.046875;
var C06 = 0.01953125;
var C08 = 0.01068115234375;
var C22 = 0.75;
var C44 = 0.46875;
var C46 = 0.01302083333333333333;
var C48 = 0.00712076822916666666;
var C66 = 0.36458333333333333333;
var C68 = 0.00569661458333333333;
var C88 = 0.3076171875;
module.exports = function(es) {
var en = [];
en[0] = C00 - es * (C02 + es * (C04 + es * (C06 + es * C08)));
en[1] = es * (C22 - es * (C04 + es * (C06 + es * C08)));
var t = es * es;
en[2] = t * (C44 - es * (C46 + es * C48));
t *= es;
en[3] = t * (C66 - es * C68);
en[4] = t * es * C88;
return en;
};
},{}],18:[function(_dereq_,module,exports){
var pj_mlfn = _dereq_("./pj_mlfn");
var EPSLN = 1.0e-10;
var MAX_ITER = 20;
module.exports = function(arg, es, en) {
var k = 1 / (1 - es);
var phi = arg;
for (var i = MAX_ITER; i; --i) { /* rarely goes over 2 iterations */
var s = Math.sin(phi);
var t = 1 - es * s * s;
//t = this.pj_mlfn(phi, s, Math.cos(phi), en) - arg;
//phi -= t * (t * Math.sqrt(t)) * k;
t = (pj_mlfn(phi, s, Math.cos(phi), en) - arg) * (t * Math.sqrt(t)) * k;
phi -= t;
if (Math.abs(t) < EPSLN) {
return phi;
}
}
//..reportError("cass:pj_inv_mlfn: Convergence error");
return phi;
};
},{"./pj_mlfn":19}],19:[function(_dereq_,module,exports){
module.exports = function(phi, sphi, cphi, en) {
cphi *= sphi;
sphi *= sphi;
return (en[0] * phi - cphi * (en[1] + sphi * (en[2] + sphi * (en[3] + sphi * en[4]))));
};
},{}],20:[function(_dereq_,module,exports){
module.exports = function(eccent, sinphi) {
var con;
if (eccent > 1.0e-7) {
con = eccent * sinphi;
return ((1 - eccent * eccent) * (sinphi / (1 - con * con) - (0.5 / eccent) * Math.log((1 - con) / (1 + con))));
}
else {
return (2 * sinphi);
}
};
},{}],21:[function(_dereq_,module,exports){
module.exports = function(x) {
return x<0 ? -1 : 1;
};
},{}],22:[function(_dereq_,module,exports){
module.exports = function(esinp, exp) {
return (Math.pow((1 - esinp) / (1 + esinp), exp));
};
},{}],23:[function(_dereq_,module,exports){
module.exports = function (array){
var out = {
x: array[0],
y: array[1]
};
if (array.length>2) {
out.z = array[2];
}
if (array.length>3) {
out.m = array[3];
}
return out;
};
},{}],24:[function(_dereq_,module,exports){
var HALF_PI = Math.PI/2;
module.exports = function(eccent, phi, sinphi) {
var con = eccent * sinphi;
var com = 0.5 * eccent;
con = Math.pow(((1 - con) / (1 + con)), com);
return (Math.tan(0.5 * (HALF_PI - phi)) / con);
};
},{}],25:[function(_dereq_,module,exports){
exports.wgs84 = {
towgs84: "0,0,0",
ellipse: "WGS84",
datumName: "WGS84"
};
exports.ch1903 = {
towgs84: "674.374,15.056,405.346",
ellipse: "bessel",
datumName: "swiss"
};
exports.ggrs87 = {
towgs84: "-199.87,74.79,246.62",
ellipse: "GRS80",
datumName: "Greek_Geodetic_Reference_System_1987"
};
exports.nad83 = {
towgs84: "0,0,0",
ellipse: "GRS80",
datumName: "North_American_Datum_1983"
};
exports.nad27 = {
nadgrids: "@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat",
ellipse: "clrk66",
datumName: "North_American_Datum_1927"
};
exports.potsdam = {
towgs84: "606.0,23.0,413.0",
ellipse: "bessel",
datumName: "Potsdam Rauenberg 1950 DHDN"
};
exports.carthage = {
towgs84: "-263.0,6.0,431.0",
ellipse: "clark80",
datumName: "Carthage 1934 Tunisia"
};
exports.hermannskogel = {
towgs84: "653.0,-212.0,449.0",
ellipse: "bessel",
datumName: "Hermannskogel"
};
exports.ire65 = {
towgs84: "482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15",
ellipse: "mod_airy",
datumName: "Ireland 1965"
};
exports.rassadiran = {
towgs84: "-133.63,-157.5,-158.62",
ellipse: "intl",
datumName: "Rassadiran"
};
exports.nzgd49 = {
towgs84: "59.47,-5.04,187.44,0.47,-0.1,1.024,-4.5993",
ellipse: "intl",
datumName: "New Zealand Geodetic Datum 1949"
};
exports.osgb36 = {
towgs84: "446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894",
ellipse: "airy",
datumName: "Airy 1830"
};
exports.s_jtsk = {
towgs84: "589,76,480",
ellipse: 'bessel',
datumName: 'S-JTSK (Ferro)'
};
exports.beduaram = {
towgs84: '-106,-87,188',
ellipse: 'clrk80',
datumName: 'Beduaram'
};
exports.gunung_segara = {
towgs84: '-403,684,41',
ellipse: 'bessel',
datumName: 'Gunung Segara Jakarta'
};
exports.rnb72 = {
towgs84: "106.869,-52.2978,103.724,-0.33657,0.456955,-1.84218,1",
ellipse: "intl",
datumName: "Reseau National Belge 1972"
};
},{}],26:[function(_dereq_,module,exports){
exports.MERIT = {
a: 6378137.0,
rf: 298.257,
ellipseName: "MERIT 1983"
};
exports.SGS85 = {
a: 6378136.0,
rf: 298.257,
ellipseName: "Soviet Geodetic System 85"
};
exports.GRS80 = {
a: 6378137.0,
rf: 298.257222101,
ellipseName: "GRS 1980(IUGG, 1980)"
};
exports.IAU76 = {
a: 6378140.0,
rf: 298.257,
ellipseName: "IAU 1976"
};
exports.airy = {
a: 6377563.396,
b: 6356256.910,
ellipseName: "Airy 1830"
};
exports.APL4 = {
a: 6378137,
rf: 298.25,
ellipseName: "Appl. Physics. 1965"
};
exports.NWL9D = {
a: 6378145.0,
rf: 298.25,
ellipseName: "Naval Weapons Lab., 1965"
};
exports.mod_airy = {
a: 6377340.189,
b: 6356034.446,
ellipseName: "Modified Airy"
};
exports.andrae = {
a: 6377104.43,
rf: 300.0,
ellipseName: "Andrae 1876 (Den., Iclnd.)"
};
exports.aust_SA = {
a: 6378160.0,
rf: 298.25,
ellipseName: "Australian Natl & S. Amer. 1969"
};
exports.GRS67 = {
a: 6378160.0,
rf: 298.2471674270,
ellipseName: "GRS 67(IUGG 1967)"
};
exports.bessel = {
a: 6377397.155,
rf: 299.1528128,
ellipseName: "Bessel 1841"
};
exports.bess_nam = {
a: 6377483.865,
rf: 299.1528128,
ellipseName: "Bessel 1841 (Namibia)"
};
exports.clrk66 = {
a: 6378206.4,
b: 6356583.8,
ellipseName: "Clarke 1866"
};
exports.clrk80 = {
a: 6378249.145,
rf: 293.4663,
ellipseName: "Clarke 1880 mod."
};
exports.clrk58 = {
a: 6378293.645208759,
rf: 294.2606763692654,
ellipseName: "Clarke 1858"
};
exports.CPM = {
a: 6375738.7,
rf: 334.29,
ellipseName: "Comm. des Poids et Mesures 1799"
};
exports.delmbr = {
a: 6376428.0,
rf: 311.5,
ellipseName: "Delambre 1810 (Belgium)"
};
exports.engelis = {
a: 6378136.05,
rf: 298.2566,
ellipseName: "Engelis 1985"
};
exports.evrst30 = {
a: 6377276.345,
rf: 300.8017,
ellipseName: "Everest 1830"
};
exports.evrst48 = {
a: 6377304.063,
rf: 300.8017,
ellipseName: "Everest 1948"
};
exports.evrst56 = {
a: 6377301.243,
rf: 300.8017,
ellipseName: "Everest 1956"
};
exports.evrst69 = {
a: 6377295.664,
rf: 300.8017,
ellipseName: "Everest 1969"
};
exports.evrstSS = {
a: 6377298.556,
rf: 300.8017,
ellipseName: "Everest (Sabah & Sarawak)"
};
exports.fschr60 = {
a: 6378166.0,
rf: 298.3,
ellipseName: "Fischer (Mercury Datum) 1960"
};
exports.fschr60m = {
a: 6378155.0,
rf: 298.3,
ellipseName: "Fischer 1960"
};
exports.fschr68 = {
a: 6378150.0,
rf: 298.3,
ellipseName: "Fischer 1968"
};
exports.helmert = {
a: 6378200.0,
rf: 298.3,
ellipseName: "Helmert 1906"
};
exports.hough = {
a: 6378270.0,
rf: 297.0,
ellipseName: "Hough"
};
exports.intl = {
a: 6378388.0,
rf: 297.0,
ellipseName: "International 1909 (Hayford)"
};
exports.kaula = {
a: 6378163.0,
rf: 298.24,
ellipseName: "Kaula 1961"
};
exports.lerch = {
a: 6378139.0,
rf: 298.257,
ellipseName: "Lerch 1979"
};
exports.mprts = {
a: 6397300.0,
rf: 191.0,
ellipseName: "Maupertius 1738"
};
exports.new_intl = {
a: 6378157.5,
b: 6356772.2,
ellipseName: "New International 1967"
};
exports.plessis = {
a: 6376523.0,
rf: 6355863.0,
ellipseName: "Plessis 1817 (France)"
};
exports.krass = {
a: 6378245.0,
rf: 298.3,
ellipseName: "Krassovsky, 1942"
};
exports.SEasia = {
a: 6378155.0,
b: 6356773.3205,
ellipseName: "Southeast Asia"
};
exports.walbeck = {
a: 6376896.0,
b: 6355834.8467,
ellipseName: "Walbeck"
};
exports.WGS60 = {
a: 6378165.0,
rf: 298.3,
ellipseName: "WGS 60"
};
exports.WGS66 = {
a: 6378145.0,
rf: 298.25,
ellipseName: "WGS 66"
};
exports.WGS7 = {
a: 6378135.0,
rf: 298.26,
ellipseName: "WGS 72"
};
exports.WGS84 = {
a: 6378137.0,
rf: 298.257223563,
ellipseName: "WGS 84"
};
exports.sphere = {
a: 6370997.0,
b: 6370997.0,
ellipseName: "Normal Sphere (r=6370997)"
};
},{}],27:[function(_dereq_,module,exports){
exports.greenwich = 0.0; //"0dE",
exports.lisbon = -9.131906111111; //"9d07'54.862\"W",
exports.paris = 2.337229166667; //"2d20'14.025\"E",
exports.bogota = -74.080916666667; //"74d04'51.3\"W",
exports.madrid = -3.687938888889; //"3d41'16.58\"W",
exports.rome = 12.452333333333; //"12d27'8.4\"E",
exports.bern = 7.439583333333; //"7d26'22.5\"E",
exports.jakarta = 106.807719444444; //"106d48'27.79\"E",
exports.ferro = -17.666666666667; //"17d40'W",
exports.brussels = 4.367975; //"4d22'4.71\"E",
exports.stockholm = 18.058277777778; //"18d3'29.8\"E",
exports.athens = 23.7163375; //"23d42'58.815\"E",
exports.oslo = 10.722916666667; //"10d43'22.5\"E"
},{}],28:[function(_dereq_,module,exports){
exports.ft = {to_meter: 0.3048};
exports['us-ft'] = {to_meter: 1200 / 3937};
},{}],29:[function(_dereq_,module,exports){
var proj = _dereq_('./Proj');
var transform = _dereq_('./transform');
var wgs84 = proj('WGS84');
function transformer(from, to, coords) {
var transformedArray;
if (Array.isArray(coords)) {
transformedArray = transform(from, to, coords);
if (coords.length === 3) {
return [transformedArray.x, transformedArray.y, transformedArray.z];
}
else {
return [transformedArray.x, transformedArray.y];
}
}
else {
return transform(from, to, coords);
}
}
function checkProj(item) {
if (item instanceof proj) {
return item;
}
if (item.oProj) {
return item.oProj;
}
return proj(item);
}
function proj4(fromProj, toProj, coord) {
fromProj = checkProj(fromProj);
var single = false;
var obj;
if (typeof toProj === 'undefined') {
toProj = fromProj;
fromProj = wgs84;
single = true;
}
else if (typeof toProj.x !== 'undefined' || Array.isArray(toProj)) {
coord = toProj;
toProj = fromProj;
fromProj = wgs84;
single = true;
}
toProj = checkProj(toProj);
if (coord) {
return transformer(fromProj, toProj, coord);
}
else {
obj = {
forward: function(coords) {
return transformer(fromProj, toProj, coords);
},
inverse: function(coords) {
return transformer(toProj, fromProj, coords);
}
};
if (single) {
obj.oProj = toProj;
}
return obj;
}
}
module.exports = proj4;
},{"./Proj":2,"./transform":65}],30:[function(_dereq_,module,exports){
var HALF_PI = Math.PI/2;
var PJD_3PARAM = 1;
var PJD_7PARAM = 2;
var PJD_GRIDSHIFT = 3;
var PJD_WGS84 = 4; // WGS84 or equivalent
var PJD_NODATUM = 5; // WGS84 or equivalent
var SEC_TO_RAD = 4.84813681109535993589914102357e-6;
var AD_C = 1.0026000;
var COS_67P5 = 0.38268343236508977;
var datum = function(proj) {
if (!(this instanceof datum)) {
return new datum(proj);
}
this.datum_type = PJD_WGS84; //default setting
if (!proj) {
return;
}
if (proj.datumCode && proj.datumCode === 'none') {
this.datum_type = PJD_NODATUM;
}
if (proj.datum_params) {
this.datum_params = proj.datum_params.map(parseFloat);
if (this.datum_params[0] !== 0 || this.datum_params[1] !== 0 || this.datum_params[2] !== 0) {
this.datum_type = PJD_3PARAM;
}
if (this.datum_params.length > 3) {
if (this.datum_params[3] !== 0 || this.datum_params[4] !== 0 || this.datum_params[5] !== 0 || this.datum_params[6] !== 0) {
this.datum_type = PJD_7PARAM;
this.datum_params[3] *= SEC_TO_RAD;
this.datum_params[4] *= SEC_TO_RAD;
this.datum_params[5] *= SEC_TO_RAD;
this.datum_params[6] = (this.datum_params[6] / 1000000.0) + 1.0;
}
}
}
// DGR 2011-03-21 : nadgrids support
this.datum_type = proj.grids ? PJD_GRIDSHIFT : this.datum_type;
this.a = proj.a; //datum object also uses these values
this.b = proj.b;
this.es = proj.es;
this.ep2 = proj.ep2;
if (this.datum_type === PJD_GRIDSHIFT) {
this.grids = proj.grids;
}
};
datum.prototype = {
/****************************************************************/
// cs_compare_datums()
// Returns TRUE if the two datums match, otherwise FALSE.
compare_datums: function(dest) {
if (this.datum_type !== dest.datum_type) {
return false; // false, datums are not equal
}
else if (this.a !== dest.a || Math.abs(this.es - dest.es) > 0.000000000050) {
// the tolerence for es is to ensure that GRS80 and WGS84
// are considered identical
return false;
}
else if (this.datum_type === PJD_3PARAM) {
return (this.datum_params[0] === dest.datum_params[0] && this.datum_params[1] === dest.datum_params[1] && this.datum_params[2] === dest.datum_params[2]);
}
else if (this.datum_type === PJD_7PARAM) {
return (this.datum_params[0] === dest.datum_params[0] && this.datum_params[1] === dest.datum_params[1] && this.datum_params[2] === dest.datum_params[2] && this.datum_params[3] === dest.datum_params[3] && this.datum_params[4] === dest.datum_params[4] && this.datum_params[5] === dest.datum_params[5] && this.datum_params[6] === dest.datum_params[6]);
}
else if (this.datum_type === PJD_GRIDSHIFT || dest.datum_type === PJD_GRIDSHIFT) {
//alert("ERROR: Grid shift transformations are not implemented.");
//return false
//DGR 2012-07-29 lazy ...
return this.nadgrids === dest.nadgrids;
}
else {
return true; // datums are equal
}
}, // cs_compare_datums()
/*
* The function Convert_Geodetic_To_Geocentric converts geodetic coordinates
* (latitude, longitude, and height) to geocentric coordinates (X, Y, Z),
* according to the current ellipsoid parameters.
*
* Latitude : Geodetic latitude in radians (input)
* Longitude : Geodetic longitude in radians (input)
* Height : Geodetic height, in meters (input)
* X : Calculated Geocentric X coordinate, in meters (output)
* Y : Calculated Geocentric Y coordinate, in meters (output)
* Z : Calculated Geocentric Z coordinate, in meters (output)
*
*/
geodetic_to_geocentric: function(p) {
var Longitude = p.x;
var Latitude = p.y;
var Height = p.z ? p.z : 0; //Z value not always supplied
var X; // output
var Y;
var Z;
var Error_Code = 0; // GEOCENT_NO_ERROR;
var Rn; /* Earth radius at location */
var Sin_Lat; /* Math.sin(Latitude) */
var Sin2_Lat; /* Square of Math.sin(Latitude) */
var Cos_Lat; /* Math.cos(Latitude) */
/*
** Don't blow up if Latitude is just a little out of the value
** range as it may just be a rounding issue. Also removed longitude
** test, it should be wrapped by Math.cos() and Math.sin(). NFW for PROJ.4, Sep/2001.
*/
if (Latitude < -HALF_PI && Latitude > -1.001 * HALF_PI) {
Latitude = -HALF_PI;
}
else if (Latitude > HALF_PI && Latitude < 1.001 * HALF_PI) {
Latitude = HALF_PI;
}
else if ((Latitude < -HALF_PI) || (Latitude > HALF_PI)) {
/* Latitude out of range */
//..reportError('geocent:lat out of range:' + Latitude);
return null;
}
if (Longitude > Math.PI) {
Longitude -= (2 * Math.PI);
}
Sin_Lat = Math.sin(Latitude);
Cos_Lat = Math.cos(Latitude);
Sin2_Lat = Sin_Lat * Sin_Lat;
Rn = this.a / (Math.sqrt(1.0e0 - this.es * Sin2_Lat));
X = (Rn + Height) * Cos_Lat * Math.cos(Longitude);
Y = (Rn + Height) * Cos_Lat * Math.sin(Longitude);
Z = ((Rn * (1 - this.es)) + Height) * Sin_Lat;
p.x = X;
p.y = Y;
p.z = Z;
return Error_Code;
}, // cs_geodetic_to_geocentric()
geocentric_to_geodetic: function(p) {
/* local defintions and variables */
/* end-criterium of loop, accuracy of sin(Latitude) */
var genau = 1e-12;
var genau2 = (genau * genau);
var maxiter = 30;
var P; /* distance between semi-minor axis and location */
var RR; /* distance between center and location */
var CT; /* sin of geocentric latitude */
var ST; /* cos of geocentric latitude */
var RX;
var RK;
var RN; /* Earth radius at location */
var CPHI0; /* cos of start or old geodetic latitude in iterations */
var SPHI0; /* sin of start or old geodetic latitude in iterations */
var CPHI; /* cos of searched geodetic latitude */
var SPHI; /* sin of searched geodetic latitude */
var SDPHI; /* end-criterium: addition-theorem of sin(Latitude(iter)-Latitude(iter-1)) */
var At_Pole; /* indicates location is in polar region */
var iter; /* # of continous iteration, max. 30 is always enough (s.a.) */
var X = p.x;
var Y = p.y;
var Z = p.z ? p.z : 0.0; //Z value not always supplied
var Longitude;
var Latitude;
var Height;
At_Pole = false;
P = Math.sqrt(X * X + Y * Y);
RR = Math.sqrt(X * X + Y * Y + Z * Z);
/* special cases for latitude and longitude */
if (P / this.a < genau) {
/* special case, if P=0. (X=0., Y=0.) */
At_Pole = true;
Longitude = 0.0;
/* if (X,Y,Z)=(0.,0.,0.) then Height becomes semi-minor axis
* of ellipsoid (=center of mass), Latitude becomes PI/2 */
if (RR / this.a < genau) {
Latitude = HALF_PI;
Height = -this.b;
return;
}
}
else {
/* ellipsoidal (geodetic) longitude
* interval: -PI < Longitude <= +PI */
Longitude = Math.atan2(Y, X);
}
/* --------------------------------------------------------------
* Following iterative algorithm was developped by
* "Institut for Erdmessung", University of Hannover, July 1988.
* Internet: www.ife.uni-hannover.de
* Iterative computation of CPHI,SPHI and Height.
* Iteration of CPHI and SPHI to 10**-12 radian resp.
* 2*10**-7 arcsec.
* --------------------------------------------------------------
*/
CT = Z / RR;
ST = P / RR;
RX = 1.0 / Math.sqrt(1.0 - this.es * (2.0 - this.es) * ST * ST);
CPHI0 = ST * (1.0 - this.es) * RX;
SPHI0 = CT * RX;
iter = 0;
/* loop to find sin(Latitude) resp. Latitude
* until |sin(Latitude(iter)-Latitude(iter-1))| < genau */
do {
iter++;
RN = this.a / Math.sqrt(1.0 - this.es * SPHI0 * SPHI0);
/* ellipsoidal (geodetic) height */
Height = P * CPHI0 + Z * SPHI0 - RN * (1.0 - this.es * SPHI0 * SPHI0);
RK = this.es * RN / (RN + Height);
RX = 1.0 / Math.sqrt(1.0 - RK * (2.0 - RK) * ST * ST);
CPHI = ST * (1.0 - RK) * RX;
SPHI = CT * RX;
SDPHI = SPHI * CPHI0 - CPHI * SPHI0;
CPHI0 = CPHI;
SPHI0 = SPHI;
}
while (SDPHI * SDPHI > genau2 && iter < maxiter);
/* ellipsoidal (geodetic) latitude */
Latitude = Math.atan(SPHI / Math.abs(CPHI));
p.x = Longitude;
p.y = Latitude;
p.z = Height;
return p;
}, // cs_geocentric_to_geodetic()
/** Convert_Geocentric_To_Geodetic
* The method used here is derived from 'An Improved Algorithm for
* Geocentric to Geodetic Coordinate Conversion', by Ralph Toms, Feb 1996
*/
geocentric_to_geodetic_noniter: function(p) {
var X = p.x;
var Y = p.y;
var Z = p.z ? p.z : 0; //Z value not always supplied
var Longitude;
var Latitude;
var Height;
var W; /* distance from Z axis */
var W2; /* square of distance from Z axis */
var T0; /* initial estimate of vertical component */
var T1; /* corrected estimate of vertical component */
var S0; /* initial estimate of horizontal component */
var S1; /* corrected estimate of horizontal component */
var Sin_B0; /* Math.sin(B0), B0 is estimate of Bowring aux variable */
var Sin3_B0; /* cube of Math.sin(B0) */
var Cos_B0; /* Math.cos(B0) */
var Sin_p1; /* Math.sin(phi1), phi1 is estimated latitude */
var Cos_p1; /* Math.cos(phi1) */
var Rn; /* Earth radius at location */
var Sum; /* numerator of Math.cos(phi1) */
var At_Pole; /* indicates location is in polar region */
X = parseFloat(X); // cast from string to float
Y = parseFloat(Y);
Z = parseFloat(Z);
At_Pole = false;
if (X !== 0.0) {
Longitude = Math.atan2(Y, X);
}
else {
if (Y > 0) {
Longitude = HALF_PI;
}
else if (Y < 0) {
Longitude = -HALF_PI;
}
else {
At_Pole = true;
Longitude = 0.0;
if (Z > 0.0) { /* north pole */
Latitude = HALF_PI;
}
else if (Z < 0.0) { /* south pole */
Latitude = -HALF_PI;
}
else { /* center of earth */
Latitude = HALF_PI;
Height = -this.b;
return;
}
}
}
W2 = X * X + Y * Y;
W = Math.sqrt(W2);
T0 = Z * AD_C;
S0 = Math.sqrt(T0 * T0 + W2);
Sin_B0 = T0 / S0;
Cos_B0 = W / S0;
Sin3_B0 = Sin_B0 * Sin_B0 * Sin_B0;
T1 = Z + this.b * this.ep2 * Sin3_B0;
Sum = W - this.a * this.es * Cos_B0 * Cos_B0 * Cos_B0;
S1 = Math.sqrt(T1 * T1 + Sum * Sum);
Sin_p1 = T1 / S1;
Cos_p1 = Sum / S1;
Rn = this.a / Math.sqrt(1.0 - this.es * Sin_p1 * Sin_p1);
if (Cos_p1 >= COS_67P5) {
Height = W / Cos_p1 - Rn;
}
else if (Cos_p1 <= -COS_67P5) {
Height = W / -Cos_p1 - Rn;
}
else {
Height = Z / Sin_p1 + Rn * (this.es - 1.0);
}
if (At_Pole === false) {
Latitude = Math.atan(Sin_p1 / Cos_p1);
}
p.x = Longitude;
p.y = Latitude;
p.z = Height;
return p;
}, // geocentric_to_geodetic_noniter()
/****************************************************************/
// pj_geocentic_to_wgs84( p )
// p = point to transform in geocentric coordinates (x,y,z)
geocentric_to_wgs84: function(p) {
if (this.datum_type === PJD_3PARAM) {
// if( x[io] === HUGE_VAL )
// continue;
p.x += this.datum_params[0];
p.y += this.datum_params[1];
p.z += this.datum_params[2];
}
else if (this.datum_type === PJD_7PARAM) {
var Dx_BF = this.datum_params[0];
var Dy_BF = this.datum_params[1];
var Dz_BF = this.datum_params[2];
var Rx_BF = this.datum_params[3];
var Ry_BF = this.datum_params[4];
var Rz_BF = this.datum_params[5];
var M_BF = this.datum_params[6];
// if( x[io] === HUGE_VAL )
// continue;
var x_out = M_BF * (p.x - Rz_BF * p.y + Ry_BF * p.z) + Dx_BF;
var y_out = M_BF * (Rz_BF * p.x + p.y - Rx_BF * p.z) + Dy_BF;
var z_out = M_BF * (-Ry_BF * p.x + Rx_BF * p.y + p.z) + Dz_BF;
p.x = x_out;
p.y = y_out;
p.z = z_out;
}
}, // cs_geocentric_to_wgs84
/****************************************************************/
// pj_geocentic_from_wgs84()
// coordinate system definition,
// point to transform in geocentric coordinates (x,y,z)
geocentric_from_wgs84: function(p) {
if (this.datum_type === PJD_3PARAM) {
//if( x[io] === HUGE_VAL )
// continue;
p.x -= this.datum_params[0];
p.y -= this.datum_params[1];
p.z -= this.datum_params[2];
}
else if (this.datum_type === PJD_7PARAM) {
var Dx_BF = this.datum_params[0];
var Dy_BF = this.datum_params[1];
var Dz_BF = this.datum_params[2];
var Rx_BF = this.datum_params[3];
var Ry_BF = this.datum_params[4];
var Rz_BF = this.datum_params[5];
var M_BF = this.datum_params[6];
var x_tmp = (p.x - Dx_BF) / M_BF;
var y_tmp = (p.y - Dy_BF) / M_BF;
var z_tmp = (p.z - Dz_BF) / M_BF;
//if( x[io] === HUGE_VAL )
// continue;
p.x = x_tmp + Rz_BF * y_tmp - Ry_BF * z_tmp;
p.y = -Rz_BF * x_tmp + y_tmp + Rx_BF * z_tmp;
p.z = Ry_BF * x_tmp - Rx_BF * y_tmp + z_tmp;
} //cs_geocentric_from_wgs84()
}
};
/** point object, nothing fancy, just allows values to be
passed back and forth by reference rather than by value.
Other point classes may be used as long as they have
x and y properties, which will get modified in the transform method.
*/
module.exports = datum;
},{}],31:[function(_dereq_,module,exports){
var PJD_3PARAM = 1;
var PJD_7PARAM = 2;
var PJD_GRIDSHIFT = 3;
var PJD_NODATUM = 5; // WGS84 or equivalent
var SRS_WGS84_SEMIMAJOR = 6378137; // only used in grid shift transforms
var SRS_WGS84_ESQUARED = 0.006694379990141316; //DGR: 2012-07-29
module.exports = function(source, dest, point) {
var wp, i, l;
function checkParams(fallback) {
return (fallback === PJD_3PARAM || fallback === PJD_7PARAM);
}
// Short cut if the datums are identical.
if (source.compare_datums(dest)) {
return point; // in this case, zero is sucess,
// whereas cs_compare_datums returns 1 to indicate TRUE
// confusing, should fix this
}
// Explicitly skip datum transform by setting 'datum=none' as parameter for either source or dest
if (source.datum_type === PJD_NODATUM || dest.datum_type === PJD_NODATUM) {
return point;
}
//DGR: 2012-07-29 : add nadgrids support (begin)
var src_a = source.a;
var src_es = source.es;
var dst_a = dest.a;
var dst_es = dest.es;
var fallback = source.datum_type;
// If this datum requires grid shifts, then apply it to geodetic coordinates.
if (fallback === PJD_GRIDSHIFT) {
if (this.apply_gridshift(source, 0, point) === 0) {
source.a = SRS_WGS84_SEMIMAJOR;
source.es = SRS_WGS84_ESQUARED;
}
else {
// try 3 or 7 params transformation or nothing ?
if (!source.datum_params) {
source.a = src_a;
source.es = source.es;
return point;
}
wp = 1;
for (i = 0, l = source.datum_params.length; i < l; i++) {
wp *= source.datum_params[i];
}
if (wp === 0) {
source.a = src_a;
source.es = source.es;
return point;
}
if (source.datum_params.length > 3) {
fallback = PJD_7PARAM;
}
else {
fallback = PJD_3PARAM;
}
}
}
if (dest.datum_type === PJD_GRIDSHIFT) {
dest.a = SRS_WGS84_SEMIMAJOR;
dest.es = SRS_WGS84_ESQUARED;
}
// Do we need to go through geocentric coordinates?
if (source.es !== dest.es || source.a !== dest.a || checkParams(fallback) || checkParams(dest.datum_type)) {
//DGR: 2012-07-29 : add nadgrids support (end)
// Convert to geocentric coordinates.
source.geodetic_to_geocentric(point);
// CHECK_RETURN;
// Convert between datums
if (checkParams(source.datum_type)) {
source.geocentric_to_wgs84(point);
// CHECK_RETURN;
}
if (checkParams(dest.datum_type)) {
dest.geocentric_from_wgs84(point);
// CHECK_RETURN;
}
// Convert back to geodetic coordinates
dest.geocentric_to_geodetic(point);
// CHECK_RETURN;
}
// Apply grid shift to destination if required
if (dest.datum_type === PJD_GRIDSHIFT) {
this.apply_gridshift(dest, 1, point);
// CHECK_RETURN;
}
source.a = src_a;
source.es = src_es;
dest.a = dst_a;
dest.es = dst_es;
return point;
};
},{}],32:[function(_dereq_,module,exports){
var globals = _dereq_('./global');
var parseProj = _dereq_('./projString');
var wkt = _dereq_('./wkt');
function defs(name) {
/*global console*/
var that = this;
if (arguments.length === 2) {
var def = arguments[1];
if (typeof def === 'string') {
if (def.charAt(0) === '+') {
defs[name] = parseProj(arguments[1]);
}
else {
defs[name] = wkt(arguments[1]);
}
} else {
defs[name] = def;
}
}
else if (arguments.length === 1) {
if (Array.isArray(name)) {
return name.map(function(v) {
if (Array.isArray(v)) {
defs.apply(that, v);
}
else {
defs(v);
}
});
}
else if (typeof name === 'string') {
if (name in defs) {
return defs[name];
}
}
else if ('EPSG' in name) {
defs['EPSG:' + name.EPSG] = name;
}
else if ('ESRI' in name) {
defs['ESRI:' + name.ESRI] = name;
}
else if ('IAU2000' in name) {
defs['IAU2000:' + name.IAU2000] = name;
}
else {
console.log(name);
}
return;
}
}
globals(defs);
module.exports = defs;
},{"./global":35,"./projString":38,"./wkt":66}],33:[function(_dereq_,module,exports){
var Datum = _dereq_('./constants/Datum');
var Ellipsoid = _dereq_('./constants/Ellipsoid');
var extend = _dereq_('./extend');
var datum = _dereq_('./datum');
var EPSLN = 1.0e-10;
// ellipoid pj_set_ell.c
var SIXTH = 0.1666666666666666667;
/* 1/6 */
var RA4 = 0.04722222222222222222;
/* 17/360 */
var RA6 = 0.02215608465608465608;
module.exports = function(json) {
// DGR 2011-03-20 : nagrids -> nadgrids
if (json.datumCode && json.datumCode !== 'none') {
var datumDef = Datum[json.datumCode];
if (datumDef) {
json.datum_params = datumDef.towgs84 ? datumDef.towgs84.split(',') : null;
json.ellps = datumDef.ellipse;
json.datumName = datumDef.datumName ? datumDef.datumName : json.datumCode;
}
}
if (!json.a) { // do we have an ellipsoid?
var ellipse = Ellipsoid[json.ellps] ? Ellipsoid[json.ellps] : Ellipsoid.WGS84;
extend(json, ellipse);
}
if (json.rf && !json.b) {
json.b = (1.0 - 1.0 / json.rf) * json.a;
}
if (json.rf === 0 || Math.abs(json.a - json.b) < EPSLN) {
json.sphere = true;
json.b = json.a;
}
json.a2 = json.a * json.a; // used in geocentric
json.b2 = json.b * json.b; // used in geocentric
json.es = (json.a2 - json.b2) / json.a2; // e ^ 2
json.e = Math.sqrt(json.es); // eccentricity
if (json.R_A) {
json.a *= 1 - json.es * (SIXTH + json.es * (RA4 + json.es * RA6));
json.a2 = json.a * json.a;
json.b2 = json.b * json.b;
json.es = 0;
}
json.ep2 = (json.a2 - json.b2) / json.b2; // used in geocentric
if (!json.k0) {
json.k0 = 1.0; //default value
}
//DGR 2010-11-12: axis
if (!json.axis) {
json.axis = "enu";
}
if (!json.datum) {
json.datum = datum(json);
}
return json;
};
},{"./constants/Datum":25,"./constants/Ellipsoid":26,"./datum":30,"./extend":34}],34:[function(_dereq_,module,exports){
module.exports = function(destination, source) {
destination = destination || {};
var value, property;
if (!source) {
return destination;
}
for (property in source) {
value = source[property];
if (value !== undefined) {
destination[property] = value;
}
}
return destination;
};
},{}],35:[function(_dereq_,module,exports){
module.exports = function(defs) {
defs('EPSG:4326', "+title=WGS 84 (long/lat) +proj=longlat +ellps=WGS84 +datum=WGS84 +units=degrees");
defs('EPSG:4269', "+title=NAD83 (long/lat) +proj=longlat +a=6378137.0 +b=6356752.31414036 +ellps=GRS80 +datum=NAD83 +units=degrees");
defs('EPSG:3857', "+title=WGS 84 / Pseudo-Mercator +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs");
defs.WGS84 = defs['EPSG:4326'];
defs['EPSG:3785'] = defs['EPSG:3857']; // maintain backward compat, official code is 3857
defs.GOOGLE = defs['EPSG:3857'];
defs['EPSG:900913'] = defs['EPSG:3857'];
defs['EPSG:102113'] = defs['EPSG:3857'];
};
},{}],36:[function(_dereq_,module,exports){
var proj4 = _dereq_('./core');
proj4.defaultDatum = 'WGS84'; //default datum
proj4.Proj = _dereq_('./Proj');
proj4.WGS84 = new proj4.Proj('WGS84');
proj4.Point = _dereq_('./Point');
proj4.toPoint = _dereq_("./common/toPoint");
proj4.defs = _dereq_('./defs');
proj4.transform = _dereq_('./transform');
proj4.mgrs = _dereq_('mgrs');
proj4.version = _dereq_('../package.json').version;
_dereq_('./includedProjections')(proj4);
module.exports = proj4;
},{"../package.json":68,"./Point":1,"./Proj":2,"./common/toPoint":23,"./core":29,"./defs":32,"./includedProjections":"hTEDpn","./transform":65,"mgrs":67}],37:[function(_dereq_,module,exports){
var defs = _dereq_('./defs');
var wkt = _dereq_('./wkt');
var projStr = _dereq_('./projString');
function testObj(code){
return typeof code === 'string';
}
function testDef(code){
return code in defs;
}
function testWKT(code){
var codeWords = ['GEOGCS','GEOCCS','PROJCS','LOCAL_CS'];
return codeWords.reduce(function(a,b){
return a+1+code.indexOf(b);
},0);
}
function testProj(code){
return code[0] === '+';
}
function parse(code){
if (testObj(code)) {
//check to see if this is a WKT string
if (testDef(code)) {
return defs[code];
}
else if (testWKT(code)) {
return wkt(code);
}
else if (testProj(code)) {
return projStr(code);
}
}else{
return code;
}
}
module.exports = parse;
},{"./defs":32,"./projString":38,"./wkt":66}],38:[function(_dereq_,module,exports){
var D2R = 0.01745329251994329577;
var PrimeMeridian = _dereq_('./constants/PrimeMeridian');
var units = _dereq_('./constants/units');
module.exports = function(defData) {
var self = {};
var paramObj = {};
defData.split("+").map(function(v) {
return v.trim();
}).filter(function(a) {
return a;
}).forEach(function(a) {
var split = a.split("=");
split.push(true);
paramObj[split[0].toLowerCase()] = split[1];
});
var paramName, paramVal, paramOutname;
var params = {
proj: 'projName',
datum: 'datumCode',
rf: function(v) {
self.rf = parseFloat(v);
},
lat_0: function(v) {
self.lat0 = v * D2R;
},
lat_1: function(v) {
self.lat1 = v * D2R;
},
lat_2: function(v) {
self.lat2 = v * D2R;
},
lat_ts: function(v) {
self.lat_ts = v * D2R;
},
lon_0: function(v) {
self.long0 = v * D2R;
},
lon_1: function(v) {
self.long1 = v * D2R;
},
lon_2: function(v) {
self.long2 = v * D2R;
},
alpha: function(v) {
self.alpha = parseFloat(v) * D2R;
},
lonc: function(v) {
self.longc = v * D2R;
},
x_0: function(v) {
self.x0 = parseFloat(v);
},
y_0: function(v) {
self.y0 = parseFloat(v);
},
k_0: function(v) {
self.k0 = parseFloat(v);
},
k: function(v) {
self.k0 = parseFloat(v);
},
a: function(v) {
self.a = parseFloat(v);
},
b: function(v) {
self.b = parseFloat(v);
},
r_a: function() {
self.R_A = true;
},
zone: function(v) {
self.zone = parseInt(v, 10);
},
south: function() {
self.utmSouth = true;
},
towgs84: function(v) {
self.datum_params = v.split(",").map(function(a) {
return parseFloat(a);
});
},
to_meter: function(v) {
self.to_meter = parseFloat(v);
},
units: function(v) {
self.units = v;
if (units[v]) {
self.to_meter = units[v].to_meter;
}
},
from_greenwich: function(v) {
self.from_greenwich = v * D2R;
},
pm: function(v) {
self.from_greenwich = (PrimeMeridian[v] ? PrimeMeridian[v] : parseFloat(v)) * D2R;
},
nadgrids: function(v) {
if (v === '@null') {
self.datumCode = 'none';
}
else {
self.nadgrids = v;
}
},
axis: function(v) {
var legalAxis = "ewnsud";
if (v.length === 3 && legalAxis.indexOf(v.substr(0, 1)) !== -1 && legalAxis.indexOf(v.substr(1, 1)) !== -1 && legalAxis.indexOf(v.substr(2, 1)) !== -1) {
self.axis = v;
}
}
};
for (paramName in paramObj) {
paramVal = paramObj[paramName];
if (paramName in params) {
paramOutname = params[paramName];
if (typeof paramOutname === 'function') {
paramOutname(paramVal);
}
else {
self[paramOutname] = paramVal;
}
}
else {
self[paramName] = paramVal;
}
}
if(typeof self.datumCode === 'string' && self.datumCode !== "WGS84"){
self.datumCode = self.datumCode.toLowerCase();
}
return self;
};
},{"./constants/PrimeMeridian":27,"./constants/units":28}],39:[function(_dereq_,module,exports){
var projs = [
_dereq_('./projections/merc'),
_dereq_('./projections/longlat')
];
var names = {};
var projStore = [];
function add(proj, i) {
var len = projStore.length;
if (!proj.names) {
console.log(i);
return true;
}
projStore[len] = proj;
proj.names.forEach(function(n) {
names[n.toLowerCase()] = len;
});
return this;
}
exports.add = add;
exports.get = function(name) {
if (!name) {
return false;
}
var n = name.toLowerCase();
if (typeof names[n] !== 'undefined' && projStore[names[n]]) {
return projStore[names[n]];
}
};
exports.start = function() {
projs.forEach(add);
};
},{"./projections/longlat":51,"./projections/merc":52}],40:[function(_dereq_,module,exports){
var EPSLN = 1.0e-10;
var msfnz = _dereq_('../common/msfnz');
var qsfnz = _dereq_('../common/qsfnz');
var adjust_lon = _dereq_('../common/adjust_lon');
var asinz = _dereq_('../common/asinz');
exports.init = function() {
if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
return;
}
this.temp = this.b / this.a;
this.es = 1 - Math.pow(this.temp, 2);
this.e3 = Math.sqrt(this.es);
this.sin_po = Math.sin(this.lat1);
this.cos_po = Math.cos(this.lat1);
this.t1 = this.sin_po;
this.con = this.sin_po;
this.ms1 = msfnz(this.e3, this.sin_po, this.cos_po);
this.qs1 = qsfnz(this.e3, this.sin_po, this.cos_po);
this.sin_po = Math.sin(this.lat2);
this.cos_po = Math.cos(this.lat2);
this.t2 = this.sin_po;
this.ms2 = msfnz(this.e3, this.sin_po, this.cos_po);
this.qs2 = qsfnz(this.e3, this.sin_po, this.cos_po);
this.sin_po = Math.sin(this.lat0);
this.cos_po = Math.cos(this.lat0);
this.t3 = this.sin_po;
this.qs0 = qsfnz(this.e3, this.sin_po, this.cos_po);
if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
this.ns0 = (this.ms1 * this.ms1 - this.ms2 * this.ms2) / (this.qs2 - this.qs1);
}
else {
this.ns0 = this.con;
}
this.c = this.ms1 * this.ms1 + this.ns0 * this.qs1;
this.rh = this.a * Math.sqrt(this.c - this.ns0 * this.qs0) / this.ns0;
};
/* Albers Conical Equal Area forward equations--mapping lat,long to x,y
-------------------------------------------------------------------*/
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
this.sin_phi = Math.sin(lat);
this.cos_phi = Math.cos(lat);
var qs = qsfnz(this.e3, this.sin_phi, this.cos_phi);
var rh1 = this.a * Math.sqrt(this.c - this.ns0 * qs) / this.ns0;
var theta = this.ns0 * adjust_lon(lon - this.long0);
var x = rh1 * Math.sin(theta) + this.x0;
var y = this.rh - rh1 * Math.cos(theta) + this.y0;
p.x = x;
p.y = y;
return p;
};
exports.inverse = function(p) {
var rh1, qs, con, theta, lon, lat;
p.x -= this.x0;
p.y = this.rh - p.y + this.y0;
if (this.ns0 >= 0) {
rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
con = 1;
}
else {
rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
con = -1;
}
theta = 0;
if (rh1 !== 0) {
theta = Math.atan2(con * p.x, con * p.y);
}
con = rh1 * this.ns0 / this.a;
if (this.sphere) {
lat = Math.asin((this.c - con * con) / (2 * this.ns0));
}
else {
qs = (this.c - con * con) / this.ns0;
lat = this.phi1z(this.e3, qs);
}
lon = adjust_lon(theta / this.ns0 + this.long0);
p.x = lon;
p.y = lat;
return p;
};
/* Function to compute phi1, the latitude for the inverse of the
Albers Conical Equal-Area projection.
-------------------------------------------*/
exports.phi1z = function(eccent, qs) {
var sinphi, cosphi, con, com, dphi;
var phi = asinz(0.5 * qs);
if (eccent < EPSLN) {
return phi;
}
var eccnts = eccent * eccent;
for (var i = 1; i <= 25; i++) {
sinphi = Math.sin(phi);
cosphi = Math.cos(phi);
con = eccent * sinphi;
com = 1 - con * con;
dphi = 0.5 * com * com / cosphi * (qs / (1 - eccnts) - sinphi / com + 0.5 / eccent * Math.log((1 - con) / (1 + con)));
phi = phi + dphi;
if (Math.abs(dphi) <= 1e-7) {
return phi;
}
}
return null;
};
exports.names = ["Albers_Conic_Equal_Area", "Albers", "aea"];
},{"../common/adjust_lon":5,"../common/asinz":6,"../common/msfnz":15,"../common/qsfnz":20}],41:[function(_dereq_,module,exports){
var adjust_lon = _dereq_('../common/adjust_lon');
var HALF_PI = Math.PI/2;
var EPSLN = 1.0e-10;
var mlfn = _dereq_('../common/mlfn');
var e0fn = _dereq_('../common/e0fn');
var e1fn = _dereq_('../common/e1fn');
var e2fn = _dereq_('../common/e2fn');
var e3fn = _dereq_('../common/e3fn');
var gN = _dereq_('../common/gN');
var asinz = _dereq_('../common/asinz');
var imlfn = _dereq_('../common/imlfn');
exports.init = function() {
this.sin_p12 = Math.sin(this.lat0);
this.cos_p12 = Math.cos(this.lat0);
};
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
var sinphi = Math.sin(p.y);
var cosphi = Math.cos(p.y);
var dlon = adjust_lon(lon - this.long0);
var e0, e1, e2, e3, Mlp, Ml, tanphi, Nl1, Nl, psi, Az, G, H, GH, Hs, c, kp, cos_c, s, s2, s3, s4, s5;
if (this.sphere) {
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
//North Pole case
p.x = this.x0 + this.a * (HALF_PI - lat) * Math.sin(dlon);
p.y = this.y0 - this.a * (HALF_PI - lat) * Math.cos(dlon);
return p;
}
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
//South Pole case
p.x = this.x0 + this.a * (HALF_PI + lat) * Math.sin(dlon);
p.y = this.y0 + this.a * (HALF_PI + lat) * Math.cos(dlon);
return p;
}
else {
//default case
cos_c = this.sin_p12 * sinphi + this.cos_p12 * cosphi * Math.cos(dlon);
c = Math.acos(cos_c);
kp = c / Math.sin(c);
p.x = this.x0 + this.a * kp * cosphi * Math.sin(dlon);
p.y = this.y0 + this.a * kp * (this.cos_p12 * sinphi - this.sin_p12 * cosphi * Math.cos(dlon));
return p;
}
}
else {
e0 = e0fn(this.es);
e1 = e1fn(this.es);
e2 = e2fn(this.es);
e3 = e3fn(this.es);
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
//North Pole case
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
Ml = this.a * mlfn(e0, e1, e2, e3, lat);
p.x = this.x0 + (Mlp - Ml) * Math.sin(dlon);
p.y = this.y0 - (Mlp - Ml) * Math.cos(dlon);
return p;
}
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
//South Pole case
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
Ml = this.a * mlfn(e0, e1, e2, e3, lat);
p.x = this.x0 + (Mlp + Ml) * Math.sin(dlon);
p.y = this.y0 + (Mlp + Ml) * Math.cos(dlon);
return p;
}
else {
//Default case
tanphi = sinphi / cosphi;
Nl1 = gN(this.a, this.e, this.sin_p12);
Nl = gN(this.a, this.e, sinphi);
psi = Math.atan((1 - this.es) * tanphi + this.es * Nl1 * this.sin_p12 / (Nl * cosphi));
Az = Math.atan2(Math.sin(dlon), this.cos_p12 * Math.tan(psi) - this.sin_p12 * Math.cos(dlon));
if (Az === 0) {
s = Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
}
else if (Math.abs(Math.abs(Az) - Math.PI) <= EPSLN) {
s = -Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
}
else {
s = Math.asin(Math.sin(dlon) * Math.cos(psi) / Math.sin(Az));
}
G = this.e * this.sin_p12 / Math.sqrt(1 - this.es);
H = this.e * this.cos_p12 * Math.cos(Az) / Math.sqrt(1 - this.es);
GH = G * H;
Hs = H * H;
s2 = s * s;
s3 = s2 * s;
s4 = s3 * s;
s5 = s4 * s;
c = Nl1 * s * (1 - s2 * Hs * (1 - Hs) / 6 + s3 / 8 * GH * (1 - 2 * Hs) + s4 / 120 * (Hs * (4 - 7 * Hs) - 3 * G * G * (1 - 7 * Hs)) - s5 / 48 * GH);
p.x = this.x0 + c * Math.sin(Az);
p.y = this.y0 + c * Math.cos(Az);
return p;
}
}
};
exports.inverse = function(p) {
p.x -= this.x0;
p.y -= this.y0;
var rh, z, sinz, cosz, lon, lat, con, e0, e1, e2, e3, Mlp, M, N1, psi, Az, cosAz, tmp, A, B, D, Ee, F;
if (this.sphere) {
rh = Math.sqrt(p.x * p.x + p.y * p.y);
if (rh > (2 * HALF_PI * this.a)) {
return;
}
z = rh / this.a;
sinz = Math.sin(z);
cosz = Math.cos(z);
lon = this.long0;
if (Math.abs(rh) <= EPSLN) {
lat = this.lat0;
}
else {
lat = asinz(cosz * this.sin_p12 + (p.y * sinz * this.cos_p12) / rh);
con = Math.abs(this.lat0) - HALF_PI;
if (Math.abs(con) <= EPSLN) {
if (this.lat0 >= 0) {
lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y));
}
else {
lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y));
}
}
else {
/*con = cosz - this.sin_p12 * Math.sin(lat);
if ((Math.abs(con) < EPSLN) && (Math.abs(p.x) < EPSLN)) {
//no-op, just keep the lon value as is
} else {
var temp = Math.atan2((p.x * sinz * this.cos_p12), (con * rh));
lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz * this.cos_p12), (con * rh)));
}*/
lon = adjust_lon(this.long0 + Math.atan2(p.x * sinz, rh * this.cos_p12 * cosz - p.y * this.sin_p12 * sinz));
}
}
p.x = lon;
p.y = lat;
return p;
}
else {
e0 = e0fn(this.es);
e1 = e1fn(this.es);
e2 = e2fn(this.es);
e3 = e3fn(this.es);
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
//North pole case
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
rh = Math.sqrt(p.x * p.x + p.y * p.y);
M = Mlp - rh;
lat = imlfn(M / this.a, e0, e1, e2, e3);
lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y));
p.x = lon;
p.y = lat;
return p;
}
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
//South pole case
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
rh = Math.sqrt(p.x * p.x + p.y * p.y);
M = rh - Mlp;
lat = imlfn(M / this.a, e0, e1, e2, e3);
lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y));
p.x = lon;
p.y = lat;
return p;
}
else {
//default case
rh = Math.sqrt(p.x * p.x + p.y * p.y);
Az = Math.atan2(p.x, p.y);
N1 = gN(this.a, this.e, this.sin_p12);
cosAz = Math.cos(Az);
tmp = this.e * this.cos_p12 * cosAz;
A = -tmp * tmp / (1 - this.es);
B = 3 * this.es * (1 - A) * this.sin_p12 * this.cos_p12 * cosAz / (1 - this.es);
D = rh / N1;
Ee = D - A * (1 + A) * Math.pow(D, 3) / 6 - B * (1 + 3 * A) * Math.pow(D, 4) / 24;
F = 1 - A * Ee * Ee / 2 - D * Ee * Ee * Ee / 6;
psi = Math.asin(this.sin_p12 * Math.cos(Ee) + this.cos_p12 * Math.sin(Ee) * cosAz);
lon = adjust_lon(this.long0 + Math.asin(Math.sin(Az) * Math.sin(Ee) / Math.cos(psi)));
lat = Math.atan((1 - this.es * F * this.sin_p12 / Math.sin(psi)) * Math.tan(psi) / (1 - this.es));
p.x = lon;
p.y = lat;
return p;
}
}
};
exports.names = ["Azimuthal_Equidistant", "aeqd"];
},{"../common/adjust_lon":5,"../common/asinz":6,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/gN":11,"../common/imlfn":12,"../common/mlfn":14}],42:[function(_dereq_,module,exports){
var mlfn = _dereq_('../common/mlfn');
var e0fn = _dereq_('../common/e0fn');
var e1fn = _dereq_('../common/e1fn');
var e2fn = _dereq_('../common/e2fn');
var e3fn = _dereq_('../common/e3fn');
var gN = _dereq_('../common/gN');
var adjust_lon = _dereq_('../common/adjust_lon');
var adjust_lat = _dereq_('../common/adjust_lat');
var imlfn = _dereq_('../common/imlfn');
var HALF_PI = Math.PI/2;
var EPSLN = 1.0e-10;
exports.init = function() {
if (!this.sphere) {
this.e0 = e0fn(this.es);
this.e1 = e1fn(this.es);
this.e2 = e2fn(this.es);
this.e3 = e3fn(this.es);
this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
}
};
/* Cassini forward equations--mapping lat,long to x,y
-----------------------------------------------------------------------*/
exports.forward = function(p) {
/* Forward equations
-----------------*/
var x, y;
var lam = p.x;
var phi = p.y;
lam = adjust_lon(lam - this.long0);
if (this.sphere) {
x = this.a * Math.asin(Math.cos(phi) * Math.sin(lam));
y = this.a * (Math.atan2(Math.tan(phi), Math.cos(lam)) - this.lat0);
}
else {
//ellipsoid
var sinphi = Math.sin(phi);
var cosphi = Math.cos(phi);
var nl = gN(this.a, this.e, sinphi);
var tl = Math.tan(phi) * Math.tan(phi);
var al = lam * Math.cos(phi);
var asq = al * al;
var cl = this.es * cosphi * cosphi / (1 - this.es);
var ml = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi);
x = nl * al * (1 - asq * tl * (1 / 6 - (8 - tl + 8 * cl) * asq / 120));
y = ml - this.ml0 + nl * sinphi / cosphi * asq * (0.5 + (5 - tl + 6 * cl) * asq / 24);
}
p.x = x + this.x0;
p.y = y + this.y0;
return p;
};
/* Inverse equations
-----------------*/
exports.inverse = function(p) {
p.x -= this.x0;
p.y -= this.y0;
var x = p.x / this.a;
var y = p.y / this.a;
var phi, lam;
if (this.sphere) {
var dd = y + this.lat0;
phi = Math.asin(Math.sin(dd) * Math.cos(x));
lam = Math.atan2(Math.tan(x), Math.cos(dd));
}
else {
/* ellipsoid */
var ml1 = this.ml0 / this.a + y;
var phi1 = imlfn(ml1, this.e0, this.e1, this.e2, this.e3);
if (Math.abs(Math.abs(phi1) - HALF_PI) <= EPSLN) {
p.x = this.long0;
p.y = HALF_PI;
if (y < 0) {
p.y *= -1;
}
return p;
}
var nl1 = gN(this.a, this.e, Math.sin(phi1));
var rl1 = nl1 * nl1 * nl1 / this.a / this.a * (1 - this.es);
var tl1 = Math.pow(Math.tan(phi1), 2);
var dl = x * this.a / nl1;
var dsq = dl * dl;
phi = phi1 - nl1 * Math.tan(phi1) / rl1 * dl * dl * (0.5 - (1 + 3 * tl1) * dl * dl / 24);
lam = dl * (1 - dsq * (tl1 / 3 + (1 + 3 * tl1) * tl1 * dsq / 15)) / Math.cos(phi1);
}
p.x = adjust_lon(lam + this.long0);
p.y = adjust_lat(phi);
return p;
};
exports.names = ["Cassini", "Cassini_Soldner", "cass"];
},{"../common/adjust_lat":4,"../common/adjust_lon":5,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/gN":11,"../common/imlfn":12,"../common/mlfn":14}],43:[function(_dereq_,module,exports){
var adjust_lon = _dereq_('../common/adjust_lon');
var qsfnz = _dereq_('../common/qsfnz');
var msfnz = _dereq_('../common/msfnz');
var iqsfnz = _dereq_('../common/iqsfnz');
/*
reference:
"Cartographic Projection Procedures for the UNIX Environment-
A User's Manual" by Gerald I. Evenden,
USGS Open File Report 90-284and Release 4 Interim Reports (2003)
*/
exports.init = function() {
//no-op
if (!this.sphere) {
this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts));
}
};
/* Cylindrical Equal Area forward equations--mapping lat,long to x,y
------------------------------------------------------------*/
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
var x, y;
/* Forward equations
-----------------*/
var dlon = adjust_lon(lon - this.long0);
if (this.sphere) {
x = this.x0 + this.a * dlon * Math.cos(this.lat_ts);
y = this.y0 + this.a * Math.sin(lat) / Math.cos(this.lat_ts);
}
else {
var qs = qsfnz(this.e, Math.sin(lat));
x = this.x0 + this.a * this.k0 * dlon;
y = this.y0 + this.a * qs * 0.5 / this.k0;
}
p.x = x;
p.y = y;
return p;
};
/* Cylindrical Equal Area inverse equations--mapping x,y to lat/long
------------------------------------------------------------*/
exports.inverse = function(p) {
p.x -= this.x0;
p.y -= this.y0;
var lon, lat;
if (this.sphere) {
lon = adjust_lon(this.long0 + (p.x / this.a) / Math.cos(this.lat_ts));
lat = Math.asin((p.y / this.a) * Math.cos(this.lat_ts));
}
else {
lat = iqsfnz(this.e, 2 * p.y * this.k0 / this.a);
lon = adjust_lon(this.long0 + p.x / (this.a * this.k0));
}
p.x = lon;
p.y = lat;
return p;
};
exports.names = ["cea"];
},{"../common/adjust_lon":5,"../common/iqsfnz":13,"../common/msfnz":15,"../common/qsfnz":20}],44:[function(_dereq_,module,exports){
var adjust_lon = _dereq_('../common/adjust_lon');
var adjust_lat = _dereq_('../common/adjust_lat');
exports.init = function() {
this.x0 = this.x0 || 0;
this.y0 = this.y0 || 0;
this.lat0 = this.lat0 || 0;
this.long0 = this.long0 || 0;
this.lat_ts = this.lat_ts || 0;
this.title = this.title || "Equidistant Cylindrical (Plate Carre)";
this.rc = Math.cos(this.lat_ts);
};
// forward equations--mapping lat,long to x,y
// -----------------------------------------------------------------
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
var dlon = adjust_lon(lon - this.long0);
var dlat = adjust_lat(lat - this.lat0);
p.x = this.x0 + (this.a * dlon * this.rc);
p.y = this.y0 + (this.a * dlat);
return p;
};
// inverse equations--mapping x,y to lat/long
// -----------------------------------------------------------------
exports.inverse = function(p) {
var x = p.x;
var y = p.y;
p.x = adjust_lon(this.long0 + ((x - this.x0) / (this.a * this.rc)));
p.y = adjust_lat(this.lat0 + ((y - this.y0) / (this.a)));
return p;
};
exports.names = ["Equirectangular", "Equidistant_Cylindrical", "eqc"];
},{"../common/adjust_lat":4,"../common/adjust_lon":5}],45:[function(_dereq_,module,exports){
var e0fn = _dereq_('../common/e0fn');
var e1fn = _dereq_('../common/e1fn');
var e2fn = _dereq_('../common/e2fn');
var e3fn = _dereq_('../common/e3fn');
var msfnz = _dereq_('../common/msfnz');
var mlfn = _dereq_('../common/mlfn');
var adjust_lon = _dereq_('../common/adjust_lon');
var adjust_lat = _dereq_('../common/adjust_lat');
var imlfn = _dereq_('../common/imlfn');
var EPSLN = 1.0e-10;
exports.init = function() {
/* Place parameters in static storage for common use
-------------------------------------------------*/
// Standard Parallels cannot be equal and on opposite sides of the equator
if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
return;
}
this.lat2 = this.lat2 || this.lat1;
this.temp = this.b / this.a;
this.es = 1 - Math.pow(this.temp, 2);
this.e = Math.sqrt(this.es);
this.e0 = e0fn(this.es);
this.e1 = e1fn(this.es);
this.e2 = e2fn(this.es);
this.e3 = e3fn(this.es);
this.sinphi = Math.sin(this.lat1);
this.cosphi = Math.cos(this.lat1);
this.ms1 = msfnz(this.e, this.sinphi, this.cosphi);
this.ml1 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat1);
if (Math.abs(this.lat1 - this.lat2) < EPSLN) {
this.ns = this.sinphi;
}
else {
this.sinphi = Math.sin(this.lat2);
this.cosphi = Math.cos(this.lat2);
this.ms2 = msfnz(this.e, this.sinphi, this.cosphi);
this.ml2 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat2);
this.ns = (this.ms1 - this.ms2) / (this.ml2 - this.ml1);
}
this.g = this.ml1 + this.ms1 / this.ns;
this.ml0 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
this.rh = this.a * (this.g - this.ml0);
};
/* Equidistant Conic forward equations--mapping lat,long to x,y
-----------------------------------------------------------*/
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
var rh1;
/* Forward equations
-----------------*/
if (this.sphere) {
rh1 = this.a * (this.g - lat);
}
else {
var ml = mlfn(this.e0, this.e1, this.e2, this.e3, lat);
rh1 = this.a * (this.g - ml);
}
var theta = this.ns * adjust_lon(lon - this.long0);
var x = this.x0 + rh1 * Math.sin(theta);
var y = this.y0 + this.rh - rh1 * Math.cos(theta);
p.x = x;
p.y = y;
return p;
};
/* Inverse equations
-----------------*/
exports.inverse = function(p) {
p.x -= this.x0;
p.y = this.rh - p.y + this.y0;
var con, rh1, lat, lon;
if (this.ns >= 0) {
rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
con = 1;
}
else {
rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
con = -1;
}
var theta = 0;
if (rh1 !== 0) {
theta = Math.atan2(con * p.x, con * p.y);
}
if (this.sphere) {
lon = adjust_lon(this.long0 + theta / this.ns);
lat = adjust_lat(this.g - rh1 / this.a);
p.x = lon;
p.y = lat;
return p;
}
else {
var ml = this.g - rh1 / this.a;
lat = imlfn(ml, this.e0, this.e1, this.e2, this.e3);
lon = adjust_lon(this.long0 + theta / this.ns);
p.x = lon;
p.y = lat;
return p;
}
};
exports.names = ["Equidistant_Conic", "eqdc"];
},{"../common/adjust_lat":4,"../common/adjust_lon":5,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/imlfn":12,"../common/mlfn":14,"../common/msfnz":15}],46:[function(_dereq_,module,exports){
var FORTPI = Math.PI/4;
var srat = _dereq_('../common/srat');
var HALF_PI = Math.PI/2;
var MAX_ITER = 20;
exports.init = function() {
var sphi = Math.sin(this.lat0);
var cphi = Math.cos(this.lat0);
cphi *= cphi;
this.rc = Math.sqrt(1 - this.es) / (1 - this.es * sphi * sphi);
this.C = Math.sqrt(1 + this.es * cphi * cphi / (1 - this.es));
this.phic0 = Math.asin(sphi / this.C);
this.ratexp = 0.5 * this.C * this.e;
this.K = Math.tan(0.5 * this.phic0 + FORTPI) / (Math.pow(Math.tan(0.5 * this.lat0 + FORTPI), this.C) * srat(this.e * sphi, this.ratexp));
};
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
p.y = 2 * Math.atan(this.K * Math.pow(Math.tan(0.5 * lat + FORTPI), this.C) * srat(this.e * Math.sin(lat), this.ratexp)) - HALF_PI;
p.x = this.C * lon;
return p;
};
exports.inverse = function(p) {
var DEL_TOL = 1e-14;
var lon = p.x / this.C;
var lat = p.y;
var num = Math.pow(Math.tan(0.5 * lat + FORTPI) / this.K, 1 / this.C);
for (var i = MAX_ITER; i > 0; --i) {
lat = 2 * Math.atan(num * srat(this.e * Math.sin(p.y), - 0.5 * this.e)) - HALF_PI;
if (Math.abs(lat - p.y) < DEL_TOL) {
break;
}
p.y = lat;
}
/* convergence failed */
if (!i) {
return null;
}
p.x = lon;
p.y = lat;
return p;
};
exports.names = ["gauss"];
},{"../common/srat":22}],47:[function(_dereq_,module,exports){
var adjust_lon = _dereq_('../common/adjust_lon');
var EPSLN = 1.0e-10;
var asinz = _dereq_('../common/asinz');
/*
reference:
Wolfram Mathworld "Gnomonic Projection"
http://mathworld.wolfram.com/GnomonicProjection.html
Accessed: 12th November 2009
*/
exports.init = function() {
/* Place parameters in static storage for common use
-------------------------------------------------*/
this.sin_p14 = Math.sin(this.lat0);
this.cos_p14 = Math.cos(this.lat0);
// Approximation for projecting points to the horizon (infinity)
this.infinity_dist = 1000 * this.a;
this.rc = 1;
};
/* Gnomonic forward equations--mapping lat,long to x,y
---------------------------------------------------*/
exports.forward = function(p) {
var sinphi, cosphi; /* sin and cos value */
var dlon; /* delta longitude value */
var coslon; /* cos of longitude */
var ksp; /* scale factor */
var g;
var x, y;
var lon = p.x;
var lat = p.y;
/* Forward equations
-----------------*/
dlon = adjust_lon(lon - this.long0);
sinphi = Math.sin(lat);
cosphi = Math.cos(lat);
coslon = Math.cos(dlon);
g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
ksp = 1;
if ((g > 0) || (Math.abs(g) <= EPSLN)) {
x = this.x0 + this.a * ksp * cosphi * Math.sin(dlon) / g;
y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon) / g;
}
else {
// Point is in the opposing hemisphere and is unprojectable
// We still need to return a reasonable point, so we project
// to infinity, on a bearing
// equivalent to the northern hemisphere equivalent
// This is a reasonable approximation for short shapes and lines that
// straddle the horizon.
x = this.x0 + this.infinity_dist * cosphi * Math.sin(dlon);
y = this.y0 + this.infinity_dist * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
}
p.x = x;
p.y = y;
return p;
};
exports.inverse = function(p) {
var rh; /* Rho */
var sinc, cosc;
var c;
var lon, lat;
/* Inverse equations
-----------------*/
p.x = (p.x - this.x0) / this.a;
p.y = (p.y - this.y0) / this.a;
p.x /= this.k0;
p.y /= this.k0;
if ((rh = Math.sqrt(p.x * p.x + p.y * p.y))) {
c = Math.atan2(rh, this.rc);
sinc = Math.sin(c);
cosc = Math.cos(c);
lat = asinz(cosc * this.sin_p14 + (p.y * sinc * this.cos_p14) / rh);
lon = Math.atan2(p.x * sinc, rh * this.cos_p14 * cosc - p.y * this.sin_p14 * sinc);
lon = adjust_lon(this.long0 + lon);
}
else {
lat = this.phic0;
lon = 0;
}
p.x = lon;
p.y = lat;
return p;
};
exports.names = ["gnom"];
},{"../common/adjust_lon":5,"../common/asinz":6}],48:[function(_dereq_,module,exports){
var adjust_lon = _dereq_('../common/adjust_lon');
exports.init = function() {
this.a = 6377397.155;
this.es = 0.006674372230614;
this.e = Math.sqrt(this.es);
if (!this.lat0) {
this.lat0 = 0.863937979737193;
}
if (!this.long0) {
this.long0 = 0.7417649320975901 - 0.308341501185665;
}
/* if scale not set default to 0.9999 */
if (!this.k0) {
this.k0 = 0.9999;
}
this.s45 = 0.785398163397448; /* 45 */
this.s90 = 2 * this.s45;
this.fi0 = this.lat0;
this.e2 = this.es;
this.e = Math.sqrt(this.e2);
this.alfa = Math.sqrt(1 + (this.e2 * Math.pow(Math.cos(this.fi0), 4)) / (1 - this.e2));
this.uq = 1.04216856380474;
this.u0 = Math.asin(Math.sin(this.fi0) / this.alfa);
this.g = Math.pow((1 + this.e * Math.sin(this.fi0)) / (1 - this.e * Math.sin(this.fi0)), this.alfa * this.e / 2);
this.k = Math.tan(this.u0 / 2 + this.s45) / Math.pow(Math.tan(this.fi0 / 2 + this.s45), this.alfa) * this.g;
this.k1 = this.k0;
this.n0 = this.a * Math.sqrt(1 - this.e2) / (1 - this.e2 * Math.pow(Math.sin(this.fi0), 2));
this.s0 = 1.37008346281555;
this.n = Math.sin(this.s0);
this.ro0 = this.k1 * this.n0 / Math.tan(this.s0);
this.ad = this.s90 - this.uq;
};
/* ellipsoid */
/* calculate xy from lat/lon */
/* Constants, identical to inverse transform function */
exports.forward = function(p) {
var gfi, u, deltav, s, d, eps, ro;
var lon = p.x;
var lat = p.y;
var delta_lon = adjust_lon(lon - this.long0);
/* Transformation */
gfi = Math.pow(((1 + this.e * Math.sin(lat)) / (1 - this.e * Math.sin(lat))), (this.alfa * this.e / 2));
u = 2 * (Math.atan(this.k * Math.pow(Math.tan(lat / 2 + this.s45), this.alfa) / gfi) - this.s45);
deltav = -delta_lon * this.alfa;
s = Math.asin(Math.cos(this.ad) * Math.sin(u) + Math.sin(this.ad) * Math.cos(u) * Math.cos(deltav));
d = Math.asin(Math.cos(u) * Math.sin(deltav) / Math.cos(s));
eps = this.n * d;
ro = this.ro0 * Math.pow(Math.tan(this.s0 / 2 + this.s45), this.n) / Math.pow(Math.tan(s / 2 + this.s45), this.n);
p.y = ro * Math.cos(eps) / 1;
p.x = ro * Math.sin(eps) / 1;
if (!this.czech) {
p.y *= -1;
p.x *= -1;
}
return (p);
};
/* calculate lat/lon from xy */
exports.inverse = function(p) {
var u, deltav, s, d, eps, ro, fi1;
var ok;
/* Transformation */
/* revert y, x*/
var tmp = p.x;
p.x = p.y;
p.y = tmp;
if (!this.czech) {
p.y *= -1;
p.x *= -1;
}
ro = Math.sqrt(p.x * p.x + p.y * p.y);
eps = Math.atan2(p.y, p.x);
d = eps / Math.sin(this.s0);
s = 2 * (Math.atan(Math.pow(this.ro0 / ro, 1 / this.n) * Math.tan(this.s0 / 2 + this.s45)) - this.s45);
u = Math.asin(Math.cos(this.ad) * Math.sin(s) - Math.sin(this.ad) * Math.cos(s) * Math.cos(d));
deltav = Math.asin(Math.cos(s) * Math.sin(d) / Math.cos(u));
p.x = this.long0 - deltav / this.alfa;
fi1 = u;
ok = 0;
var iter = 0;
do {
p.y = 2 * (Math.atan(Math.pow(this.k, - 1 / this.alfa) * Math.pow(Math.tan(u / 2 + this.s45), 1 / this.alfa) * Math.pow((1 + this.e * Math.sin(fi1)) / (1 - this.e * Math.sin(fi1)), this.e / 2)) - this.s45);
if (Math.abs(fi1 - p.y) < 0.0000000001) {
ok = 1;
}
fi1 = p.y;
iter += 1;
} while (ok === 0 && iter < 15);
if (iter >= 15) {
return null;
}
return (p);
};
exports.names = ["Krovak", "krovak"];
},{"../common/adjust_lon":5}],49:[function(_dereq_,module,exports){
var HALF_PI = Math.PI/2;
var FORTPI = Math.PI/4;
var EPSLN = 1.0e-10;
var qsfnz = _dereq_('../common/qsfnz');
var adjust_lon = _dereq_('../common/adjust_lon');
/*
reference
"New Equal-Area Map Projections for Noncircular Regions", John P. Snyder,
The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.
*/
exports.S_POLE = 1;
exports.N_POLE = 2;
exports.EQUIT = 3;
exports.OBLIQ = 4;
/* Initialize the Lambert Azimuthal Equal Area projection
------------------------------------------------------*/
exports.init = function() {
var t = Math.abs(this.lat0);
if (Math.abs(t - HALF_PI) < EPSLN) {
this.mode = this.lat0 < 0 ? this.S_POLE : this.N_POLE;
}
else if (Math.abs(t) < EPSLN) {
this.mode = this.EQUIT;
}
else {
this.mode = this.OBLIQ;
}
if (this.es > 0) {
var sinphi;
this.qp = qsfnz(this.e, 1);
this.mmf = 0.5 / (1 - this.es);
this.apa = this.authset(this.es);
switch (this.mode) {
case this.N_POLE:
this.dd = 1;
break;
case this.S_POLE:
this.dd = 1;
break;
case this.EQUIT:
this.rq = Math.sqrt(0.5 * this.qp);
this.dd = 1 / this.rq;
this.xmf = 1;
this.ymf = 0.5 * this.qp;
break;
case this.OBLIQ:
this.rq = Math.sqrt(0.5 * this.qp);
sinphi = Math.sin(this.lat0);
this.sinb1 = qsfnz(this.e, sinphi) / this.qp;
this.cosb1 = Math.sqrt(1 - this.sinb1 * this.sinb1);
this.dd = Math.cos(this.lat0) / (Math.sqrt(1 - this.es * sinphi * sinphi) * this.rq * this.cosb1);
this.ymf = (this.xmf = this.rq) / this.dd;
this.xmf *= this.dd;
break;
}
}
else {
if (this.mode === this.OBLIQ) {
this.sinph0 = Math.sin(this.lat0);
this.cosph0 = Math.cos(this.lat0);
}
}
};
/* Lambert Azimuthal Equal Area forward equations--mapping lat,long to x,y
-----------------------------------------------------------------------*/
exports.forward = function(p) {
/* Forward equations
-----------------*/
var x, y, coslam, sinlam, sinphi, q, sinb, cosb, b, cosphi;
var lam = p.x;
var phi = p.y;
lam = adjust_lon(lam - this.long0);
if (this.sphere) {
sinphi = Math.sin(phi);
cosphi = Math.cos(phi);
coslam = Math.cos(lam);
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
y = (this.mode === this.EQUIT) ? 1 + cosphi * coslam : 1 + this.sinph0 * sinphi + this.cosph0 * cosphi * coslam;
if (y <= EPSLN) {
return null;
}
y = Math.sqrt(2 / y);
x = y * cosphi * Math.sin(lam);
y *= (this.mode === this.EQUIT) ? sinphi : this.cosph0 * sinphi - this.sinph0 * cosphi * coslam;
}
else if (this.mode === this.N_POLE || this.mode === this.S_POLE) {
if (this.mode === this.N_POLE) {
coslam = -coslam;
}
if (Math.abs(phi + this.phi0) < EPSLN) {
return null;
}
y = FORTPI - phi * 0.5;
y = 2 * ((this.mode === this.S_POLE) ? Math.cos(y) : Math.sin(y));
x = y * Math.sin(lam);
y *= coslam;
}
}
else {
sinb = 0;
cosb = 0;
b = 0;
coslam = Math.cos(lam);
sinlam = Math.sin(lam);
sinphi = Math.sin(phi);
q = qsfnz(this.e, sinphi);
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
sinb = q / this.qp;
cosb = Math.sqrt(1 - sinb * sinb);
}
switch (this.mode) {
case this.OBLIQ:
b = 1 + this.sinb1 * sinb + this.cosb1 * cosb * coslam;
break;
case this.EQUIT:
b = 1 + cosb * coslam;
break;
case this.N_POLE:
b = HALF_PI + phi;
q = this.qp - q;
break;
case this.S_POLE:
b = phi - HALF_PI;
q = this.qp + q;
break;
}
if (Math.abs(b) < EPSLN) {
return null;
}
switch (this.mode) {
case this.OBLIQ:
case this.EQUIT:
b = Math.sqrt(2 / b);
if (this.mode === this.OBLIQ) {
y = this.ymf * b * (this.cosb1 * sinb - this.sinb1 * cosb * coslam);
}
else {
y = (b = Math.sqrt(2 / (1 + cosb * coslam))) * sinb * this.ymf;
}
x = this.xmf * b * cosb * sinlam;
break;
case this.N_POLE:
case this.S_POLE:
if (q >= 0) {
x = (b = Math.sqrt(q)) * sinlam;
y = coslam * ((this.mode === this.S_POLE) ? b : -b);
}
else {
x = y = 0;
}
break;
}
}
p.x = this.a * x + this.x0;
p.y = this.a * y + this.y0;
return p;
};
/* Inverse equations
-----------------*/
exports.inverse = function(p) {
p.x -= this.x0;
p.y -= this.y0;
var x = p.x / this.a;
var y = p.y / this.a;
var lam, phi, cCe, sCe, q, rho, ab;
if (this.sphere) {
var cosz = 0,
rh, sinz = 0;
rh = Math.sqrt(x * x + y * y);
phi = rh * 0.5;
if (phi > 1) {
return null;
}
phi = 2 * Math.asin(phi);
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
sinz = Math.sin(phi);
cosz = Math.cos(phi);
}
switch (this.mode) {
case this.EQUIT:
phi = (Math.abs(rh) <= EPSLN) ? 0 : Math.asin(y * sinz / rh);
x *= sinz;
y = cosz * rh;
break;
case this.OBLIQ:
phi = (Math.abs(rh) <= EPSLN) ? this.phi0 : Math.asin(cosz * this.sinph0 + y * sinz * this.cosph0 / rh);
x *= sinz * this.cosph0;
y = (cosz - Math.sin(phi) * this.sinph0) * rh;
break;
case this.N_POLE:
y = -y;
phi = HALF_PI - phi;
break;
case this.S_POLE:
phi -= HALF_PI;
break;
}
lam = (y === 0 && (this.mode === this.EQUIT || this.mode === this.OBLIQ)) ? 0 : Math.atan2(x, y);
}
else {
ab = 0;
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
x /= this.dd;
y *= this.dd;
rho = Math.sqrt(x * x + y * y);
if (rho < EPSLN) {
p.x = 0;
p.y = this.phi0;
return p;
}
sCe = 2 * Math.asin(0.5 * rho / this.rq);
cCe = Math.cos(sCe);
x *= (sCe = Math.sin(sCe));
if (this.mode === this.OBLIQ) {
ab = cCe * this.sinb1 + y * sCe * this.cosb1 / rho;
q = this.qp * ab;
y = rho * this.cosb1 * cCe - y * this.sinb1 * sCe;
}
else {
ab = y * sCe / rho;
q = this.qp * ab;
y = rho * cCe;
}
}
else if (this.mode === this.N_POLE || this.mode === this.S_POLE) {
if (this.mode === this.N_POLE) {
y = -y;
}
q = (x * x + y * y);
if (!q) {
p.x = 0;
p.y = this.phi0;
return p;
}
ab = 1 - q / this.qp;
if (this.mode === this.S_POLE) {
ab = -ab;
}
}
lam = Math.atan2(x, y);
phi = this.authlat(Math.asin(ab), this.apa);
}
p.x = adjust_lon(this.long0 + lam);
p.y = phi;
return p;
};
/* determine latitude from authalic latitude */
exports.P00 = 0.33333333333333333333;
exports.P01 = 0.17222222222222222222;
exports.P02 = 0.10257936507936507936;
exports.P10 = 0.06388888888888888888;
exports.P11 = 0.06640211640211640211;
exports.P20 = 0.01641501294219154443;
exports.authset = function(es) {
var t;
var APA = [];
APA[0] = es * this.P00;
t = es * es;
APA[0] += t * this.P01;
APA[1] = t * this.P10;
t *= es;
APA[0] += t * this.P02;
APA[1] += t * this.P11;
APA[2] = t * this.P20;
return APA;
};
exports.authlat = function(beta, APA) {
var t = beta + beta;
return (beta + APA[0] * Math.sin(t) + APA[1] * Math.sin(t + t) + APA[2] * Math.sin(t + t + t));
};
exports.names = ["Lambert Azimuthal Equal Area", "Lambert_Azimuthal_Equal_Area", "laea"];
},{"../common/adjust_lon":5,"../common/qsfnz":20}],50:[function(_dereq_,module,exports){
var EPSLN = 1.0e-10;
var msfnz = _dereq_('../common/msfnz');
var tsfnz = _dereq_('../common/tsfnz');
var HALF_PI = Math.PI/2;
var sign = _dereq_('../common/sign');
var adjust_lon = _dereq_('../common/adjust_lon');
var phi2z = _dereq_('../common/phi2z');
exports.init = function() {
// array of: r_maj,r_min,lat1,lat2,c_lon,c_lat,false_east,false_north
//double c_lat; /* center latitude */
//double c_lon; /* center longitude */
//double lat1; /* first standard parallel */
//double lat2; /* second standard parallel */
//double r_maj; /* major axis */
//double r_min; /* minor axis */
//double false_east; /* x offset in meters */
//double false_north; /* y offset in meters */
if (!this.lat2) {
this.lat2 = this.lat1;
} //if lat2 is not defined
if (!this.k0) {
this.k0 = 1;
}
this.x0 = this.x0 || 0;
this.y0 = this.y0 || 0;
// Standard Parallels cannot be equal and on opposite sides of the equator
if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
return;
}
var temp = this.b / this.a;
this.e = Math.sqrt(1 - temp * temp);
var sin1 = Math.sin(this.lat1);
var cos1 = Math.cos(this.lat1);
var ms1 = msfnz(this.e, sin1, cos1);
var ts1 = tsfnz(this.e, this.lat1, sin1);
var sin2 = Math.sin(this.lat2);
var cos2 = Math.cos(this.lat2);
var ms2 = msfnz(this.e, sin2, cos2);
var ts2 = tsfnz(this.e, this.lat2, sin2);
var ts0 = tsfnz(this.e, this.lat0, Math.sin(this.lat0));
if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
this.ns = Math.log(ms1 / ms2) / Math.log(ts1 / ts2);
}
else {
this.ns = sin1;
}
if (isNaN(this.ns)) {
this.ns = sin1;
}
this.f0 = ms1 / (this.ns * Math.pow(ts1, this.ns));
this.rh = this.a * this.f0 * Math.pow(ts0, this.ns);
if (!this.title) {
this.title = "Lambert Conformal Conic";
}
};
// Lambert Conformal conic forward equations--mapping lat,long to x,y
// -----------------------------------------------------------------
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
// singular cases :
if (Math.abs(2 * Math.abs(lat) - Math.PI) <= EPSLN) {
lat = sign(lat) * (HALF_PI - 2 * EPSLN);
}
var con = Math.abs(Math.abs(lat) - HALF_PI);
var ts, rh1;
if (con > EPSLN) {
ts = tsfnz(this.e, lat, Math.sin(lat));
rh1 = this.a * this.f0 * Math.pow(ts, this.ns);
}
else {
con = lat * this.ns;
if (con <= 0) {
return null;
}
rh1 = 0;
}
var theta = this.ns * adjust_lon(lon - this.long0);
p.x = this.k0 * (rh1 * Math.sin(theta)) + this.x0;
p.y = this.k0 * (this.rh - rh1 * Math.cos(theta)) + this.y0;
return p;
};
// Lambert Conformal Conic inverse equations--mapping x,y to lat/long
// -----------------------------------------------------------------
exports.inverse = function(p) {
var rh1, con, ts;
var lat, lon;
var x = (p.x - this.x0) / this.k0;
var y = (this.rh - (p.y - this.y0) / this.k0);
if (this.ns > 0) {
rh1 = Math.sqrt(x * x + y * y);
con = 1;
}
else {
rh1 = -Math.sqrt(x * x + y * y);
con = -1;
}
var theta = 0;
if (rh1 !== 0) {
theta = Math.atan2((con * x), (con * y));
}
if ((rh1 !== 0) || (this.ns > 0)) {
con = 1 / this.ns;
ts = Math.pow((rh1 / (this.a * this.f0)), con);
lat = phi2z(this.e, ts);
if (lat === -9999) {
return null;
}
}
else {
lat = -HALF_PI;
}
lon = adjust_lon(theta / this.ns + this.long0);
p.x = lon;
p.y = lat;
return p;
};
exports.names = ["Lambert Tangential Conformal Conic Projection", "Lambert_Conformal_Conic", "Lambert_Conformal_Conic_2SP", "lcc"];
},{"../common/adjust_lon":5,"../common/msfnz":15,"../common/phi2z":16,"../common/sign":21,"../common/tsfnz":24}],51:[function(_dereq_,module,exports){
exports.init = function() {
//no-op for longlat
};
function identity(pt) {
return pt;
}
exports.forward = identity;
exports.inverse = identity;
exports.names = ["longlat", "identity"];
},{}],52:[function(_dereq_,module,exports){
var msfnz = _dereq_('../common/msfnz');
var HALF_PI = Math.PI/2;
var EPSLN = 1.0e-10;
var R2D = 57.29577951308232088;
var adjust_lon = _dereq_('../common/adjust_lon');
var FORTPI = Math.PI/4;
var tsfnz = _dereq_('../common/tsfnz');
var phi2z = _dereq_('../common/phi2z');
exports.init = function() {
var con = this.b / this.a;
this.es = 1 - con * con;
if(!('x0' in this)){
this.x0 = 0;
}
if(!('y0' in this)){
this.y0 = 0;
}
this.e = Math.sqrt(this.es);
if (this.lat_ts) {
if (this.sphere) {
this.k0 = Math.cos(this.lat_ts);
}
else {
this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts));
}
}
else {
if (!this.k0) {
if (this.k) {
this.k0 = this.k;
}
else {
this.k0 = 1;
}
}
}
};
/* Mercator forward equations--mapping lat,long to x,y
--------------------------------------------------*/
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
// convert to radians
if (lat * R2D > 90 && lat * R2D < -90 && lon * R2D > 180 && lon * R2D < -180) {
return null;
}
var x, y;
if (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN) {
return null;
}
else {
if (this.sphere) {
x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0);
y = this.y0 + this.a * this.k0 * Math.log(Math.tan(FORTPI + 0.5 * lat));
}
else {
var sinphi = Math.sin(lat);
var ts = tsfnz(this.e, lat, sinphi);
x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0);
y = this.y0 - this.a * this.k0 * Math.log(ts);
}
p.x = x;
p.y = y;
return p;
}
};
/* Mercator inverse equations--mapping x,y to lat/long
--------------------------------------------------*/
exports.inverse = function(p) {
var x = p.x - this.x0;
var y = p.y - this.y0;
var lon, lat;
if (this.sphere) {
lat = HALF_PI - 2 * Math.atan(Math.exp(-y / (this.a * this.k0)));
}
else {
var ts = Math.exp(-y / (this.a * this.k0));
lat = phi2z(this.e, ts);
if (lat === -9999) {
return null;
}
}
lon = adjust_lon(this.long0 + x / (this.a * this.k0));
p.x = lon;
p.y = lat;
return p;
};
exports.names = ["Mercator", "Popular Visualisation Pseudo Mercator", "Mercator_1SP", "Mercator_Auxiliary_Sphere", "merc"];
},{"../common/adjust_lon":5,"../common/msfnz":15,"../common/phi2z":16,"../common/tsfnz":24}],53:[function(_dereq_,module,exports){
var adjust_lon = _dereq_('../common/adjust_lon');
/*
reference
"New Equal-Area Map Projections for Noncircular Regions", John P. Snyder,
The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.
*/
/* Initialize the Miller Cylindrical projection
-------------------------------------------*/
exports.init = function() {
//no-op
};
/* Miller Cylindrical forward equations--mapping lat,long to x,y
------------------------------------------------------------*/
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
/* Forward equations
-----------------*/
var dlon = adjust_lon(lon - this.long0);
var x = this.x0 + this.a * dlon;
var y = this.y0 + this.a * Math.log(Math.tan((Math.PI / 4) + (lat / 2.5))) * 1.25;
p.x = x;
p.y = y;
return p;
};
/* Miller Cylindrical inverse equations--mapping x,y to lat/long
------------------------------------------------------------*/
exports.inverse = function(p) {
p.x -= this.x0;
p.y -= this.y0;
var lon = adjust_lon(this.long0 + p.x / this.a);
var lat = 2.5 * (Math.atan(Math.exp(0.8 * p.y / this.a)) - Math.PI / 4);
p.x = lon;
p.y = lat;
return p;
};
exports.names = ["Miller_Cylindrical", "mill"];
},{"../common/adjust_lon":5}],54:[function(_dereq_,module,exports){
var adjust_lon = _dereq_('../common/adjust_lon');
var EPSLN = 1.0e-10;
exports.init = function() {};
/* Mollweide forward equations--mapping lat,long to x,y
----------------------------------------------------*/
exports.forward = function(p) {
/* Forward equations
-----------------*/
var lon = p.x;
var lat = p.y;
var delta_lon = adjust_lon(lon - this.long0);
var theta = lat;
var con = Math.PI * Math.sin(lat);
/* Iterate using the Newton-Raphson method to find theta
-----------------------------------------------------*/
for (var i = 0; true; i++) {
var delta_theta = -(theta + Math.sin(theta) - con) / (1 + Math.cos(theta));
theta += delta_theta;
if (Math.abs(delta_theta) < EPSLN) {
break;
}
}
theta /= 2;
/* If the latitude is 90 deg, force the x coordinate to be "0 + false easting"
this is done here because of precision problems with "cos(theta)"
--------------------------------------------------------------------------*/
if (Math.PI / 2 - Math.abs(lat) < EPSLN) {
delta_lon = 0;
}
var x = 0.900316316158 * this.a * delta_lon * Math.cos(theta) + this.x0;
var y = 1.4142135623731 * this.a * Math.sin(theta) + this.y0;
p.x = x;
p.y = y;
return p;
};
exports.inverse = function(p) {
var theta;
var arg;
/* Inverse equations
-----------------*/
p.x -= this.x0;
p.y -= this.y0;
arg = p.y / (1.4142135623731 * this.a);
/* Because of division by zero problems, 'arg' can not be 1. Therefore
a number very close to one is used instead.
-------------------------------------------------------------------*/
if (Math.abs(arg) > 0.999999999999) {
arg = 0.999999999999;
}
theta = Math.asin(arg);
var lon = adjust_lon(this.long0 + (p.x / (0.900316316158 * this.a * Math.cos(theta))));
if (lon < (-Math.PI)) {
lon = -Math.PI;
}
if (lon > Math.PI) {
lon = Math.PI;
}
arg = (2 * theta + Math.sin(2 * theta)) / Math.PI;
if (Math.abs(arg) > 1) {
arg = 1;
}
var lat = Math.asin(arg);
p.x = lon;
p.y = lat;
return p;
};
exports.names = ["Mollweide", "moll"];
},{"../common/adjust_lon":5}],55:[function(_dereq_,module,exports){
var SEC_TO_RAD = 4.84813681109535993589914102357e-6;
/*
reference
Department of Land and Survey Technical Circular 1973/32
http://www.linz.govt.nz/docs/miscellaneous/nz-map-definition.pdf
OSG Technical Report 4.1
http://www.linz.govt.nz/docs/miscellaneous/nzmg.pdf
*/
/**
* iterations: Number of iterations to refine inverse transform.
* 0 -> km accuracy
* 1 -> m accuracy -- suitable for most mapping applications
* 2 -> mm accuracy
*/
exports.iterations = 1;
exports.init = function() {
this.A = [];
this.A[1] = 0.6399175073;
this.A[2] = -0.1358797613;
this.A[3] = 0.063294409;
this.A[4] = -0.02526853;
this.A[5] = 0.0117879;
this.A[6] = -0.0055161;
this.A[7] = 0.0026906;
this.A[8] = -0.001333;
this.A[9] = 0.00067;
this.A[10] = -0.00034;
this.B_re = [];
this.B_im = [];
this.B_re[1] = 0.7557853228;
this.B_im[1] = 0;
this.B_re[2] = 0.249204646;
this.B_im[2] = 0.003371507;
this.B_re[3] = -0.001541739;
this.B_im[3] = 0.041058560;
this.B_re[4] = -0.10162907;
this.B_im[4] = 0.01727609;
this.B_re[5] = -0.26623489;
this.B_im[5] = -0.36249218;
this.B_re[6] = -0.6870983;
this.B_im[6] = -1.1651967;
this.C_re = [];
this.C_im = [];
this.C_re[1] = 1.3231270439;
this.C_im[1] = 0;
this.C_re[2] = -0.577245789;
this.C_im[2] = -0.007809598;
this.C_re[3] = 0.508307513;
this.C_im[3] = -0.112208952;
this.C_re[4] = -0.15094762;
this.C_im[4] = 0.18200602;
this.C_re[5] = 1.01418179;
this.C_im[5] = 1.64497696;
this.C_re[6] = 1.9660549;
this.C_im[6] = 2.5127645;
this.D = [];
this.D[1] = 1.5627014243;
this.D[2] = 0.5185406398;
this.D[3] = -0.03333098;
this.D[4] = -0.1052906;
this.D[5] = -0.0368594;
this.D[6] = 0.007317;
this.D[7] = 0.01220;
this.D[8] = 0.00394;
this.D[9] = -0.0013;
};
/**
New Zealand Map Grid Forward - long/lat to x/y
long/lat in radians
*/
exports.forward = function(p) {
var n;
var lon = p.x;
var lat = p.y;
var delta_lat = lat - this.lat0;
var delta_lon = lon - this.long0;
// 1. Calculate d_phi and d_psi ... // and d_lambda
// For this algorithm, delta_latitude is in seconds of arc x 10-5, so we need to scale to those units. Longitude is radians.
var d_phi = delta_lat / SEC_TO_RAD * 1E-5;
var d_lambda = delta_lon;
var d_phi_n = 1; // d_phi^0
var d_psi = 0;
for (n = 1; n <= 10; n++) {
d_phi_n = d_phi_n * d_phi;
d_psi = d_psi + this.A[n] * d_phi_n;
}
// 2. Calculate theta
var th_re = d_psi;
var th_im = d_lambda;
// 3. Calculate z
var th_n_re = 1;
var th_n_im = 0; // theta^0
var th_n_re1;
var th_n_im1;
var z_re = 0;
var z_im = 0;
for (n = 1; n <= 6; n++) {
th_n_re1 = th_n_re * th_re - th_n_im * th_im;
th_n_im1 = th_n_im * th_re + th_n_re * th_im;
th_n_re = th_n_re1;
th_n_im = th_n_im1;
z_re = z_re + this.B_re[n] * th_n_re - this.B_im[n] * th_n_im;
z_im = z_im + this.B_im[n] * th_n_re + this.B_re[n] * th_n_im;
}
// 4. Calculate easting and northing
p.x = (z_im * this.a) + this.x0;
p.y = (z_re * this.a) + this.y0;
return p;
};
/**
New Zealand Map Grid Inverse - x/y to long/lat
*/
exports.inverse = function(p) {
var n;
var x = p.x;
var y = p.y;
var delta_x = x - this.x0;
var delta_y = y - this.y0;
// 1. Calculate z
var z_re = delta_y / this.a;
var z_im = delta_x / this.a;
// 2a. Calculate theta - first approximation gives km accuracy
var z_n_re = 1;
var z_n_im = 0; // z^0
var z_n_re1;
var z_n_im1;
var th_re = 0;
var th_im = 0;
for (n = 1; n <= 6; n++) {
z_n_re1 = z_n_re * z_re - z_n_im * z_im;
z_n_im1 = z_n_im * z_re + z_n_re * z_im;
z_n_re = z_n_re1;
z_n_im = z_n_im1;
th_re = th_re + this.C_re[n] * z_n_re - this.C_im[n] * z_n_im;
th_im = th_im + this.C_im[n] * z_n_re + this.C_re[n] * z_n_im;
}
// 2b. Iterate to refine the accuracy of the calculation
// 0 iterations gives km accuracy
// 1 iteration gives m accuracy -- good enough for most mapping applications
// 2 iterations bives mm accuracy
for (var i = 0; i < this.iterations; i++) {
var th_n_re = th_re;
var th_n_im = th_im;
var th_n_re1;
var th_n_im1;
var num_re = z_re;
var num_im = z_im;
for (n = 2; n <= 6; n++) {
th_n_re1 = th_n_re * th_re - th_n_im * th_im;
th_n_im1 = th_n_im * th_re + th_n_re * th_im;
th_n_re = th_n_re1;
th_n_im = th_n_im1;
num_re = num_re + (n - 1) * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im);
num_im = num_im + (n - 1) * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im);
}
th_n_re = 1;
th_n_im = 0;
var den_re = this.B_re[1];
var den_im = this.B_im[1];
for (n = 2; n <= 6; n++) {
th_n_re1 = th_n_re * th_re - th_n_im * th_im;
th_n_im1 = th_n_im * th_re + th_n_re * th_im;
th_n_re = th_n_re1;
th_n_im = th_n_im1;
den_re = den_re + n * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im);
den_im = den_im + n * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im);
}
// Complex division
var den2 = den_re * den_re + den_im * den_im;
th_re = (num_re * den_re + num_im * den_im) / den2;
th_im = (num_im * den_re - num_re * den_im) / den2;
}
// 3. Calculate d_phi ... // and d_lambda
var d_psi = th_re;
var d_lambda = th_im;
var d_psi_n = 1; // d_psi^0
var d_phi = 0;
for (n = 1; n <= 9; n++) {
d_psi_n = d_psi_n * d_psi;
d_phi = d_phi + this.D[n] * d_psi_n;
}
// 4. Calculate latitude and longitude
// d_phi is calcuated in second of arc * 10^-5, so we need to scale back to radians. d_lambda is in radians.
var lat = this.lat0 + (d_phi * SEC_TO_RAD * 1E5);
var lon = this.long0 + d_lambda;
p.x = lon;
p.y = lat;
return p;
};
exports.names = ["New_Zealand_Map_Grid", "nzmg"];
},{}],56:[function(_dereq_,module,exports){
var tsfnz = _dereq_('../common/tsfnz');
var adjust_lon = _dereq_('../common/adjust_lon');
var phi2z = _dereq_('../common/phi2z');
var HALF_PI = Math.PI/2;
var FORTPI = Math.PI/4;
var EPSLN = 1.0e-10;
/* Initialize the Oblique Mercator projection
------------------------------------------*/
exports.init = function() {
this.no_off = this.no_off || false;
this.no_rot = this.no_rot || false;
if (isNaN(this.k0)) {
this.k0 = 1;
}
var sinlat = Math.sin(this.lat0);
var coslat = Math.cos(this.lat0);
var con = this.e * sinlat;
this.bl = Math.sqrt(1 + this.es / (1 - this.es) * Math.pow(coslat, 4));
this.al = this.a * this.bl * this.k0 * Math.sqrt(1 - this.es) / (1 - con * con);
var t0 = tsfnz(this.e, this.lat0, sinlat);
var dl = this.bl / coslat * Math.sqrt((1 - this.es) / (1 - con * con));
if (dl * dl < 1) {
dl = 1;
}
var fl;
var gl;
if (!isNaN(this.longc)) {
//Central point and azimuth method
if (this.lat0 >= 0) {
fl = dl + Math.sqrt(dl * dl - 1);
}
else {
fl = dl - Math.sqrt(dl * dl - 1);
}
this.el = fl * Math.pow(t0, this.bl);
gl = 0.5 * (fl - 1 / fl);
this.gamma0 = Math.asin(Math.sin(this.alpha) / dl);
this.long0 = this.longc - Math.asin(gl * Math.tan(this.gamma0)) / this.bl;
}
else {
//2 points method
var t1 = tsfnz(this.e, this.lat1, Math.sin(this.lat1));
var t2 = tsfnz(this.e, this.lat2, Math.sin(this.lat2));
if (this.lat0 >= 0) {
this.el = (dl + Math.sqrt(dl * dl - 1)) * Math.pow(t0, this.bl);
}
else {
this.el = (dl - Math.sqrt(dl * dl - 1)) * Math.pow(t0, this.bl);
}
var hl = Math.pow(t1, this.bl);
var ll = Math.pow(t2, this.bl);
fl = this.el / hl;
gl = 0.5 * (fl - 1 / fl);
var jl = (this.el * this.el - ll * hl) / (this.el * this.el + ll * hl);
var pl = (ll - hl) / (ll + hl);
var dlon12 = adjust_lon(this.long1 - this.long2);
this.long0 = 0.5 * (this.long1 + this.long2) - Math.atan(jl * Math.tan(0.5 * this.bl * (dlon12)) / pl) / this.bl;
this.long0 = adjust_lon(this.long0);
var dlon10 = adjust_lon(this.long1 - this.long0);
this.gamma0 = Math.atan(Math.sin(this.bl * (dlon10)) / gl);
this.alpha = Math.asin(dl * Math.sin(this.gamma0));
}
if (this.no_off) {
this.uc = 0;
}
else {
if (this.lat0 >= 0) {
this.uc = this.al / this.bl * Math.atan2(Math.sqrt(dl * dl - 1), Math.cos(this.alpha));
}
else {
this.uc = -1 * this.al / this.bl * Math.atan2(Math.sqrt(dl * dl - 1), Math.cos(this.alpha));
}
}
};
/* Oblique Mercator forward equations--mapping lat,long to x,y
----------------------------------------------------------*/
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
var dlon = adjust_lon(lon - this.long0);
var us, vs;
var con;
if (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN) {
if (lat > 0) {
con = -1;
}
else {
con = 1;
}
vs = this.al / this.bl * Math.log(Math.tan(FORTPI + con * this.gamma0 * 0.5));
us = -1 * con * HALF_PI * this.al / this.bl;
}
else {
var t = tsfnz(this.e, lat, Math.sin(lat));
var ql = this.el / Math.pow(t, this.bl);
var sl = 0.5 * (ql - 1 / ql);
var tl = 0.5 * (ql + 1 / ql);
var vl = Math.sin(this.bl * (dlon));
var ul = (sl * Math.sin(this.gamma0) - vl * Math.cos(this.gamma0)) / tl;
if (Math.abs(Math.abs(ul) - 1) <= EPSLN) {
vs = Number.POSITIVE_INFINITY;
}
else {
vs = 0.5 * this.al * Math.log((1 - ul) / (1 + ul)) / this.bl;
}
if (Math.abs(Math.cos(this.bl * (dlon))) <= EPSLN) {
us = this.al * this.bl * (dlon);
}
else {
us = this.al * Math.atan2(sl * Math.cos(this.gamma0) + vl * Math.sin(this.gamma0), Math.cos(this.bl * dlon)) / this.bl;
}
}
if (this.no_rot) {
p.x = this.x0 + us;
p.y = this.y0 + vs;
}
else {
us -= this.uc;
p.x = this.x0 + vs * Math.cos(this.alpha) + us * Math.sin(this.alpha);
p.y = this.y0 + us * Math.cos(this.alpha) - vs * Math.sin(this.alpha);
}
return p;
};
exports.inverse = function(p) {
var us, vs;
if (this.no_rot) {
vs = p.y - this.y0;
us = p.x - this.x0;
}
else {
vs = (p.x - this.x0) * Math.cos(this.alpha) - (p.y - this.y0) * Math.sin(this.alpha);
us = (p.y - this.y0) * Math.cos(this.alpha) + (p.x - this.x0) * Math.sin(this.alpha);
us += this.uc;
}
var qp = Math.exp(-1 * this.bl * vs / this.al);
var sp = 0.5 * (qp - 1 / qp);
var tp = 0.5 * (qp + 1 / qp);
var vp = Math.sin(this.bl * us / this.al);
var up = (vp * Math.cos(this.gamma0) + sp * Math.sin(this.gamma0)) / tp;
var ts = Math.pow(this.el / Math.sqrt((1 + up) / (1 - up)), 1 / this.bl);
if (Math.abs(up - 1) < EPSLN) {
p.x = this.long0;
p.y = HALF_PI;
}
else if (Math.abs(up + 1) < EPSLN) {
p.x = this.long0;
p.y = -1 * HALF_PI;
}
else {
p.y = phi2z(this.e, ts);
p.x = adjust_lon(this.long0 - Math.atan2(sp * Math.cos(this.gamma0) - vp * Math.sin(this.gamma0), Math.cos(this.bl * us / this.al)) / this.bl);
}
return p;
};
exports.names = ["Hotine_Oblique_Mercator", "Hotine Oblique Mercator", "Hotine_Oblique_Mercator_Azimuth_Natural_Origin", "Hotine_Oblique_Mercator_Azimuth_Center", "omerc"];
},{"../common/adjust_lon":5,"../common/phi2z":16,"../common/tsfnz":24}],57:[function(_dereq_,module,exports){
var e0fn = _dereq_('../common/e0fn');
var e1fn = _dereq_('../common/e1fn');
var e2fn = _dereq_('../common/e2fn');
var e3fn = _dereq_('../common/e3fn');
var adjust_lon = _dereq_('../common/adjust_lon');
var adjust_lat = _dereq_('../common/adjust_lat');
var mlfn = _dereq_('../common/mlfn');
var EPSLN = 1.0e-10;
var gN = _dereq_('../common/gN');
var MAX_ITER = 20;
exports.init = function() {
/* Place parameters in static storage for common use
-------------------------------------------------*/
this.temp = this.b / this.a;
this.es = 1 - Math.pow(this.temp, 2); // devait etre dans tmerc.js mais n y est pas donc je commente sinon retour de valeurs nulles
this.e = Math.sqrt(this.es);
this.e0 = e0fn(this.es);
this.e1 = e1fn(this.es);
this.e2 = e2fn(this.es);
this.e3 = e3fn(this.es);
this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); //si que des zeros le calcul ne se fait pas
};
/* Polyconic forward equations--mapping lat,long to x,y
---------------------------------------------------*/
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
var x, y, el;
var dlon = adjust_lon(lon - this.long0);
el = dlon * Math.sin(lat);
if (this.sphere) {
if (Math.abs(lat) <= EPSLN) {
x = this.a * dlon;
y = -1 * this.a * this.lat0;
}
else {
x = this.a * Math.sin(el) / Math.tan(lat);
y = this.a * (adjust_lat(lat - this.lat0) + (1 - Math.cos(el)) / Math.tan(lat));
}
}
else {
if (Math.abs(lat) <= EPSLN) {
x = this.a * dlon;
y = -1 * this.ml0;
}
else {
var nl = gN(this.a, this.e, Math.sin(lat)) / Math.tan(lat);
x = nl * Math.sin(el);
y = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, lat) - this.ml0 + nl * (1 - Math.cos(el));
}
}
p.x = x + this.x0;
p.y = y + this.y0;
return p;
};
/* Inverse equations
-----------------*/
exports.inverse = function(p) {
var lon, lat, x, y, i;
var al, bl;
var phi, dphi;
x = p.x - this.x0;
y = p.y - this.y0;
if (this.sphere) {
if (Math.abs(y + this.a * this.lat0) <= EPSLN) {
lon = adjust_lon(x / this.a + this.long0);
lat = 0;
}
else {
al = this.lat0 + y / this.a;
bl = x * x / this.a / this.a + al * al;
phi = al;
var tanphi;
for (i = MAX_ITER; i; --i) {
tanphi = Math.tan(phi);
dphi = -1 * (al * (phi * tanphi + 1) - phi - 0.5 * (phi * phi + bl) * tanphi) / ((phi - al) / tanphi - 1);
phi += dphi;
if (Math.abs(dphi) <= EPSLN) {
lat = phi;
break;
}
}
lon = adjust_lon(this.long0 + (Math.asin(x * Math.tan(phi) / this.a)) / Math.sin(lat));
}
}
else {
if (Math.abs(y + this.ml0) <= EPSLN) {
lat = 0;
lon = adjust_lon(this.long0 + x / this.a);
}
else {
al = (this.ml0 + y) / this.a;
bl = x * x / this.a / this.a + al * al;
phi = al;
var cl, mln, mlnp, ma;
var con;
for (i = MAX_ITER; i; --i) {
con = this.e * Math.sin(phi);
cl = Math.sqrt(1 - con * con) * Math.tan(phi);
mln = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi);
mlnp = this.e0 - 2 * this.e1 * Math.cos(2 * phi) + 4 * this.e2 * Math.cos(4 * phi) - 6 * this.e3 * Math.cos(6 * phi);
ma = mln / this.a;
dphi = (al * (cl * ma + 1) - ma - 0.5 * cl * (ma * ma + bl)) / (this.es * Math.sin(2 * phi) * (ma * ma + bl - 2 * al * ma) / (4 * cl) + (al - ma) * (cl * mlnp - 2 / Math.sin(2 * phi)) - mlnp);
phi -= dphi;
if (Math.abs(dphi) <= EPSLN) {
lat = phi;
break;
}
}
//lat=phi4z(this.e,this.e0,this.e1,this.e2,this.e3,al,bl,0,0);
cl = Math.sqrt(1 - this.es * Math.pow(Math.sin(lat), 2)) * Math.tan(lat);
lon = adjust_lon(this.long0 + Math.asin(x * cl / this.a) / Math.sin(lat));
}
}
p.x = lon;
p.y = lat;
return p;
};
exports.names = ["Polyconic", "poly"];
},{"../common/adjust_lat":4,"../common/adjust_lon":5,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/gN":11,"../common/mlfn":14}],58:[function(_dereq_,module,exports){
var adjust_lon = _dereq_('../common/adjust_lon');
var adjust_lat = _dereq_('../common/adjust_lat');
var pj_enfn = _dereq_('../common/pj_enfn');
var MAX_ITER = 20;
var pj_mlfn = _dereq_('../common/pj_mlfn');
var pj_inv_mlfn = _dereq_('../common/pj_inv_mlfn');
var HALF_PI = Math.PI/2;
var EPSLN = 1.0e-10;
var asinz = _dereq_('../common/asinz');
exports.init = function() {
/* Place parameters in static storage for common use
-------------------------------------------------*/
if (!this.sphere) {
this.en = pj_enfn(this.es);
}
else {
this.n = 1;
this.m = 0;
this.es = 0;
this.C_y = Math.sqrt((this.m + 1) / this.n);
this.C_x = this.C_y / (this.m + 1);
}
};
/* Sinusoidal forward equations--mapping lat,long to x,y
-----------------------------------------------------*/
exports.forward = function(p) {
var x, y;
var lon = p.x;
var lat = p.y;
/* Forward equations
-----------------*/
lon = adjust_lon(lon - this.long0);
if (this.sphere) {
if (!this.m) {
lat = this.n !== 1 ? Math.asin(this.n * Math.sin(lat)) : lat;
}
else {
var k = this.n * Math.sin(lat);
for (var i = MAX_ITER; i; --i) {
var V = (this.m * lat + Math.sin(lat) - k) / (this.m + Math.cos(lat));
lat -= V;
if (Math.abs(V) < EPSLN) {
break;
}
}
}
x = this.a * this.C_x * lon * (this.m + Math.cos(lat));
y = this.a * this.C_y * lat;
}
else {
var s = Math.sin(lat);
var c = Math.cos(lat);
y = this.a * pj_mlfn(lat, s, c, this.en);
x = this.a * lon * c / Math.sqrt(1 - this.es * s * s);
}
p.x = x;
p.y = y;
return p;
};
exports.inverse = function(p) {
var lat, temp, lon, s;
p.x -= this.x0;
lon = p.x / this.a;
p.y -= this.y0;
lat = p.y / this.a;
if (this.sphere) {
lat /= this.C_y;
lon = lon / (this.C_x * (this.m + Math.cos(lat)));
if (this.m) {
lat = asinz((this.m * lat + Math.sin(lat)) / this.n);
}
else if (this.n !== 1) {
lat = asinz(Math.sin(lat) / this.n);
}
lon = adjust_lon(lon + this.long0);
lat = adjust_lat(lat);
}
else {
lat = pj_inv_mlfn(p.y / this.a, this.es, this.en);
s = Math.abs(lat);
if (s < HALF_PI) {
s = Math.sin(lat);
temp = this.long0 + p.x * Math.sqrt(1 - this.es * s * s) / (this.a * Math.cos(lat));
//temp = this.long0 + p.x / (this.a * Math.cos(lat));
lon = adjust_lon(temp);
}
else if ((s - EPSLN) < HALF_PI) {
lon = this.long0;
}
}
p.x = lon;
p.y = lat;
return p;
};
exports.names = ["Sinusoidal", "sinu"];
},{"../common/adjust_lat":4,"../common/adjust_lon":5,"../common/asinz":6,"../common/pj_enfn":17,"../common/pj_inv_mlfn":18,"../common/pj_mlfn":19}],59:[function(_dereq_,module,exports){
/*
references:
Formules et constantes pour le Calcul pour la
projection cylindrique conforme à axe oblique et pour la transformation entre
des systèmes de référence.
http://www.swisstopo.admin.ch/internet/swisstopo/fr/home/topics/survey/sys/refsys/switzerland.parsysrelated1.31216.downloadList.77004.DownloadFile.tmp/swissprojectionfr.pdf
*/
exports.init = function() {
var phy0 = this.lat0;
this.lambda0 = this.long0;
var sinPhy0 = Math.sin(phy0);
var semiMajorAxis = this.a;
var invF = this.rf;
var flattening = 1 / invF;
var e2 = 2 * flattening - Math.pow(flattening, 2);
var e = this.e = Math.sqrt(e2);
this.R = this.k0 * semiMajorAxis * Math.sqrt(1 - e2) / (1 - e2 * Math.pow(sinPhy0, 2));
this.alpha = Math.sqrt(1 + e2 / (1 - e2) * Math.pow(Math.cos(phy0), 4));
this.b0 = Math.asin(sinPhy0 / this.alpha);
var k1 = Math.log(Math.tan(Math.PI / 4 + this.b0 / 2));
var k2 = Math.log(Math.tan(Math.PI / 4 + phy0 / 2));
var k3 = Math.log((1 + e * sinPhy0) / (1 - e * sinPhy0));
this.K = k1 - this.alpha * k2 + this.alpha * e / 2 * k3;
};
exports.forward = function(p) {
var Sa1 = Math.log(Math.tan(Math.PI / 4 - p.y / 2));
var Sa2 = this.e / 2 * Math.log((1 + this.e * Math.sin(p.y)) / (1 - this.e * Math.sin(p.y)));
var S = -this.alpha * (Sa1 + Sa2) + this.K;
// spheric latitude
var b = 2 * (Math.atan(Math.exp(S)) - Math.PI / 4);
// spheric longitude
var I = this.alpha * (p.x - this.lambda0);
// psoeudo equatorial rotation
var rotI = Math.atan(Math.sin(I) / (Math.sin(this.b0) * Math.tan(b) + Math.cos(this.b0) * Math.cos(I)));
var rotB = Math.asin(Math.cos(this.b0) * Math.sin(b) - Math.sin(this.b0) * Math.cos(b) * Math.cos(I));
p.y = this.R / 2 * Math.log((1 + Math.sin(rotB)) / (1 - Math.sin(rotB))) + this.y0;
p.x = this.R * rotI + this.x0;
return p;
};
exports.inverse = function(p) {
var Y = p.x - this.x0;
var X = p.y - this.y0;
var rotI = Y / this.R;
var rotB = 2 * (Math.atan(Math.exp(X / this.R)) - Math.PI / 4);
var b = Math.asin(Math.cos(this.b0) * Math.sin(rotB) + Math.sin(this.b0) * Math.cos(rotB) * Math.cos(rotI));
var I = Math.atan(Math.sin(rotI) / (Math.cos(this.b0) * Math.cos(rotI) - Math.sin(this.b0) * Math.tan(rotB)));
var lambda = this.lambda0 + I / this.alpha;
var S = 0;
var phy = b;
var prevPhy = -1000;
var iteration = 0;
while (Math.abs(phy - prevPhy) > 0.0000001) {
if (++iteration > 20) {
//...reportError("omercFwdInfinity");
return;
}
//S = Math.log(Math.tan(Math.PI / 4 + phy / 2));
S = 1 / this.alpha * (Math.log(Math.tan(Math.PI / 4 + b / 2)) - this.K) + this.e * Math.log(Math.tan(Math.PI / 4 + Math.asin(this.e * Math.sin(phy)) / 2));
prevPhy = phy;
phy = 2 * Math.atan(Math.exp(S)) - Math.PI / 2;
}
p.x = lambda;
p.y = phy;
return p;
};
exports.names = ["somerc"];
},{}],60:[function(_dereq_,module,exports){
var HALF_PI = Math.PI/2;
var EPSLN = 1.0e-10;
var sign = _dereq_('../common/sign');
var msfnz = _dereq_('../common/msfnz');
var tsfnz = _dereq_('../common/tsfnz');
var phi2z = _dereq_('../common/phi2z');
var adjust_lon = _dereq_('../common/adjust_lon');
exports.ssfn_ = function(phit, sinphi, eccen) {
sinphi *= eccen;
return (Math.tan(0.5 * (HALF_PI + phit)) * Math.pow((1 - sinphi) / (1 + sinphi), 0.5 * eccen));
};
exports.init = function() {
this.coslat0 = Math.cos(this.lat0);
this.sinlat0 = Math.sin(this.lat0);
if (this.sphere) {
if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) {
this.k0 = 0.5 * (1 + sign(this.lat0) * Math.sin(this.lat_ts));
}
}
else {
if (Math.abs(this.coslat0) <= EPSLN) {
if (this.lat0 > 0) {
//North pole
//trace('stere:north pole');
this.con = 1;
}
else {
//South pole
//trace('stere:south pole');
this.con = -1;
}
}
this.cons = Math.sqrt(Math.pow(1 + this.e, 1 + this.e) * Math.pow(1 - this.e, 1 - this.e));
if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) {
this.k0 = 0.5 * this.cons * msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)) / tsfnz(this.e, this.con * this.lat_ts, this.con * Math.sin(this.lat_ts));
}
this.ms1 = msfnz(this.e, this.sinlat0, this.coslat0);
this.X0 = 2 * Math.atan(this.ssfn_(this.lat0, this.sinlat0, this.e)) - HALF_PI;
this.cosX0 = Math.cos(this.X0);
this.sinX0 = Math.sin(this.X0);
}
};
// Stereographic forward equations--mapping lat,long to x,y
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
var sinlat = Math.sin(lat);
var coslat = Math.cos(lat);
var A, X, sinX, cosX, ts, rh;
var dlon = adjust_lon(lon - this.long0);
if (Math.abs(Math.abs(lon - this.long0) - Math.PI) <= EPSLN && Math.abs(lat + this.lat0) <= EPSLN) {
//case of the origine point
//trace('stere:this is the origin point');
p.x = NaN;
p.y = NaN;
return p;
}
if (this.sphere) {
//trace('stere:sphere case');
A = 2 * this.k0 / (1 + this.sinlat0 * sinlat + this.coslat0 * coslat * Math.cos(dlon));
p.x = this.a * A * coslat * Math.sin(dlon) + this.x0;
p.y = this.a * A * (this.coslat0 * sinlat - this.sinlat0 * coslat * Math.cos(dlon)) + this.y0;
return p;
}
else {
X = 2 * Math.atan(this.ssfn_(lat, sinlat, this.e)) - HALF_PI;
cosX = Math.cos(X);
sinX = Math.sin(X);
if (Math.abs(this.coslat0) <= EPSLN) {
ts = tsfnz(this.e, lat * this.con, this.con * sinlat);
rh = 2 * this.a * this.k0 * ts / this.cons;
p.x = this.x0 + rh * Math.sin(lon - this.long0);
p.y = this.y0 - this.con * rh * Math.cos(lon - this.long0);
//trace(p.toString());
return p;
}
else if (Math.abs(this.sinlat0) < EPSLN) {
//Eq
//trace('stere:equateur');
A = 2 * this.a * this.k0 / (1 + cosX * Math.cos(dlon));
p.y = A * sinX;
}
else {
//other case
//trace('stere:normal case');
A = 2 * this.a * this.k0 * this.ms1 / (this.cosX0 * (1 + this.sinX0 * sinX + this.cosX0 * cosX * Math.cos(dlon)));
p.y = A * (this.cosX0 * sinX - this.sinX0 * cosX * Math.cos(dlon)) + this.y0;
}
p.x = A * cosX * Math.sin(dlon) + this.x0;
}
//trace(p.toString());
return p;
};
//* Stereographic inverse equations--mapping x,y to lat/long
exports.inverse = function(p) {
p.x -= this.x0;
p.y -= this.y0;
var lon, lat, ts, ce, Chi;
var rh = Math.sqrt(p.x * p.x + p.y * p.y);
if (this.sphere) {
var c = 2 * Math.atan(rh / (0.5 * this.a * this.k0));
lon = this.long0;
lat = this.lat0;
if (rh <= EPSLN) {
p.x = lon;
p.y = lat;
return p;
}
lat = Math.asin(Math.cos(c) * this.sinlat0 + p.y * Math.sin(c) * this.coslat0 / rh);
if (Math.abs(this.coslat0) < EPSLN) {
if (this.lat0 > 0) {
lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y));
}
else {
lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y));
}
}
else {
lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(c), rh * this.coslat0 * Math.cos(c) - p.y * this.sinlat0 * Math.sin(c)));
}
p.x = lon;
p.y = lat;
return p;
}
else {
if (Math.abs(this.coslat0) <= EPSLN) {
if (rh <= EPSLN) {
lat = this.lat0;
lon = this.long0;
p.x = lon;
p.y = lat;
//trace(p.toString());
return p;
}
p.x *= this.con;
p.y *= this.con;
ts = rh * this.cons / (2 * this.a * this.k0);
lat = this.con * phi2z(this.e, ts);
lon = this.con * adjust_lon(this.con * this.long0 + Math.atan2(p.x, - 1 * p.y));
}
else {
ce = 2 * Math.atan(rh * this.cosX0 / (2 * this.a * this.k0 * this.ms1));
lon = this.long0;
if (rh <= EPSLN) {
Chi = this.X0;
}
else {
Chi = Math.asin(Math.cos(ce) * this.sinX0 + p.y * Math.sin(ce) * this.cosX0 / rh);
lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(ce), rh * this.cosX0 * Math.cos(ce) - p.y * this.sinX0 * Math.sin(ce)));
}
lat = -1 * phi2z(this.e, Math.tan(0.5 * (HALF_PI + Chi)));
}
}
p.x = lon;
p.y = lat;
//trace(p.toString());
return p;
};
exports.names = ["stere", "Stereographic_South_Pole", "Polar Stereographic (variant B)"];
},{"../common/adjust_lon":5,"../common/msfnz":15,"../common/phi2z":16,"../common/sign":21,"../common/tsfnz":24}],61:[function(_dereq_,module,exports){
var gauss = _dereq_('./gauss');
var adjust_lon = _dereq_('../common/adjust_lon');
exports.init = function() {
gauss.init.apply(this);
if (!this.rc) {
return;
}
this.sinc0 = Math.sin(this.phic0);
this.cosc0 = Math.cos(this.phic0);
this.R2 = 2 * this.rc;
if (!this.title) {
this.title = "Oblique Stereographic Alternative";
}
};
exports.forward = function(p) {
var sinc, cosc, cosl, k;
p.x = adjust_lon(p.x - this.long0);
gauss.forward.apply(this, [p]);
sinc = Math.sin(p.y);
cosc = Math.cos(p.y);
cosl = Math.cos(p.x);
k = this.k0 * this.R2 / (1 + this.sinc0 * sinc + this.cosc0 * cosc * cosl);
p.x = k * cosc * Math.sin(p.x);
p.y = k * (this.cosc0 * sinc - this.sinc0 * cosc * cosl);
p.x = this.a * p.x + this.x0;
p.y = this.a * p.y + this.y0;
return p;
};
exports.inverse = function(p) {
var sinc, cosc, lon, lat, rho;
p.x = (p.x - this.x0) / this.a;
p.y = (p.y - this.y0) / this.a;
p.x /= this.k0;
p.y /= this.k0;
if ((rho = Math.sqrt(p.x * p.x + p.y * p.y))) {
var c = 2 * Math.atan2(rho, this.R2);
sinc = Math.sin(c);
cosc = Math.cos(c);
lat = Math.asin(cosc * this.sinc0 + p.y * sinc * this.cosc0 / rho);
lon = Math.atan2(p.x * sinc, rho * this.cosc0 * cosc - p.y * this.sinc0 * sinc);
}
else {
lat = this.phic0;
lon = 0;
}
p.x = lon;
p.y = lat;
gauss.inverse.apply(this, [p]);
p.x = adjust_lon(p.x + this.long0);
return p;
};
exports.names = ["Stereographic_North_Pole", "Oblique_Stereographic", "Polar_Stereographic", "sterea","Oblique Stereographic Alternative"];
},{"../common/adjust_lon":5,"./gauss":46}],62:[function(_dereq_,module,exports){
var e0fn = _dereq_('../common/e0fn');
var e1fn = _dereq_('../common/e1fn');
var e2fn = _dereq_('../common/e2fn');
var e3fn = _dereq_('../common/e3fn');
var mlfn = _dereq_('../common/mlfn');
var adjust_lon = _dereq_('../common/adjust_lon');
var HALF_PI = Math.PI/2;
var EPSLN = 1.0e-10;
var sign = _dereq_('../common/sign');
var asinz = _dereq_('../common/asinz');
exports.init = function() {
this.e0 = e0fn(this.es);
this.e1 = e1fn(this.es);
this.e2 = e2fn(this.es);
this.e3 = e3fn(this.es);
this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
};
/**
Transverse Mercator Forward - long/lat to x/y
long/lat in radians
*/
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
var delta_lon = adjust_lon(lon - this.long0);
var con;
var x, y;
var sin_phi = Math.sin(lat);
var cos_phi = Math.cos(lat);
if (this.sphere) {
var b = cos_phi * Math.sin(delta_lon);
if ((Math.abs(Math.abs(b) - 1)) < 0.0000000001) {
return (93);
}
else {
x = 0.5 * this.a * this.k0 * Math.log((1 + b) / (1 - b));
con = Math.acos(cos_phi * Math.cos(delta_lon) / Math.sqrt(1 - b * b));
if (lat < 0) {
con = -con;
}
y = this.a * this.k0 * (con - this.lat0);
}
}
else {
var al = cos_phi * delta_lon;
var als = Math.pow(al, 2);
var c = this.ep2 * Math.pow(cos_phi, 2);
var tq = Math.tan(lat);
var t = Math.pow(tq, 2);
con = 1 - this.es * Math.pow(sin_phi, 2);
var n = this.a / Math.sqrt(con);
var ml = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, lat);
x = this.k0 * n * al * (1 + als / 6 * (1 - t + c + als / 20 * (5 - 18 * t + Math.pow(t, 2) + 72 * c - 58 * this.ep2))) + this.x0;
y = this.k0 * (ml - this.ml0 + n * tq * (als * (0.5 + als / 24 * (5 - t + 9 * c + 4 * Math.pow(c, 2) + als / 30 * (61 - 58 * t + Math.pow(t, 2) + 600 * c - 330 * this.ep2))))) + this.y0;
}
p.x = x;
p.y = y;
return p;
};
/**
Transverse Mercator Inverse - x/y to long/lat
*/
exports.inverse = function(p) {
var con, phi;
var delta_phi;
var i;
var max_iter = 6;
var lat, lon;
if (this.sphere) {
var f = Math.exp(p.x / (this.a * this.k0));
var g = 0.5 * (f - 1 / f);
var temp = this.lat0 + p.y / (this.a * this.k0);
var h = Math.cos(temp);
con = Math.sqrt((1 - h * h) / (1 + g * g));
lat = asinz(con);
if (temp < 0) {
lat = -lat;
}
if ((g === 0) && (h === 0)) {
lon = this.long0;
}
else {
lon = adjust_lon(Math.atan2(g, h) + this.long0);
}
}
else { // ellipsoidal form
var x = p.x - this.x0;
var y = p.y - this.y0;
con = (this.ml0 + y / this.k0) / this.a;
phi = con;
for (i = 0; true; i++) {
delta_phi = ((con + this.e1 * Math.sin(2 * phi) - this.e2 * Math.sin(4 * phi) + this.e3 * Math.sin(6 * phi)) / this.e0) - phi;
phi += delta_phi;
if (Math.abs(delta_phi) <= EPSLN) {
break;
}
if (i >= max_iter) {
return (95);
}
} // for()
if (Math.abs(phi) < HALF_PI) {
var sin_phi = Math.sin(phi);
var cos_phi = Math.cos(phi);
var tan_phi = Math.tan(phi);
var c = this.ep2 * Math.pow(cos_phi, 2);
var cs = Math.pow(c, 2);
var t = Math.pow(tan_phi, 2);
var ts = Math.pow(t, 2);
con = 1 - this.es * Math.pow(sin_phi, 2);
var n = this.a / Math.sqrt(con);
var r = n * (1 - this.es) / con;
var d = x / (n * this.k0);
var ds = Math.pow(d, 2);
lat = phi - (n * tan_phi * ds / r) * (0.5 - ds / 24 * (5 + 3 * t + 10 * c - 4 * cs - 9 * this.ep2 - ds / 30 * (61 + 90 * t + 298 * c + 45 * ts - 252 * this.ep2 - 3 * cs)));
lon = adjust_lon(this.long0 + (d * (1 - ds / 6 * (1 + 2 * t + c - ds / 20 * (5 - 2 * c + 28 * t - 3 * cs + 8 * this.ep2 + 24 * ts))) / cos_phi));
}
else {
lat = HALF_PI * sign(y);
lon = this.long0;
}
}
p.x = lon;
p.y = lat;
return p;
};
exports.names = ["Transverse_Mercator", "Transverse Mercator", "tmerc"];
},{"../common/adjust_lon":5,"../common/asinz":6,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/mlfn":14,"../common/sign":21}],63:[function(_dereq_,module,exports){
var D2R = 0.01745329251994329577;
var tmerc = _dereq_('./tmerc');
exports.dependsOn = 'tmerc';
exports.init = function() {
if (!this.zone) {
return;
}
this.lat0 = 0;
this.long0 = ((6 * Math.abs(this.zone)) - 183) * D2R;
this.x0 = 500000;
this.y0 = this.utmSouth ? 10000000 : 0;
this.k0 = 0.9996;
tmerc.init.apply(this);
this.forward = tmerc.forward;
this.inverse = tmerc.inverse;
};
exports.names = ["Universal Transverse Mercator System", "utm"];
},{"./tmerc":62}],64:[function(_dereq_,module,exports){
var adjust_lon = _dereq_('../common/adjust_lon');
var HALF_PI = Math.PI/2;
var EPSLN = 1.0e-10;
var asinz = _dereq_('../common/asinz');
/* Initialize the Van Der Grinten projection
----------------------------------------*/
exports.init = function() {
//this.R = 6370997; //Radius of earth
this.R = this.a;
};
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
/* Forward equations
-----------------*/
var dlon = adjust_lon(lon - this.long0);
var x, y;
if (Math.abs(lat) <= EPSLN) {
x = this.x0 + this.R * dlon;
y = this.y0;
}
var theta = asinz(2 * Math.abs(lat / Math.PI));
if ((Math.abs(dlon) <= EPSLN) || (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN)) {
x = this.x0;
if (lat >= 0) {
y = this.y0 + Math.PI * this.R * Math.tan(0.5 * theta);
}
else {
y = this.y0 + Math.PI * this.R * -Math.tan(0.5 * theta);
}
// return(OK);
}
var al = 0.5 * Math.abs((Math.PI / dlon) - (dlon / Math.PI));
var asq = al * al;
var sinth = Math.sin(theta);
var costh = Math.cos(theta);
var g = costh / (sinth + costh - 1);
var gsq = g * g;
var m = g * (2 / sinth - 1);
var msq = m * m;
var con = Math.PI * this.R * (al * (g - msq) + Math.sqrt(asq * (g - msq) * (g - msq) - (msq + asq) * (gsq - msq))) / (msq + asq);
if (dlon < 0) {
con = -con;
}
x = this.x0 + con;
//con = Math.abs(con / (Math.PI * this.R));
var q = asq + g;
con = Math.PI * this.R * (m * q - al * Math.sqrt((msq + asq) * (asq + 1) - q * q)) / (msq + asq);
if (lat >= 0) {
//y = this.y0 + Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con);
y = this.y0 + con;
}
else {
//y = this.y0 - Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con);
y = this.y0 - con;
}
p.x = x;
p.y = y;
return p;
};
/* Van Der Grinten inverse equations--mapping x,y to lat/long
---------------------------------------------------------*/
exports.inverse = function(p) {
var lon, lat;
var xx, yy, xys, c1, c2, c3;
var a1;
var m1;
var con;
var th1;
var d;
/* inverse equations
-----------------*/
p.x -= this.x0;
p.y -= this.y0;
con = Math.PI * this.R;
xx = p.x / con;
yy = p.y / con;
xys = xx * xx + yy * yy;
c1 = -Math.abs(yy) * (1 + xys);
c2 = c1 - 2 * yy * yy + xx * xx;
c3 = -2 * c1 + 1 + 2 * yy * yy + xys * xys;
d = yy * yy / c3 + (2 * c2 * c2 * c2 / c3 / c3 / c3 - 9 * c1 * c2 / c3 / c3) / 27;
a1 = (c1 - c2 * c2 / 3 / c3) / c3;
m1 = 2 * Math.sqrt(-a1 / 3);
con = ((3 * d) / a1) / m1;
if (Math.abs(con) > 1) {
if (con >= 0) {
con = 1;
}
else {
con = -1;
}
}
th1 = Math.acos(con) / 3;
if (p.y >= 0) {
lat = (-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI;
}
else {
lat = -(-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI;
}
if (Math.abs(xx) < EPSLN) {
lon = this.long0;
}
else {
lon = adjust_lon(this.long0 + Math.PI * (xys - 1 + Math.sqrt(1 + 2 * (xx * xx - yy * yy) + xys * xys)) / 2 / xx);
}
p.x = lon;
p.y = lat;
return p;
};
exports.names = ["Van_der_Grinten_I", "VanDerGrinten", "vandg"];
},{"../common/adjust_lon":5,"../common/asinz":6}],65:[function(_dereq_,module,exports){
var D2R = 0.01745329251994329577;
var R2D = 57.29577951308232088;
var PJD_3PARAM = 1;
var PJD_7PARAM = 2;
var datum_transform = _dereq_('./datum_transform');
var adjust_axis = _dereq_('./adjust_axis');
var proj = _dereq_('./Proj');
var toPoint = _dereq_('./common/toPoint');
module.exports = function transform(source, dest, point) {
var wgs84;
if (Array.isArray(point)) {
point = toPoint(point);
}
function checkNotWGS(source, dest) {
return ((source.datum.datum_type === PJD_3PARAM || source.datum.datum_type === PJD_7PARAM) && dest.datumCode !== "WGS84");
}
// Workaround for datum shifts towgs84, if either source or destination projection is not wgs84
if (source.datum && dest.datum && (checkNotWGS(source, dest) || checkNotWGS(dest, source))) {
wgs84 = new proj('WGS84');
transform(source, wgs84, point);
source = wgs84;
}
// DGR, 2010/11/12
if (source.axis !== "enu") {
adjust_axis(source, false, point);
}
// Transform source points to long/lat, if they aren't already.
if (source.projName === "longlat") {
point.x *= D2R; // convert degrees to radians
point.y *= D2R;
}
else {
if (source.to_meter) {
point.x *= source.to_meter;
point.y *= source.to_meter;
}
source.inverse(point); // Convert Cartesian to longlat
}
// Adjust for the prime meridian if necessary
if (source.from_greenwich) {
point.x += source.from_greenwich;
}
// Convert datums if needed, and if possible.
point = datum_transform(source.datum, dest.datum, point);
// Adjust for the prime meridian if necessary
if (dest.from_greenwich) {
point.x -= dest.from_greenwich;
}
if (dest.projName === "longlat") {
// convert radians to decimal degrees
point.x *= R2D;
point.y *= R2D;
}
else { // else project
dest.forward(point);
if (dest.to_meter) {
point.x /= dest.to_meter;
point.y /= dest.to_meter;
}
}
// DGR, 2010/11/12
if (dest.axis !== "enu") {
adjust_axis(dest, true, point);
}
return point;
};
},{"./Proj":2,"./adjust_axis":3,"./common/toPoint":23,"./datum_transform":31}],66:[function(_dereq_,module,exports){
var D2R = 0.01745329251994329577;
var extend = _dereq_('./extend');
function mapit(obj, key, v) {
obj[key] = v.map(function(aa) {
var o = {};
sExpr(aa, o);
return o;
}).reduce(function(a, b) {
return extend(a, b);
}, {});
}
function sExpr(v, obj) {
var key;
if (!Array.isArray(v)) {
obj[v] = true;
return;
}
else {
key = v.shift();
if (key === 'PARAMETER') {
key = v.shift();
}
if (v.length === 1) {
if (Array.isArray(v[0])) {
obj[key] = {};
sExpr(v[0], obj[key]);
}
else {
obj[key] = v[0];
}
}
else if (!v.length) {
obj[key] = true;
}
else if (key === 'TOWGS84') {
obj[key] = v;
}
else {
obj[key] = {};
if (['UNIT', 'PRIMEM', 'VERT_DATUM'].indexOf(key) > -1) {
obj[key] = {
name: v[0].toLowerCase(),
convert: v[1]
};
if (v.length === 3) {
obj[key].auth = v[2];
}
}
else if (key === 'SPHEROID') {
obj[key] = {
name: v[0],
a: v[1],
rf: v[2]
};
if (v.length === 4) {
obj[key].auth = v[3];
}
}
else if (['GEOGCS', 'GEOCCS', 'DATUM', 'VERT_CS', 'COMPD_CS', 'LOCAL_CS', 'FITTED_CS', 'LOCAL_DATUM'].indexOf(key) > -1) {
v[0] = ['name', v[0]];
mapit(obj, key, v);
}
else if (v.every(function(aa) {
return Array.isArray(aa);
})) {
mapit(obj, key, v);
}
else {
sExpr(v, obj[key]);
}
}
}
}
function rename(obj, params) {
var outName = params[0];
var inName = params[1];
if (!(outName in obj) && (inName in obj)) {
obj[outName] = obj[inName];
if (params.length === 3) {
obj[outName] = params[2](obj[outName]);
}
}
}
function d2r(input) {
return input * D2R;
}
function cleanWKT(wkt) {
if (wkt.type === 'GEOGCS') {
wkt.projName = 'longlat';
}
else if (wkt.type === 'LOCAL_CS') {
wkt.projName = 'identity';
wkt.local = true;
}
else {
if (typeof wkt.PROJECTION === "object") {
wkt.projName = Object.keys(wkt.PROJECTION)[0];
}
else {
wkt.projName = wkt.PROJECTION;
}
}
if (wkt.UNIT) {
wkt.units = wkt.UNIT.name.toLowerCase();
if (wkt.units === 'metre') {
wkt.units = 'meter';
}
if (wkt.UNIT.convert) {
if (wkt.type === 'GEOGCS') {
if (wkt.DATUM && wkt.DATUM.SPHEROID) {
wkt.to_meter = parseFloat(wkt.UNIT.convert, 10)*wkt.DATUM.SPHEROID.a;
}
} else {
wkt.to_meter = parseFloat(wkt.UNIT.convert, 10);
}
}
}
if (wkt.GEOGCS) {
//if(wkt.GEOGCS.PRIMEM&&wkt.GEOGCS.PRIMEM.convert){
// wkt.from_greenwich=wkt.GEOGCS.PRIMEM.convert*D2R;
//}
if (wkt.GEOGCS.DATUM) {
wkt.datumCode = wkt.GEOGCS.DATUM.name.toLowerCase();
}
else {
wkt.datumCode = wkt.GEOGCS.name.toLowerCase();
}
if (wkt.datumCode.slice(0, 2) === 'd_') {
wkt.datumCode = wkt.datumCode.slice(2);
}
if (wkt.datumCode === 'new_zealand_geodetic_datum_1949' || wkt.datumCode === 'new_zealand_1949') {
wkt.datumCode = 'nzgd49';
}
if (wkt.datumCode === "wgs_1984") {
if (wkt.PROJECTION === 'Mercator_Auxiliary_Sphere') {
wkt.sphere = true;
}
wkt.datumCode = 'wgs84';
}
if (wkt.datumCode.slice(-6) === '_ferro') {
wkt.datumCode = wkt.datumCode.slice(0, - 6);
}
if (wkt.datumCode.slice(-8) === '_jakarta') {
wkt.datumCode = wkt.datumCode.slice(0, - 8);
}
if (~wkt.datumCode.indexOf('belge')) {
wkt.datumCode = "rnb72";
}
if (wkt.GEOGCS.DATUM && wkt.GEOGCS.DATUM.SPHEROID) {
wkt.ellps = wkt.GEOGCS.DATUM.SPHEROID.name.replace('_19', '').replace(/[Cc]larke\_18/, 'clrk');
if (wkt.ellps.toLowerCase().slice(0, 13) === "international") {
wkt.ellps = 'intl';
}
wkt.a = wkt.GEOGCS.DATUM.SPHEROID.a;
wkt.rf = parseFloat(wkt.GEOGCS.DATUM.SPHEROID.rf, 10);
}
if (~wkt.datumCode.indexOf('osgb_1936')) {
wkt.datumCode = "osgb36";
}
}
if (wkt.b && !isFinite(wkt.b)) {
wkt.b = wkt.a;
}
function toMeter(input) {
var ratio = wkt.to_meter || 1;
return parseFloat(input, 10) * ratio;
}
var renamer = function(a) {
return rename(wkt, a);
};
var list = [
['standard_parallel_1', 'Standard_Parallel_1'],
['standard_parallel_2', 'Standard_Parallel_2'],
['false_easting', 'False_Easting'],
['false_northing', 'False_Northing'],
['central_meridian', 'Central_Meridian'],
['latitude_of_origin', 'Latitude_Of_Origin'],
['latitude_of_origin', 'Central_Parallel'],
['scale_factor', 'Scale_Factor'],
['k0', 'scale_factor'],
['latitude_of_center', 'Latitude_of_center'],
['lat0', 'latitude_of_center', d2r],
['longitude_of_center', 'Longitude_Of_Center'],
['longc', 'longitude_of_center', d2r],
['x0', 'false_easting', toMeter],
['y0', 'false_northing', toMeter],
['long0', 'central_meridian', d2r],
['lat0', 'latitude_of_origin', d2r],
['lat0', 'standard_parallel_1', d2r],
['lat1', 'standard_parallel_1', d2r],
['lat2', 'standard_parallel_2', d2r],
['alpha', 'azimuth', d2r],
['srsCode', 'name']
];
list.forEach(renamer);
if (!wkt.long0 && wkt.longc && (wkt.projName === 'Albers_Conic_Equal_Area' || wkt.projName === "Lambert_Azimuthal_Equal_Area")) {
wkt.long0 = wkt.longc;
}
if (!wkt.lat_ts && wkt.lat1 && (wkt.projName === 'Stereographic_South_Pole' || wkt.projName === 'Polar Stereographic (variant B)')) {
wkt.lat0 = d2r(wkt.lat1 > 0 ? 90 : -90);
wkt.lat_ts = wkt.lat1;
}
}
module.exports = function(wkt, self) {
var lisp = JSON.parse(("," + wkt).replace(/\s*\,\s*([A-Z_0-9]+?)(\[)/g, ',["$1",').slice(1).replace(/\s*\,\s*([A-Z_0-9]+?)\]/g, ',"$1"]').replace(/,\["VERTCS".+/,''));
var type = lisp.shift();
var name = lisp.shift();
lisp.unshift(['name', name]);
lisp.unshift(['type', type]);
lisp.unshift('output');
var obj = {};
sExpr(lisp, obj);
cleanWKT(obj.output);
return extend(self, obj.output);
};
},{"./extend":34}],67:[function(_dereq_,module,exports){
/**
* UTM zones are grouped, and assigned to one of a group of 6
* sets.
*
* {int} @private
*/
var NUM_100K_SETS = 6;
/**
* The column letters (for easting) of the lower left value, per
* set.
*
* {string} @private
*/
var SET_ORIGIN_COLUMN_LETTERS = 'AJSAJS';
/**
* The row letters (for northing) of the lower left value, per
* set.
*
* {string} @private
*/
var SET_ORIGIN_ROW_LETTERS = 'AFAFAF';
var A = 65; // A
var I = 73; // I
var O = 79; // O
var V = 86; // V
var Z = 90; // Z
/**
* Conversion of lat/lon to MGRS.
*
* @param {object} ll Object literal with lat and lon properties on a
* WGS84 ellipsoid.
* @param {int} accuracy Accuracy in digits (5 for 1 m, 4 for 10 m, 3 for
* 100 m, 2 for 1000 m or 1 for 10000 m). Optional, default is 5.
* @return {string} the MGRS string for the given location and accuracy.
*/
exports.forward = function(ll, accuracy) {
accuracy = accuracy || 5; // default accuracy 1m
return encode(LLtoUTM({
lat: ll[1],
lon: ll[0]
}), accuracy);
};
/**
* Conversion of MGRS to lat/lon.
*
* @param {string} mgrs MGRS string.
* @return {array} An array with left (longitude), bottom (latitude), right
* (longitude) and top (latitude) values in WGS84, representing the
* bounding box for the provided MGRS reference.
*/
exports.inverse = function(mgrs) {
var bbox = UTMtoLL(decode(mgrs.toUpperCase()));
if (bbox.lat && bbox.lon) {
return [bbox.lon, bbox.lat, bbox.lon, bbox.lat];
}
return [bbox.left, bbox.bottom, bbox.right, bbox.top];
};
exports.toPoint = function(mgrs) {
var bbox = UTMtoLL(decode(mgrs.toUpperCase()));
if (bbox.lat && bbox.lon) {
return [bbox.lon, bbox.lat];
}
return [(bbox.left + bbox.right) / 2, (bbox.top + bbox.bottom) / 2];
};
/**
* Conversion from degrees to radians.
*
* @private
* @param {number} deg the angle in degrees.
* @return {number} the angle in radians.
*/
function degToRad(deg) {
return (deg * (Math.PI / 180.0));
}
/**
* Conversion from radians to degrees.
*
* @private
* @param {number} rad the angle in radians.
* @return {number} the angle in degrees.
*/
function radToDeg(rad) {
return (180.0 * (rad / Math.PI));
}
/**
* Converts a set of Longitude and Latitude co-ordinates to UTM
* using the WGS84 ellipsoid.
*
* @private
* @param {object} ll Object literal with lat and lon properties
* representing the WGS84 coordinate to be converted.
* @return {object} Object literal containing the UTM value with easting,
* northing, zoneNumber and zoneLetter properties, and an optional
* accuracy property in digits. Returns null if the conversion failed.
*/
function LLtoUTM(ll) {
var Lat = ll.lat;
var Long = ll.lon;
var a = 6378137.0; //ellip.radius;
var eccSquared = 0.00669438; //ellip.eccsq;
var k0 = 0.9996;
var LongOrigin;
var eccPrimeSquared;
var N, T, C, A, M;
var LatRad = degToRad(Lat);
var LongRad = degToRad(Long);
var LongOriginRad;
var ZoneNumber;
// (int)
ZoneNumber = Math.floor((Long + 180) / 6) + 1;
//Make sure the longitude 180.00 is in Zone 60
if (Long === 180) {
ZoneNumber = 60;
}
// Special zone for Norway
if (Lat >= 56.0 && Lat < 64.0 && Long >= 3.0 && Long < 12.0) {
ZoneNumber = 32;
}
// Special zones for Svalbard
if (Lat >= 72.0 && Lat < 84.0) {
if (Long >= 0.0 && Long < 9.0) {
ZoneNumber = 31;
}
else if (Long >= 9.0 && Long < 21.0) {
ZoneNumber = 33;
}
else if (Long >= 21.0 && Long < 33.0) {
ZoneNumber = 35;
}
else if (Long >= 33.0 && Long < 42.0) {
ZoneNumber = 37;
}
}
LongOrigin = (ZoneNumber - 1) * 6 - 180 + 3; //+3 puts origin
// in middle of
// zone
LongOriginRad = degToRad(LongOrigin);
eccPrimeSquared = (eccSquared) / (1 - eccSquared);
N = a / Math.sqrt(1 - eccSquared * Math.sin(LatRad) * Math.sin(LatRad));
T = Math.tan(LatRad) * Math.tan(LatRad);
C = eccPrimeSquared * Math.cos(LatRad) * Math.cos(LatRad);
A = Math.cos(LatRad) * (LongRad - LongOriginRad);
M = a * ((1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256) * LatRad - (3 * eccSquared / 8 + 3 * eccSquared * eccSquared / 32 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(2 * LatRad) + (15 * eccSquared * eccSquared / 256 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(4 * LatRad) - (35 * eccSquared * eccSquared * eccSquared / 3072) * Math.sin(6 * LatRad));
var UTMEasting = (k0 * N * (A + (1 - T + C) * A * A * A / 6.0 + (5 - 18 * T + T * T + 72 * C - 58 * eccPrimeSquared) * A * A * A * A * A / 120.0) + 500000.0);
var UTMNorthing = (k0 * (M + N * Math.tan(LatRad) * (A * A / 2 + (5 - T + 9 * C + 4 * C * C) * A * A * A * A / 24.0 + (61 - 58 * T + T * T + 600 * C - 330 * eccPrimeSquared) * A * A * A * A * A * A / 720.0)));
if (Lat < 0.0) {
UTMNorthing += 10000000.0; //10000000 meter offset for
// southern hemisphere
}
return {
northing: Math.round(UTMNorthing),
easting: Math.round(UTMEasting),
zoneNumber: ZoneNumber,
zoneLetter: getLetterDesignator(Lat)
};
}
/**
* Converts UTM coords to lat/long, using the WGS84 ellipsoid. This is a convenience
* class where the Zone can be specified as a single string eg."60N" which
* is then broken down into the ZoneNumber and ZoneLetter.
*
* @private
* @param {object} utm An object literal with northing, easting, zoneNumber
* and zoneLetter properties. If an optional accuracy property is
* provided (in meters), a bounding box will be returned instead of
* latitude and longitude.
* @return {object} An object literal containing either lat and lon values
* (if no accuracy was provided), or top, right, bottom and left values
* for the bounding box calculated according to the provided accuracy.
* Returns null if the conversion failed.
*/
function UTMtoLL(utm) {
var UTMNorthing = utm.northing;
var UTMEasting = utm.easting;
var zoneLetter = utm.zoneLetter;
var zoneNumber = utm.zoneNumber;
// check the ZoneNummber is valid
if (zoneNumber < 0 || zoneNumber > 60) {
return null;
}
var k0 = 0.9996;
var a = 6378137.0; //ellip.radius;
var eccSquared = 0.00669438; //ellip.eccsq;
var eccPrimeSquared;
var e1 = (1 - Math.sqrt(1 - eccSquared)) / (1 + Math.sqrt(1 - eccSquared));
var N1, T1, C1, R1, D, M;
var LongOrigin;
var mu, phi1Rad;
// remove 500,000 meter offset for longitude
var x = UTMEasting - 500000.0;
var y = UTMNorthing;
// We must know somehow if we are in the Northern or Southern
// hemisphere, this is the only time we use the letter So even
// if the Zone letter isn't exactly correct it should indicate
// the hemisphere correctly
if (zoneLetter < 'N') {
y -= 10000000.0; // remove 10,000,000 meter offset used
// for southern hemisphere
}
// There are 60 zones with zone 1 being at West -180 to -174
LongOrigin = (zoneNumber - 1) * 6 - 180 + 3; // +3 puts origin
// in middle of
// zone
eccPrimeSquared = (eccSquared) / (1 - eccSquared);
M = y / k0;
mu = M / (a * (1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256));
phi1Rad = mu + (3 * e1 / 2 - 27 * e1 * e1 * e1 / 32) * Math.sin(2 * mu) + (21 * e1 * e1 / 16 - 55 * e1 * e1 * e1 * e1 / 32) * Math.sin(4 * mu) + (151 * e1 * e1 * e1 / 96) * Math.sin(6 * mu);
// double phi1 = ProjMath.radToDeg(phi1Rad);
N1 = a / Math.sqrt(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad));
T1 = Math.tan(phi1Rad) * Math.tan(phi1Rad);
C1 = eccPrimeSquared * Math.cos(phi1Rad) * Math.cos(phi1Rad);
R1 = a * (1 - eccSquared) / Math.pow(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad), 1.5);
D = x / (N1 * k0);
var lat = phi1Rad - (N1 * Math.tan(phi1Rad) / R1) * (D * D / 2 - (5 + 3 * T1 + 10 * C1 - 4 * C1 * C1 - 9 * eccPrimeSquared) * D * D * D * D / 24 + (61 + 90 * T1 + 298 * C1 + 45 * T1 * T1 - 252 * eccPrimeSquared - 3 * C1 * C1) * D * D * D * D * D * D / 720);
lat = radToDeg(lat);
var lon = (D - (1 + 2 * T1 + C1) * D * D * D / 6 + (5 - 2 * C1 + 28 * T1 - 3 * C1 * C1 + 8 * eccPrimeSquared + 24 * T1 * T1) * D * D * D * D * D / 120) / Math.cos(phi1Rad);
lon = LongOrigin + radToDeg(lon);
var result;
if (utm.accuracy) {
var topRight = UTMtoLL({
northing: utm.northing + utm.accuracy,
easting: utm.easting + utm.accuracy,
zoneLetter: utm.zoneLetter,
zoneNumber: utm.zoneNumber
});
result = {
top: topRight.lat,
right: topRight.lon,
bottom: lat,
left: lon
};
}
else {
result = {
lat: lat,
lon: lon
};
}
return result;
}
/**
* Calculates the MGRS letter designator for the given latitude.
*
* @private
* @param {number} lat The latitude in WGS84 to get the letter designator
* for.
* @return {char} The letter designator.
*/
function getLetterDesignator(lat) {
//This is here as an error flag to show that the Latitude is
//outside MGRS limits
var LetterDesignator = 'Z';
if ((84 >= lat) && (lat >= 72)) {
LetterDesignator = 'X';
}
else if ((72 > lat) && (lat >= 64)) {
LetterDesignator = 'W';
}
else if ((64 > lat) && (lat >= 56)) {
LetterDesignator = 'V';
}
else if ((56 > lat) && (lat >= 48)) {
LetterDesignator = 'U';
}
else if ((48 > lat) && (lat >= 40)) {
LetterDesignator = 'T';
}
else if ((40 > lat) && (lat >= 32)) {
LetterDesignator = 'S';
}
else if ((32 > lat) && (lat >= 24)) {
LetterDesignator = 'R';
}
else if ((24 > lat) && (lat >= 16)) {
LetterDesignator = 'Q';
}
else if ((16 > lat) && (lat >= 8)) {
LetterDesignator = 'P';
}
else if ((8 > lat) && (lat >= 0)) {
LetterDesignator = 'N';
}
else if ((0 > lat) && (lat >= -8)) {
LetterDesignator = 'M';
}
else if ((-8 > lat) && (lat >= -16)) {
LetterDesignator = 'L';
}
else if ((-16 > lat) && (lat >= -24)) {
LetterDesignator = 'K';
}
else if ((-24 > lat) && (lat >= -32)) {
LetterDesignator = 'J';
}
else if ((-32 > lat) && (lat >= -40)) {
LetterDesignator = 'H';
}
else if ((-40 > lat) && (lat >= -48)) {
LetterDesignator = 'G';
}
else if ((-48 > lat) && (lat >= -56)) {
LetterDesignator = 'F';
}
else if ((-56 > lat) && (lat >= -64)) {
LetterDesignator = 'E';
}
else if ((-64 > lat) && (lat >= -72)) {
LetterDesignator = 'D';
}
else if ((-72 > lat) && (lat >= -80)) {
LetterDesignator = 'C';
}
return LetterDesignator;
}
/**
* Encodes a UTM location as MGRS string.
*
* @private
* @param {object} utm An object literal with easting, northing,
* zoneLetter, zoneNumber
* @param {number} accuracy Accuracy in digits (1-5).
* @return {string} MGRS string for the given UTM location.
*/
function encode(utm, accuracy) {
// prepend with leading zeroes
var seasting = "00000" + utm.easting,
snorthing = "00000" + utm.northing;
return utm.zoneNumber + utm.zoneLetter + get100kID(utm.easting, utm.northing, utm.zoneNumber) + seasting.substr(seasting.length - 5, accuracy) + snorthing.substr(snorthing.length - 5, accuracy);
}
/**
* Get the two letter 100k designator for a given UTM easting,
* northing and zone number value.
*
* @private
* @param {number} easting
* @param {number} northing
* @param {number} zoneNumber
* @return the two letter 100k designator for the given UTM location.
*/
function get100kID(easting, northing, zoneNumber) {
var setParm = get100kSetForZone(zoneNumber);
var setColumn = Math.floor(easting / 100000);
var setRow = Math.floor(northing / 100000) % 20;
return getLetter100kID(setColumn, setRow, setParm);
}
/**
* Given a UTM zone number, figure out the MGRS 100K set it is in.
*
* @private
* @param {number} i An UTM zone number.
* @return {number} the 100k set the UTM zone is in.
*/
function get100kSetForZone(i) {
var setParm = i % NUM_100K_SETS;
if (setParm === 0) {
setParm = NUM_100K_SETS;
}
return setParm;
}
/**
* Get the two-letter MGRS 100k designator given information
* translated from the UTM northing, easting and zone number.
*
* @private
* @param {number} column the column index as it relates to the MGRS
* 100k set spreadsheet, created from the UTM easting.
* Values are 1-8.
* @param {number} row the row index as it relates to the MGRS 100k set
* spreadsheet, created from the UTM northing value. Values
* are from 0-19.
* @param {number} parm the set block, as it relates to the MGRS 100k set
* spreadsheet, created from the UTM zone. Values are from
* 1-60.
* @return two letter MGRS 100k code.
*/
function getLetter100kID(column, row, parm) {
// colOrigin and rowOrigin are the letters at the origin of the set
var index = parm - 1;
var colOrigin = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(index);
var rowOrigin = SET_ORIGIN_ROW_LETTERS.charCodeAt(index);
// colInt and rowInt are the letters to build to return
var colInt = colOrigin + column - 1;
var rowInt = rowOrigin + row;
var rollover = false;
if (colInt > Z) {
colInt = colInt - Z + A - 1;
rollover = true;
}
if (colInt === I || (colOrigin < I && colInt > I) || ((colInt > I || colOrigin < I) && rollover)) {
colInt++;
}
if (colInt === O || (colOrigin < O && colInt > O) || ((colInt > O || colOrigin < O) && rollover)) {
colInt++;
if (colInt === I) {
colInt++;
}
}
if (colInt > Z) {
colInt = colInt - Z + A - 1;
}
if (rowInt > V) {
rowInt = rowInt - V + A - 1;
rollover = true;
}
else {
rollover = false;
}
if (((rowInt === I) || ((rowOrigin < I) && (rowInt > I))) || (((rowInt > I) || (rowOrigin < I)) && rollover)) {
rowInt++;
}
if (((rowInt === O) || ((rowOrigin < O) && (rowInt > O))) || (((rowInt > O) || (rowOrigin < O)) && rollover)) {
rowInt++;
if (rowInt === I) {
rowInt++;
}
}
if (rowInt > V) {
rowInt = rowInt - V + A - 1;
}
var twoLetter = String.fromCharCode(colInt) + String.fromCharCode(rowInt);
return twoLetter;
}
/**
* Decode the UTM parameters from a MGRS string.
*
* @private
* @param {string} mgrsString an UPPERCASE coordinate string is expected.
* @return {object} An object literal with easting, northing, zoneLetter,
* zoneNumber and accuracy (in meters) properties.
*/
function decode(mgrsString) {
if (mgrsString && mgrsString.length === 0) {
throw ("MGRSPoint coverting from nothing");
}
var length = mgrsString.length;
var hunK = null;
var sb = "";
var testChar;
var i = 0;
// get Zone number
while (!(/[A-Z]/).test(testChar = mgrsString.charAt(i))) {
if (i >= 2) {
throw ("MGRSPoint bad conversion from: " + mgrsString);
}
sb += testChar;
i++;
}
var zoneNumber = parseInt(sb, 10);
if (i === 0 || i + 3 > length) {
// A good MGRS string has to be 4-5 digits long,
// ##AAA/#AAA at least.
throw ("MGRSPoint bad conversion from: " + mgrsString);
}
var zoneLetter = mgrsString.charAt(i++);
// Should we check the zone letter here? Why not.
if (zoneLetter <= 'A' || zoneLetter === 'B' || zoneLetter === 'Y' || zoneLetter >= 'Z' || zoneLetter === 'I' || zoneLetter === 'O') {
throw ("MGRSPoint zone letter " + zoneLetter + " not handled: " + mgrsString);
}
hunK = mgrsString.substring(i, i += 2);
var set = get100kSetForZone(zoneNumber);
var east100k = getEastingFromChar(hunK.charAt(0), set);
var north100k = getNorthingFromChar(hunK.charAt(1), set);
// We have a bug where the northing may be 2000000 too low.
// How
// do we know when to roll over?
while (north100k < getMinNorthing(zoneLetter)) {
north100k += 2000000;
}
// calculate the char index for easting/northing separator
var remainder = length - i;
if (remainder % 2 !== 0) {
throw ("MGRSPoint has to have an even number \nof digits after the zone letter and two 100km letters - front \nhalf for easting meters, second half for \nnorthing meters" + mgrsString);
}
var sep = remainder / 2;
var sepEasting = 0.0;
var sepNorthing = 0.0;
var accuracyBonus, sepEastingString, sepNorthingString, easting, northing;
if (sep > 0) {
accuracyBonus = 100000.0 / Math.pow(10, sep);
sepEastingString = mgrsString.substring(i, i + sep);
sepEasting = parseFloat(sepEastingString) * accuracyBonus;
sepNorthingString = mgrsString.substring(i + sep);
sepNorthing = parseFloat(sepNorthingString) * accuracyBonus;
}
easting = sepEasting + east100k;
northing = sepNorthing + north100k;
return {
easting: easting,
northing: northing,
zoneLetter: zoneLetter,
zoneNumber: zoneNumber,
accuracy: accuracyBonus
};
}
/**
* Given the first letter from a two-letter MGRS 100k zone, and given the
* MGRS table set for the zone number, figure out the easting value that
* should be added to the other, secondary easting value.
*
* @private
* @param {char} e The first letter from a two-letter MGRS 100´k zone.
* @param {number} set The MGRS table set for the zone number.
* @return {number} The easting value for the given letter and set.
*/
function getEastingFromChar(e, set) {
// colOrigin is the letter at the origin of the set for the
// column
var curCol = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(set - 1);
var eastingValue = 100000.0;
var rewindMarker = false;
while (curCol !== e.charCodeAt(0)) {
curCol++;
if (curCol === I) {
curCol++;
}
if (curCol === O) {
curCol++;
}
if (curCol > Z) {
if (rewindMarker) {
throw ("Bad character: " + e);
}
curCol = A;
rewindMarker = true;
}
eastingValue += 100000.0;
}
return eastingValue;
}
/**
* Given the second letter from a two-letter MGRS 100k zone, and given the
* MGRS table set for the zone number, figure out the northing value that
* should be added to the other, secondary northing value. You have to
* remember that Northings are determined from the equator, and the vertical
* cycle of letters mean a 2000000 additional northing meters. This happens
* approx. every 18 degrees of latitude. This method does *NOT* count any
* additional northings. You have to figure out how many 2000000 meters need
* to be added for the zone letter of the MGRS coordinate.
*
* @private
* @param {char} n Second letter of the MGRS 100k zone
* @param {number} set The MGRS table set number, which is dependent on the
* UTM zone number.
* @return {number} The northing value for the given letter and set.
*/
function getNorthingFromChar(n, set) {
if (n > 'V') {
throw ("MGRSPoint given invalid Northing " + n);
}
// rowOrigin is the letter at the origin of the set for the
// column
var curRow = SET_ORIGIN_ROW_LETTERS.charCodeAt(set - 1);
var northingValue = 0.0;
var rewindMarker = false;
while (curRow !== n.charCodeAt(0)) {
curRow++;
if (curRow === I) {
curRow++;
}
if (curRow === O) {
curRow++;
}
// fixing a bug making whole application hang in this loop
// when 'n' is a wrong character
if (curRow > V) {
if (rewindMarker) { // making sure that this loop ends
throw ("Bad character: " + n);
}
curRow = A;
rewindMarker = true;
}
northingValue += 100000.0;
}
return northingValue;
}
/**
* The function getMinNorthing returns the minimum northing value of a MGRS
* zone.
*
* Ported from Geotrans' c Lattitude_Band_Value structure table.
*
* @private
* @param {char} zoneLetter The MGRS zone to get the min northing for.
* @return {number}
*/
function getMinNorthing(zoneLetter) {
var northing;
switch (zoneLetter) {
case 'C':
northing = 1100000.0;
break;
case 'D':
northing = 2000000.0;
break;
case 'E':
northing = 2800000.0;
break;
case 'F':
northing = 3700000.0;
break;
case 'G':
northing = 4600000.0;
break;
case 'H':
northing = 5500000.0;
break;
case 'J':
northing = 6400000.0;
break;
case 'K':
northing = 7300000.0;
break;
case 'L':
northing = 8200000.0;
break;
case 'M':
northing = 9100000.0;
break;
case 'N':
northing = 0.0;
break;
case 'P':
northing = 800000.0;
break;
case 'Q':
northing = 1700000.0;
break;
case 'R':
northing = 2600000.0;
break;
case 'S':
northing = 3500000.0;
break;
case 'T':
northing = 4400000.0;
break;
case 'U':
northing = 5300000.0;
break;
case 'V':
northing = 6200000.0;
break;
case 'W':
northing = 7000000.0;
break;
case 'X':
northing = 7900000.0;
break;
default:
northing = -1.0;
}
if (northing >= 0.0) {
return northing;
}
else {
throw ("Invalid zone letter: " + zoneLetter);
}
}
},{}],68:[function(_dereq_,module,exports){
module.exports={
"name": "proj4",
"version": "2.3.14",
"description": "Proj4js is a JavaScript library to transform point coordinates from one coordinate system to another, including datum transformations.",
"main": "lib/index.js",
"directories": {
"test": "test",
"doc": "docs"
},
"scripts": {
"test": "./node_modules/istanbul/lib/cli.js test ./node_modules/mocha/bin/_mocha test/test.js"
},
"repository": {
"type": "git",
"url": "git://github.com/proj4js/proj4js.git"
},
"author": "",
"license": "MIT",
"jam": {
"main": "dist/proj4.js",
"include": [
"dist/proj4.js",
"README.md",
"AUTHORS",
"LICENSE.md"
]
},
"devDependencies": {
"grunt-cli": "~0.1.13",
"grunt": "~0.4.2",
"grunt-contrib-connect": "~0.6.0",
"grunt-contrib-jshint": "~0.8.0",
"chai": "~1.8.1",
"mocha": "~1.17.1",
"grunt-mocha-phantomjs": "~0.4.0",
"browserify": "~12.0.1",
"grunt-browserify": "~4.0.1",
"grunt-contrib-uglify": "~0.11.1",
"curl": "git://github.com/cujojs/curl.git",
"istanbul": "~0.2.4",
"tin": "~0.4.0"
},
"dependencies": {
"mgrs": "~0.0.2"
}
}
},{}],"./includedProjections":[function(_dereq_,module,exports){
module.exports=_dereq_('hTEDpn');
},{}],"hTEDpn":[function(_dereq_,module,exports){
var projs = [
_dereq_('./lib/projections/tmerc'),
_dereq_('./lib/projections/utm'),
_dereq_('./lib/projections/sterea'),
_dereq_('./lib/projections/stere'),
_dereq_('./lib/projections/somerc'),
_dereq_('./lib/projections/omerc'),
_dereq_('./lib/projections/lcc'),
_dereq_('./lib/projections/krovak'),
_dereq_('./lib/projections/cass'),
_dereq_('./lib/projections/laea'),
_dereq_('./lib/projections/aea'),
_dereq_('./lib/projections/gnom'),
_dereq_('./lib/projections/cea'),
_dereq_('./lib/projections/eqc'),
_dereq_('./lib/projections/poly'),
_dereq_('./lib/projections/nzmg'),
_dereq_('./lib/projections/mill'),
_dereq_('./lib/projections/sinu'),
_dereq_('./lib/projections/moll'),
_dereq_('./lib/projections/eqdc'),
_dereq_('./lib/projections/vandg'),
_dereq_('./lib/projections/aeqd')
];
module.exports = function(proj4){
projs.forEach(function(proj){
proj4.Proj.projections.add(proj);
});
}
},{"./lib/projections/aea":40,"./lib/projections/aeqd":41,"./lib/projections/cass":42,"./lib/projections/cea":43,"./lib/projections/eqc":44,"./lib/projections/eqdc":45,"./lib/projections/gnom":47,"./lib/projections/krovak":48,"./lib/projections/laea":49,"./lib/projections/lcc":50,"./lib/projections/mill":53,"./lib/projections/moll":54,"./lib/projections/nzmg":55,"./lib/projections/omerc":56,"./lib/projections/poly":57,"./lib/projections/sinu":58,"./lib/projections/somerc":59,"./lib/projections/stere":60,"./lib/projections/sterea":61,"./lib/projections/tmerc":62,"./lib/projections/utm":63,"./lib/projections/vandg":64}]},{},[36])
(36)
});