/** * @license * Copyright 2015 The Emscripten Authors * SPDX-License-Identifier: MIT */ // Pthread Web Worker startup routine: // This is the entry point file that is loaded first by each Web Worker // that executes pthreads on the Emscripten application. // Thread-local: var initializedJS = false; // Guard variable for one-time init of the JS state (currently only embind types registration) var Module = {}; function assert(condition, text) { if (!condition) abort('Assertion failed: ' + text); } function threadPrintErr() { var text = Array.prototype.slice.call(arguments).join(' '); console.error(text); } function threadAlert() { var text = Array.prototype.slice.call(arguments).join(' '); postMessage({cmd: 'alert', text: text, threadId: Module['_pthread_self']()}); } // We don't need out() for now, but may need to add it if we want to use it // here. Or, if this code all moves into the main JS, that problem will go // away. (For now, adding it here increases code size for no benefit.) var out = function() { throw 'out() is not defined in worker.js.'; } var err = threadPrintErr; this.alert = threadAlert; Module['instantiateWasm'] = function(info, receiveInstance) { // Instantiate from the module posted from the main thread. // We can just use sync instantiation in the worker. var instance = new WebAssembly.Instance(Module['wasmModule'], info); // TODO: Due to Closure regression https://github.com/google/closure-compiler/issues/3193, // the above line no longer optimizes out down to the following line. // When the regression is fixed, we can remove this if/else. receiveInstance(instance); // We don't need the module anymore; new threads will be spawned from the main thread. Module['wasmModule'] = null; return instance.exports; }; function moduleLoaded() { } this.onmessage = function(e) { try { if (e.data.cmd === 'load') { // Preload command that is called once per worker to parse and load the Emscripten code. // Module and memory were sent from main thread Module['wasmModule'] = e.data.wasmModule; Module['wasmMemory'] = e.data.wasmMemory; Module['buffer'] = Module['wasmMemory'].buffer; Module['ENVIRONMENT_IS_PTHREAD'] = true; if (typeof e.data.urlOrBlob === 'string') { importScripts(e.data.urlOrBlob); } else { var objectUrl = URL.createObjectURL(e.data.urlOrBlob); importScripts(objectUrl); URL.revokeObjectURL(objectUrl); } JSAudioInterComModule(Module).then(function (instance) { Module = instance; moduleLoaded(); }); } else if (e.data.cmd === 'objectTransfer') { Module['PThread'].receiveObjectTransfer(e.data); } else if (e.data.cmd === 'run') { // This worker was idle, and now should start executing its pthread entry // point. // performance.now() is specced to return a wallclock time in msecs since // that Web Worker/main thread launched. However for pthreads this can // cause subtle problems in emscripten_get_now() as this essentially // would measure time from pthread_create(), meaning that the clocks // between each threads would be wildly out of sync. Therefore sync all // pthreads to the clock on the main browser thread, so that different // threads see a somewhat coherent clock across each of them // (+/- 0.1msecs in testing). Module['__performance_now_clock_drift'] = performance.now() - e.data.time; // Pass the thread address inside the asm.js scope to store it for fast access that avoids the need for a FFI out. Module['__emscripten_thread_init'](e.data.threadInfoStruct, /*isMainBrowserThread=*/0, /*isMainRuntimeThread=*/0); // Establish the stack frame for this thread in global scope // The stack grows downwards var max = e.data.stackBase; var top = e.data.stackBase + e.data.stackSize; assert(e.data.threadInfoStruct); assert(top != 0); assert(max != 0); assert(top > max); // Also call inside JS module to set up the stack frame for this pthread in JS module scope Module['establishStackSpace'](top, max); Module['PThread'].receiveObjectTransfer(e.data); Module['PThread'].threadInit(); // Embind must initialize itself on all threads, as it generates support JS. // We only do this once per worker since they get reused if (!initializedJS) { Module['___embind_register_native_and_builtin_types'](); initializedJS = true; } try { // pthread entry points are always of signature 'void *ThreadMain(void *arg)' // Native codebases sometimes spawn threads with other thread entry point signatures, // such as void ThreadMain(void *arg), void *ThreadMain(), or void ThreadMain(). // That is not acceptable per C/C++ specification, but x86 compiler ABI extensions // enable that to work. If you find the following line to crash, either change the signature // to "proper" void *ThreadMain(void *arg) form, or try linking with the Emscripten linker // flag -s EMULATE_FUNCTION_POINTER_CASTS=1 to add in emulation for this x86 ABI extension. var result = Module['invokeEntryPoint'](e.data.start_routine, e.data.arg); Module['checkStackCookie'](); if (Module['keepRuntimeAlive']()) { Module['PThread'].setExitStatus(result); } else { Module['PThread'].threadExit(result); } } catch(ex) { if (ex === 'Canceled!') { Module['PThread'].threadCancel(); } else if (ex != 'unwind') { // FIXME(sbc): Figure out if this is still needed or useful. Its not // clear to me how this check could ever fail. In order to get into // this try/catch block at all we have already called bunch of // functions on `Module`.. why is this one special? if (typeof(Module['_emscripten_futex_wake']) !== "function") { err("Thread Initialisation failed."); throw ex; } // ExitStatus not present in MINIMAL_RUNTIME if (ex instanceof Module['ExitStatus']) { if (Module['keepRuntimeAlive']()) { err('Pthread 0x' + Module['_pthread_self']().toString(16) + ' called exit(), staying alive due to noExitRuntime.'); } else { err('Pthread 0x' + Module['_pthread_self']().toString(16) + ' called exit(), calling threadExit.'); Module['PThread'].threadExit(ex.status); } } else { Module['PThread'].threadExit(-2); throw ex; } } else { // else e == 'unwind', and we should fall through here and keep the pthread alive for asynchronous events. err('Pthread 0x' + Module['_pthread_self']().toString(16) + ' completed its pthread main entry point with an unwind, keeping the pthread worker alive for asynchronous operation.'); } } } else if (e.data.cmd === 'cancel') { // Main thread is asking for a pthread_cancel() on this thread. if (Module['_pthread_self']()) { Module['PThread'].threadCancel(); } } else if (e.data.target === 'setimmediate') { // no-op } else if (e.data.cmd === 'processThreadQueue') { if (Module['_pthread_self']()) { // If this thread is actually running? Module['_emscripten_current_thread_process_queued_calls'](); } } else { err('worker.js received unknown command ' + e.data.cmd); err(e.data); } } catch(ex) { err('worker.js onmessage() captured an uncaught exception: ' + ex); if (ex && ex.stack) err(ex.stack); throw ex; } }; // Node.js support if (typeof process === 'object' && typeof process.versions === 'object' && typeof process.versions.node === 'string') { // Create as web-worker-like an environment as we can. self = { location: { href: __filename } }; var onmessage = this.onmessage; var nodeWorkerThreads = require('worker_threads'); global.Worker = nodeWorkerThreads.Worker; var parentPort = nodeWorkerThreads.parentPort; parentPort.on('message', function(data) { onmessage({ data: data }); }); var nodeFS = require('fs'); var nodeRead = function(filename) { return nodeFS.readFileSync(filename, 'utf8'); }; function globalEval(x) { global.require = require; global.Module = Module; eval.call(null, x); } importScripts = function(f) { globalEval(nodeRead(f)); }; postMessage = function(msg) { parentPort.postMessage(msg); }; if (typeof performance === 'undefined') { performance = { now: function() { return Date.now(); } }; } }