1228 lines
30 KiB
Vue
1228 lines
30 KiB
Vue
|
/**
|
||
|
* geostats() is a tiny and standalone javascript library for classification
|
||
|
* Project page - https://github.com/simogeo/geostats
|
||
|
* Copyright (c) 2011 Simon Georget, http://www.empreinte-urbaine.eu
|
||
|
* Licensed under the MIT license
|
||
|
*/
|
||
|
|
||
|
|
||
|
(function (definition) {
|
||
|
// This file will function properly as a <script> tag, or a module
|
||
|
// using CommonJS and NodeJS or RequireJS module formats.
|
||
|
|
||
|
// CommonJS
|
||
|
if (typeof exports === "object") {
|
||
|
module.exports = definition();
|
||
|
|
||
|
// RequireJS
|
||
|
} else if (typeof define === "function" && define.amd) {
|
||
|
define(definition);
|
||
|
|
||
|
// <script>
|
||
|
} else {
|
||
|
geostats = definition();
|
||
|
}
|
||
|
|
||
|
})(function () {
|
||
|
|
||
|
var isInt = function(n) {
|
||
|
return typeof n === 'number' && parseFloat(n) == parseInt(n, 10) && !isNaN(n);
|
||
|
} // 6 characters
|
||
|
|
||
|
var _t = function(str) {
|
||
|
return str;
|
||
|
};
|
||
|
|
||
|
//taking from http://stackoverflow.com/questions/18082/validate-decimal-numbers-in-javascript-isnumeric
|
||
|
var isNumber = function(n) {
|
||
|
return !isNaN(parseFloat(n)) && isFinite(n);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
//indexOf polyfill
|
||
|
// from https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf
|
||
|
if (!Array.prototype.indexOf) {
|
||
|
Array.prototype.indexOf = function (searchElement, fromIndex) {
|
||
|
if ( this === undefined || this === null ) {
|
||
|
throw new TypeError( '"this" is null or not defined' );
|
||
|
}
|
||
|
|
||
|
var length = this.length >>> 0; // Hack to convert object.length to a UInt32
|
||
|
|
||
|
fromIndex = +fromIndex || 0;
|
||
|
|
||
|
if (Math.abs(fromIndex) === Infinity) {
|
||
|
fromIndex = 0;
|
||
|
}
|
||
|
|
||
|
if (fromIndex < 0) {
|
||
|
fromIndex += length;
|
||
|
if (fromIndex < 0) {
|
||
|
fromIndex = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (;fromIndex < length; fromIndex++) {
|
||
|
if (this[fromIndex] === searchElement) {
|
||
|
return fromIndex;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return -1;
|
||
|
};
|
||
|
}
|
||
|
|
||
|
var geostats = function(a) {
|
||
|
|
||
|
this.objectID = '';
|
||
|
this.separator = ' - ';
|
||
|
this.legendSeparator = this.separator;
|
||
|
this.method = '';
|
||
|
this.precision = 0;
|
||
|
this.precisionflag = 'auto';
|
||
|
this.roundlength = 2; // Number of decimals, round values
|
||
|
this.is_uniqueValues = false;
|
||
|
this.debug = false;
|
||
|
this.silent = false;
|
||
|
|
||
|
this.bounds = Array();
|
||
|
this.ranges = Array();
|
||
|
this.inner_ranges = null;
|
||
|
this.colors = Array();
|
||
|
this.counter = Array();
|
||
|
|
||
|
// statistics information
|
||
|
this.stat_sorted = null;
|
||
|
this.stat_mean = null;
|
||
|
this.stat_median = null;
|
||
|
this.stat_sum = null;
|
||
|
this.stat_max = null;
|
||
|
this.stat_min = null;
|
||
|
this.stat_pop = null;
|
||
|
this.stat_variance = null;
|
||
|
this.stat_stddev = null;
|
||
|
this.stat_cov = null;
|
||
|
|
||
|
|
||
|
/**
|
||
|
* logging method
|
||
|
*/
|
||
|
this.log = function(msg, force) {
|
||
|
|
||
|
if(this.debug == true || force != null)
|
||
|
console.log(this.objectID + "(object id) :: " + msg);
|
||
|
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set bounds
|
||
|
*/
|
||
|
this.setBounds = function(a) {
|
||
|
|
||
|
this.log('Setting bounds (' + a.length + ') : ' + a.join());
|
||
|
|
||
|
this.bounds = Array() // init empty array to prevent bug when calling classification after another with less items (sample getQuantile(6) and getQuantile(4))
|
||
|
|
||
|
this.bounds = a;
|
||
|
//this.bounds = this.decimalFormat(a);
|
||
|
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set a new serie
|
||
|
*/
|
||
|
this.setSerie = function(a) {
|
||
|
|
||
|
this.log('Setting serie (' + a.length + ') : ' + a.join());
|
||
|
|
||
|
this.serie = Array() // init empty array to prevent bug when calling classification after another with less items (sample getQuantile(6) and getQuantile(4))
|
||
|
this.serie = a;
|
||
|
|
||
|
//reset statistics after changing serie
|
||
|
this.resetStatistics();
|
||
|
|
||
|
this.setPrecision();
|
||
|
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set colors
|
||
|
*/
|
||
|
this.setColors = function(colors) {
|
||
|
|
||
|
this.log('Setting color ramp (' + colors.length + ') : ' + colors.join());
|
||
|
|
||
|
this.colors = colors;
|
||
|
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Get feature count
|
||
|
* With bounds array(0, 0.75, 1.5, 2.25, 3);
|
||
|
* should populate this.counter with 5 keys
|
||
|
* and increment counters for each key
|
||
|
*/
|
||
|
this.doCount = function() {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
|
||
|
var tmp = this.sorted();
|
||
|
|
||
|
this.counter = new Array();
|
||
|
|
||
|
// we init counter with 0 value
|
||
|
for(i = 0; i < this.bounds.length -1; i++) {
|
||
|
this.counter[i]= 0;
|
||
|
}
|
||
|
|
||
|
for(j=0; j < tmp.length; j++) {
|
||
|
|
||
|
// get current class for value to increment the counter
|
||
|
var cclass = this.getClass(tmp[j]);
|
||
|
this.counter[cclass]++;
|
||
|
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set decimal precision according to user input
|
||
|
* or automatcally determined according
|
||
|
* to the given serie.
|
||
|
*/
|
||
|
this.setPrecision = function(decimals) {
|
||
|
|
||
|
// only when called from user
|
||
|
if(typeof decimals !== "undefined") {
|
||
|
this.precisionflag = 'manual';
|
||
|
this.precision = decimals;
|
||
|
}
|
||
|
|
||
|
// we calculate the maximal decimal length on given serie
|
||
|
if(this.precisionflag == 'auto') {
|
||
|
|
||
|
for (var i = 0; i < this.serie.length; i++) {
|
||
|
|
||
|
// check if the given value is a number and a float
|
||
|
if (!isNaN((this.serie[i]+"")) && (this.serie[i]+"").toString().indexOf('.') != -1) {
|
||
|
var precision = (this.serie[i] + "").split(".")[1].length;
|
||
|
} else {
|
||
|
var precision = 0;
|
||
|
}
|
||
|
|
||
|
if(precision > this.precision) {
|
||
|
this.precision = precision;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
if(this.precision > 20) {
|
||
|
// prevent "Uncaught RangeError: toFixed() digits argument must be between 0 and 20" bug. See https://github.com/simogeo/geostats/issues/34
|
||
|
this.log('this.precision value (' + this.precision + ') is greater than max value. Automatic set-up to 20 to prevent "Uncaught RangeError: toFixed()" when calling decimalFormat() method.');
|
||
|
this.precision = 20;
|
||
|
}
|
||
|
|
||
|
this.log('Calling setPrecision(). Mode : ' + this.precisionflag + ' - Decimals : '+ this.precision);
|
||
|
|
||
|
this.serie = this.decimalFormat(this.serie);
|
||
|
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Format array numbers regarding to precision
|
||
|
*/
|
||
|
this.decimalFormat = function(a) {
|
||
|
|
||
|
var b = new Array();
|
||
|
|
||
|
for (var i = 0; i < a.length; i++) {
|
||
|
// check if the given value is a number
|
||
|
if (isNumber(a[i])) {
|
||
|
b[i] = parseFloat(parseFloat(a[i]).toFixed(this.precision));
|
||
|
} else {
|
||
|
b[i] = a[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return b;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Transform a bounds array to a range array the following array : array(0,
|
||
|
* 0.75, 1.5, 2.25, 3); becomes : array('0-0.75', '0.75-1.5', '1.5-2.25',
|
||
|
* '2.25-3');
|
||
|
*/
|
||
|
this.setRanges = function() {
|
||
|
|
||
|
this.ranges = Array(); // init empty array to prevent bug when calling classification after another with less items (sample getQuantile(6) and getQuantile(4))
|
||
|
|
||
|
for (i = 0; i < (this.bounds.length - 1); i++) {
|
||
|
this.ranges[i] = this.bounds[i] + this.separator + this.bounds[i + 1];
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/** return min value */
|
||
|
this.min = function() {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
this.stat_min = this.serie[0];
|
||
|
|
||
|
for (i = 0; i < this.pop(); i++) {
|
||
|
if (this.serie[i] < this.stat_min) {
|
||
|
this.stat_min = this.serie[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return this.stat_min;
|
||
|
};
|
||
|
|
||
|
/** return max value */
|
||
|
this.max = function() {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
this.stat_max = this.serie[0];
|
||
|
for (i = 0; i < this.pop(); i++) {
|
||
|
if (this.serie[i] > this.stat_max) {
|
||
|
this.stat_max = this.serie[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return this.stat_max;
|
||
|
};
|
||
|
|
||
|
/** return sum value */
|
||
|
this.sum = function() {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
if (this.stat_sum == null) {
|
||
|
|
||
|
this.stat_sum = 0;
|
||
|
for (i = 0; i < this.pop(); i++) {
|
||
|
this.stat_sum += parseFloat(this.serie[i]);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return this.stat_sum;
|
||
|
};
|
||
|
|
||
|
/** return population number */
|
||
|
this.pop = function() {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
if (this.stat_pop == null) {
|
||
|
|
||
|
this.stat_pop = this.serie.length;
|
||
|
|
||
|
}
|
||
|
|
||
|
return this.stat_pop;
|
||
|
};
|
||
|
|
||
|
/** return mean value */
|
||
|
this.mean = function() {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
if (this.stat_mean == null) {
|
||
|
|
||
|
this.stat_mean = parseFloat(this.sum() / this.pop());
|
||
|
|
||
|
}
|
||
|
|
||
|
return this.stat_mean;
|
||
|
};
|
||
|
|
||
|
/** return median value */
|
||
|
this.median = function() {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
if (this.stat_median == null) {
|
||
|
|
||
|
this.stat_median = 0;
|
||
|
var tmp = this.sorted();
|
||
|
|
||
|
// serie pop is odd
|
||
|
if (tmp.length % 2) {
|
||
|
this.stat_median = parseFloat(tmp[(Math.ceil(tmp.length / 2) - 1)]);
|
||
|
|
||
|
// serie pop is even
|
||
|
} else {
|
||
|
this.stat_median = ( parseFloat(tmp[((tmp.length / 2) - 1)]) + parseFloat(tmp[(tmp.length / 2)]) ) / 2;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return this.stat_median;
|
||
|
};
|
||
|
|
||
|
/** return variance value */
|
||
|
this.variance = function() {
|
||
|
|
||
|
round = (typeof round === "undefined") ? true : false;
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
if (this.stat_variance == null) {
|
||
|
|
||
|
var tmp = 0, serie_mean = this.mean();
|
||
|
for (var i = 0; i < this.pop(); i++) {
|
||
|
tmp += Math.pow( (this.serie[i] - serie_mean), 2 );
|
||
|
}
|
||
|
|
||
|
this.stat_variance = tmp / this.pop();
|
||
|
|
||
|
if(round == true) {
|
||
|
this.stat_variance = Math.round(this.stat_variance * Math.pow(10,this.roundlength) )/ Math.pow(10,this.roundlength);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return this.stat_variance;
|
||
|
};
|
||
|
|
||
|
/** return standard deviation value */
|
||
|
this.stddev = function(round) {
|
||
|
|
||
|
round = (typeof round === "undefined") ? true : false;
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
if (this.stat_stddev == null) {
|
||
|
|
||
|
this.stat_stddev = Math.sqrt(this.variance());
|
||
|
|
||
|
if(round == true) {
|
||
|
this.stat_stddev = Math.round(this.stat_stddev * Math.pow(10,this.roundlength) )/ Math.pow(10,this.roundlength);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return this.stat_stddev;
|
||
|
};
|
||
|
|
||
|
/** coefficient of variation - measure of dispersion */
|
||
|
this.cov = function(round) {
|
||
|
|
||
|
round = (typeof round === "undefined") ? true : false;
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
if (this.stat_cov == null) {
|
||
|
|
||
|
this.stat_cov = this.stddev() / this.mean();
|
||
|
|
||
|
if(round == true) {
|
||
|
this.stat_cov = Math.round(this.stat_cov * Math.pow(10,this.roundlength) )/ Math.pow(10,this.roundlength);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return this.stat_cov;
|
||
|
};
|
||
|
|
||
|
/** reset all attributes after setting a new serie */
|
||
|
this.resetStatistics = function() {
|
||
|
this.stat_sorted = null;
|
||
|
this.stat_mean = null;
|
||
|
this.stat_median = null;
|
||
|
this.stat_sum = null;
|
||
|
this.stat_max = null;
|
||
|
this.stat_min = null;
|
||
|
this.stat_pop = null;
|
||
|
this.stat_variance = null;
|
||
|
this.stat_stddev = null;
|
||
|
this.stat_cov = null;
|
||
|
}
|
||
|
|
||
|
/** data test */
|
||
|
this._nodata = function() {
|
||
|
if (this.serie.length == 0) {
|
||
|
|
||
|
if(this.silent) this.log("[silent mode] Error. You should first enter a serie!", true);
|
||
|
else throw new TypeError("Error. You should first enter a serie!");
|
||
|
return 1;
|
||
|
} else
|
||
|
return 0;
|
||
|
|
||
|
};
|
||
|
|
||
|
/** check if the serie contains negative value */
|
||
|
this._hasNegativeValue = function() {
|
||
|
|
||
|
for (i = 0; i < this.serie.length; i++) {
|
||
|
if(this.serie[i] < 0)
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
};
|
||
|
|
||
|
/** check if the serie contains zero value */
|
||
|
this._hasZeroValue = function() {
|
||
|
|
||
|
for (i = 0; i < this.serie.length; i++) {
|
||
|
if(parseFloat(this.serie[i]) === 0)
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
};
|
||
|
|
||
|
/** return sorted values (as array) */
|
||
|
this.sorted = function() {
|
||
|
|
||
|
if (this.stat_sorted == null) {
|
||
|
|
||
|
if(this.is_uniqueValues == false) {
|
||
|
this.stat_sorted = this.serie.sort(function(a, b) {
|
||
|
return a - b;
|
||
|
});
|
||
|
} else {
|
||
|
this.stat_sorted = this.serie.sort(function(a,b){
|
||
|
var nameA=a.toString().toLowerCase(), nameB=b.toString().toLowerCase();
|
||
|
if(nameA < nameB) return -1;
|
||
|
if(nameA > nameB) return 1;
|
||
|
return 0;
|
||
|
})
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return this.stat_sorted;
|
||
|
|
||
|
};
|
||
|
|
||
|
/** return all info */
|
||
|
this.info = function() {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
var content = '';
|
||
|
content += _t('Population') + ' : ' + this.pop() + ' - [' + _t('Min')
|
||
|
+ ' : ' + this.min() + ' | ' + _t('Max') + ' : ' + this.max()
|
||
|
+ ']' + "\n";
|
||
|
content += _t('Mean') + ' : ' + this.mean() + ' - ' + _t('Median') + ' : ' + this.median() + "\n";
|
||
|
content += _t('Variance') + ' : ' + this.variance() + ' - ' + _t('Standard deviation') + ' : ' + this.stddev()
|
||
|
+ ' - ' + _t('Coefficient of variation') + ' : ' + this.cov() + "\n";
|
||
|
|
||
|
return content;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Set Manual classification Return an array with bounds : ie array(0,
|
||
|
* 0.75, 1.5, 2.25, 3);
|
||
|
* Set ranges and prepare data for displaying legend
|
||
|
*
|
||
|
*/
|
||
|
this.setClassManually = function(array) {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
if(array[0] !== this.min() || array[array.length-1] !== this.max()) {
|
||
|
if(this.silent) this.log("[silent mode] " + t('Given bounds may not be correct! please check your input.\nMin value : ' + this.min() + ' / Max value : ' + this.max()), true);
|
||
|
else throw new TypeError(_t('Given bounds may not be correct! please check your input.\nMin value : ' + this.min() + ' / Max value : ' + this.max()));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
this.setBounds(array);
|
||
|
this.setRanges();
|
||
|
|
||
|
// we specify the classification method
|
||
|
this.method = _t('manual classification') + ' (' + (array.length -1) + ' ' + _t('classes') + ')';
|
||
|
|
||
|
return this.bounds;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Equal intervals classification Return an array with bounds : ie array(0,
|
||
|
* 0.75, 1.5, 2.25, 3);
|
||
|
*/
|
||
|
this.getClassEqInterval = function(nbClass, forceMin, forceMax) {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
var tmpMin = (typeof forceMin === "undefined") ? this.min() : forceMin;
|
||
|
var tmpMax = (typeof forceMax === "undefined") ? this.max() : forceMax;
|
||
|
|
||
|
var a = Array();
|
||
|
var val = tmpMin;
|
||
|
var interval = (tmpMax - tmpMin) / nbClass;
|
||
|
|
||
|
for (i = 0; i <= nbClass; i++) {
|
||
|
a[i] = val;
|
||
|
val += interval;
|
||
|
}
|
||
|
|
||
|
//-> Fix last bound to Max of values
|
||
|
a[nbClass] = tmpMax;
|
||
|
|
||
|
this.setBounds(a);
|
||
|
this.setRanges();
|
||
|
|
||
|
// we specify the classification method
|
||
|
this.method = _t('eq. intervals') + ' (' + nbClass + ' ' + _t('classes') + ')';
|
||
|
|
||
|
return this.bounds;
|
||
|
};
|
||
|
|
||
|
|
||
|
this.getQuantiles = function(nbClass) {
|
||
|
var tmp = this.sorted();
|
||
|
var quantiles = [];
|
||
|
|
||
|
var step = this.pop() / nbClass;
|
||
|
for (var i = 1; i < nbClass; i++) {
|
||
|
var qidx = Math.round(i*step+0.49);
|
||
|
quantiles.push(tmp[qidx-1]); // zero-based
|
||
|
}
|
||
|
|
||
|
return quantiles;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Quantile classification Return an array with bounds : ie array(0, 0.75,
|
||
|
* 1.5, 2.25, 3);
|
||
|
*/
|
||
|
this.getClassQuantile = function(nbClass) {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
var tmp = this.sorted();
|
||
|
var bounds = this.getQuantiles(nbClass);
|
||
|
bounds.unshift(tmp[0]);
|
||
|
|
||
|
if (bounds[tmp.length - 1] !== tmp[tmp.length - 1])
|
||
|
bounds.push(tmp[tmp.length - 1]);
|
||
|
|
||
|
this.setBounds(bounds);
|
||
|
this.setRanges();
|
||
|
|
||
|
// we specify the classification method
|
||
|
this.method = _t('quantile') + ' (' + nbClass + ' ' + _t('classes') + ')';
|
||
|
|
||
|
return this.bounds;
|
||
|
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Standard Deviation classification
|
||
|
* Return an array with bounds : ie array(0,
|
||
|
* 0.75, 1.5, 2.25, 3);
|
||
|
*/
|
||
|
this.getClassStdDeviation = function(nbClass, matchBounds) {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
var tmpMax = this.max();
|
||
|
var tmpMin = this.min();
|
||
|
|
||
|
var a = Array();
|
||
|
|
||
|
// number of classes is odd
|
||
|
if(nbClass % 2 == 1) {
|
||
|
|
||
|
// Euclidean division to get the inferior bound
|
||
|
var infBound = Math.floor(nbClass / 2);
|
||
|
|
||
|
var supBound = infBound + 1;
|
||
|
|
||
|
// we set the central bounds
|
||
|
a[infBound] = this.mean() - ( this.stddev() / 2);
|
||
|
a[supBound] = this.mean() + ( this.stddev() / 2);
|
||
|
|
||
|
// Values < to infBound, except first one
|
||
|
for (i = infBound - 1; i > 0; i--) {
|
||
|
var val = a[i+1] - this.stddev();
|
||
|
a[i] = val;
|
||
|
}
|
||
|
|
||
|
// Values > to supBound, except last one
|
||
|
for (i = supBound + 1; i < nbClass; i++) {
|
||
|
var val = a[i-1] + this.stddev();
|
||
|
a[i] = val;
|
||
|
}
|
||
|
|
||
|
// number of classes is even
|
||
|
} else {
|
||
|
|
||
|
var meanBound = nbClass / 2;
|
||
|
|
||
|
// we get the mean value
|
||
|
a[meanBound] = this.mean();
|
||
|
|
||
|
// Values < to the mean, except first one
|
||
|
for (i = meanBound - 1; i > 0; i--) {
|
||
|
var val = a[i+1] - this.stddev();
|
||
|
a[i] = val;
|
||
|
}
|
||
|
|
||
|
// Values > to the mean, except last one
|
||
|
for (i = meanBound + 1; i < nbClass; i++) {
|
||
|
var val = a[i-1] + this.stddev();
|
||
|
a[i] = val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// we finally set the first value
|
||
|
// do we excatly match min value or not ?
|
||
|
a[0] = (typeof matchBounds === "undefined") ? a[1]-this.stddev() : this.min();
|
||
|
|
||
|
// we finally set the last value
|
||
|
// do we excatly match max value or not ?
|
||
|
a[nbClass] = (typeof matchBounds === "undefined") ? a[nbClass-1]+this.stddev() : this.max();
|
||
|
|
||
|
this.setBounds(a);
|
||
|
this.setRanges();
|
||
|
|
||
|
// we specify the classification method
|
||
|
this.method = _t('std deviation') + ' (' + nbClass + ' ' + _t('classes')+ ')';
|
||
|
|
||
|
return this.bounds;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Geometric Progression classification
|
||
|
* http://en.wikipedia.org/wiki/Geometric_progression
|
||
|
* Return an array with bounds : ie array(0,
|
||
|
* 0.75, 1.5, 2.25, 3);
|
||
|
*/
|
||
|
this.getClassGeometricProgression = function(nbClass) {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
if(this._hasNegativeValue() || this._hasZeroValue()) {
|
||
|
if(this.silent) this.log("[silent mode] " + _t('geometric progression can\'t be applied with a serie containing negative or zero values.'), true);
|
||
|
else throw new TypeError(_t('geometric progression can\'t be applied with a serie containing negative or zero values.'));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
var a = Array();
|
||
|
var tmpMin = this.min();
|
||
|
var tmpMax = this.max();
|
||
|
|
||
|
var logMax = Math.log(tmpMax) / Math.LN10; // max decimal logarithm (or base 10)
|
||
|
var logMin = Math.log(tmpMin) / Math.LN10;; // min decimal logarithm (or base 10)
|
||
|
|
||
|
var interval = (logMax - logMin) / nbClass;
|
||
|
|
||
|
// we compute log bounds
|
||
|
for (i = 0; i < nbClass; i++) {
|
||
|
if(i == 0) {
|
||
|
a[i] = logMin;
|
||
|
} else {
|
||
|
a[i] = a[i-1] + interval;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// we compute antilog
|
||
|
a = a.map(function(x) { return Math.pow(10, x); });
|
||
|
|
||
|
// and we finally add max value
|
||
|
a.push(this.max());
|
||
|
|
||
|
this.setBounds(a);
|
||
|
this.setRanges();
|
||
|
|
||
|
// we specify the classification method
|
||
|
this.method = _t('geometric progression') + ' (' + nbClass + ' ' + _t('classes') + ')';
|
||
|
|
||
|
return this.bounds;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Arithmetic Progression classification
|
||
|
* http://en.wikipedia.org/wiki/Arithmetic_progression
|
||
|
* Return an array with bounds : ie array(0,
|
||
|
* 0.75, 1.5, 2.25, 3);
|
||
|
*/
|
||
|
this.getClassArithmeticProgression = function(nbClass) {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
var denominator = 0;
|
||
|
|
||
|
// we compute the (french) "Raison"
|
||
|
for (i = 1; i <= nbClass; i++) {
|
||
|
denominator += i;
|
||
|
}
|
||
|
|
||
|
var a = Array();
|
||
|
var tmpMin = this.min();
|
||
|
var tmpMax = this.max();
|
||
|
|
||
|
var interval = (tmpMax - tmpMin) / denominator;
|
||
|
|
||
|
for (i = 0; i <= nbClass; i++) {
|
||
|
if(i == 0) {
|
||
|
a[i] = tmpMin;
|
||
|
} else {
|
||
|
a[i] = a[i-1] + (i * interval);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
this.setBounds(a);
|
||
|
this.setRanges();
|
||
|
|
||
|
// we specify the classification method
|
||
|
this.method = _t('arithmetic progression') + ' (' + nbClass + ' ' + _t('classes') + ')';
|
||
|
|
||
|
return this.bounds;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Credits : Doug Curl (javascript) and Daniel J Lewis (python implementation)
|
||
|
* http://www.arcgis.com/home/item.html?id=0b633ff2f40d412995b8be377211c47b
|
||
|
* http://danieljlewis.org/2010/06/07/jenks-natural-breaks-algorithm-in-python/
|
||
|
*/
|
||
|
this.getClassJenks = function(nbClass) {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
dataList = this.sorted();
|
||
|
|
||
|
// now iterate through the datalist:
|
||
|
// determine mat1 and mat2
|
||
|
// really not sure how these 2 different arrays are set - the code for
|
||
|
// each seems the same!
|
||
|
// but the effect are 2 different arrays: mat1 and mat2
|
||
|
var mat1 = []
|
||
|
for ( var x = 0, xl = dataList.length + 1; x < xl; x++) {
|
||
|
var temp = []
|
||
|
for ( var j = 0, jl = nbClass + 1; j < jl; j++) {
|
||
|
temp.push(0)
|
||
|
}
|
||
|
mat1.push(temp)
|
||
|
}
|
||
|
|
||
|
var mat2 = []
|
||
|
for ( var i = 0, il = dataList.length + 1; i < il; i++) {
|
||
|
var temp2 = []
|
||
|
for ( var c = 0, cl = nbClass + 1; c < cl; c++) {
|
||
|
temp2.push(0)
|
||
|
}
|
||
|
mat2.push(temp2)
|
||
|
}
|
||
|
|
||
|
// absolutely no idea what this does - best I can tell, it sets the 1st
|
||
|
// group in the
|
||
|
// mat1 and mat2 arrays to 1 and 0 respectively
|
||
|
for ( var y = 1, yl = nbClass + 1; y < yl; y++) {
|
||
|
mat1[0][y] = 1
|
||
|
mat2[0][y] = 0
|
||
|
for ( var t = 1, tl = dataList.length + 1; t < tl; t++) {
|
||
|
mat2[t][y] = Infinity
|
||
|
}
|
||
|
var v = 0.0
|
||
|
}
|
||
|
|
||
|
// and this part - I'm a little clueless on - but it works
|
||
|
// pretty sure it iterates across the entire dataset and compares each
|
||
|
// value to
|
||
|
// one another to and adjust the indices until you meet the rules:
|
||
|
// minimum deviation
|
||
|
// within a class and maximum separation between classes
|
||
|
for ( var l = 2, ll = dataList.length + 1; l < ll; l++) {
|
||
|
var s1 = 0.0
|
||
|
var s2 = 0.0
|
||
|
var w = 0.0
|
||
|
for ( var m = 1, ml = l + 1; m < ml; m++) {
|
||
|
var i3 = l - m + 1
|
||
|
var val = parseFloat(dataList[i3 - 1])
|
||
|
s2 += val * val
|
||
|
s1 += val
|
||
|
w += 1
|
||
|
v = s2 - (s1 * s1) / w
|
||
|
var i4 = i3 - 1
|
||
|
if (i4 != 0) {
|
||
|
for ( var p = 2, pl = nbClass + 1; p < pl; p++) {
|
||
|
if (mat2[l][p] >= (v + mat2[i4][p - 1])) {
|
||
|
mat1[l][p] = i3
|
||
|
mat2[l][p] = v + mat2[i4][p - 1]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
mat1[l][1] = 1
|
||
|
mat2[l][1] = v
|
||
|
}
|
||
|
|
||
|
var k = dataList.length
|
||
|
var kclass = []
|
||
|
|
||
|
// fill the kclass (classification) array with zeros:
|
||
|
for (i = 0; i <= nbClass; i++) {
|
||
|
kclass.push(0);
|
||
|
}
|
||
|
|
||
|
// this is the last number in the array:
|
||
|
kclass[nbClass] = parseFloat(dataList[dataList.length - 1])
|
||
|
// this is the first number - can set to zero, but want to set to lowest
|
||
|
// to use for legend:
|
||
|
kclass[0] = parseFloat(dataList[0])
|
||
|
var countNum = nbClass
|
||
|
while (countNum >= 2) {
|
||
|
var id = parseInt((mat1[k][countNum]) - 2)
|
||
|
kclass[countNum - 1] = dataList[id]
|
||
|
k = parseInt((mat1[k][countNum] - 1))
|
||
|
// spits out the rank and value of the break values:
|
||
|
// console.log("id="+id,"rank = " + String(mat1[k][countNum]),"val =
|
||
|
// " + String(dataList[id]))
|
||
|
// count down:
|
||
|
countNum -= 1
|
||
|
}
|
||
|
// check to see if the 0 and 1 in the array are the same - if so, set 0
|
||
|
// to 0:
|
||
|
if (kclass[0] == kclass[1]) {
|
||
|
kclass[0] = 0
|
||
|
}
|
||
|
|
||
|
this.setBounds(kclass);
|
||
|
this.setRanges();
|
||
|
|
||
|
|
||
|
this.method = _t('Jenks') + ' (' + nbClass + ' ' + _t('classes') + ')';
|
||
|
|
||
|
return this.bounds; //array of breaks
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Quantile classification Return an array with bounds : ie array(0, 0.75,
|
||
|
* 1.5, 2.25, 3);
|
||
|
*/
|
||
|
this.getClassUniqueValues = function() {
|
||
|
|
||
|
if (this._nodata())
|
||
|
return;
|
||
|
|
||
|
this.is_uniqueValues = true;
|
||
|
|
||
|
var tmp = this.sorted(); // display in alphabetical order
|
||
|
|
||
|
var a = Array();
|
||
|
|
||
|
for (i = 0; i < this.pop(); i++) {
|
||
|
if(a.indexOf(tmp[i]) === -1)
|
||
|
a.push(tmp[i]);
|
||
|
}
|
||
|
|
||
|
this.bounds = a;
|
||
|
|
||
|
// we specify the classification method
|
||
|
this.method = _t('unique values');
|
||
|
|
||
|
return a;
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Return the class of a given value.
|
||
|
* For example value : 6
|
||
|
* and bounds array = (0, 4, 8, 12);
|
||
|
* Return 2
|
||
|
*/
|
||
|
this.getClass = function(value) {
|
||
|
|
||
|
for(i = 0; i < this.bounds.length; i++) {
|
||
|
|
||
|
|
||
|
if(this.is_uniqueValues == true) {
|
||
|
if(value == this.bounds[i])
|
||
|
return i;
|
||
|
} else {
|
||
|
// parseFloat() is necessary
|
||
|
if(parseFloat(value) <= this.bounds[i + 1]) {
|
||
|
return i;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return _t("Unable to get value's class.");
|
||
|
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Return the ranges array : array('0-0.75', '0.75-1.5', '1.5-2.25',
|
||
|
* '2.25-3');
|
||
|
*/
|
||
|
this.getRanges = function() {
|
||
|
|
||
|
return this.ranges;
|
||
|
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Returns the number/index of this.ranges that value falls into
|
||
|
*/
|
||
|
this.getRangeNum = function(value) {
|
||
|
|
||
|
var bounds, i;
|
||
|
|
||
|
for (i = 0; i < this.ranges.length; i++) {
|
||
|
bounds = this.ranges[i].split(/ - /);
|
||
|
if (value <= parseFloat(bounds[1])) {
|
||
|
return i;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compute inner ranges based on serie.
|
||
|
* Produce discontinous ranges used for legend - return an array similar to :
|
||
|
* array('0.00-0.74', '0.98-1.52', '1.78-2.25', '2.99-3.14');
|
||
|
* If inner ranges already computed, return array values.
|
||
|
*/
|
||
|
this.getInnerRanges = function() {
|
||
|
|
||
|
// if already computed, we return the result
|
||
|
if(this.inner_ranges != null)
|
||
|
return this.inner_ranges;
|
||
|
|
||
|
|
||
|
var a = new Array();
|
||
|
var tmp = this.sorted();
|
||
|
|
||
|
var cnt = 1; // bounds array counter
|
||
|
|
||
|
for (i = 0; i < tmp.length; i++) {
|
||
|
|
||
|
if(i == 0) var range_firstvalue = tmp[i]; // we init first range value
|
||
|
|
||
|
if(parseFloat(tmp[i]) > parseFloat(this.bounds[cnt])) {
|
||
|
|
||
|
a[cnt - 1] = '' + range_firstvalue + this.separator + tmp[i-1];
|
||
|
|
||
|
var range_firstvalue = tmp[i];
|
||
|
|
||
|
cnt++;
|
||
|
|
||
|
}
|
||
|
|
||
|
// we reach the last range, we finally complete manually
|
||
|
// and return the array
|
||
|
if(cnt == (this.bounds.length - 1)) {
|
||
|
// we set the last value
|
||
|
a[cnt - 1] = '' + range_firstvalue + this.separator + tmp[tmp.length-1];
|
||
|
|
||
|
this.inner_ranges = a;
|
||
|
return this.inner_ranges;
|
||
|
}
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
this.getSortedlist = function() {
|
||
|
|
||
|
return this.sorted().join(', ');
|
||
|
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Return an html legend
|
||
|
* colors : specify an array of color (hexadecimal values)
|
||
|
* legend : specify a text input for the legend. By default, just displays 'legend'
|
||
|
* counter : if not null, display counter value
|
||
|
* callback : if not null, callback function applied on legend boundaries
|
||
|
* mode : null, 'default', 'distinct', 'discontinuous' :
|
||
|
* - if mode is null, will display legend as 'default mode'
|
||
|
* - 'default' : displays ranges like in ranges array (continuous values), sample : 29.26 - 378.80 / 378.80 - 2762.25 / 2762.25 - 6884.84
|
||
|
* - 'distinct' : Add + 1 according to decimal precision to distinguish classes (discrete values), sample : 29.26 - 378.80 / 378.81 - 2762.25 / 2762.26 - 6884.84
|
||
|
* - 'discontinuous' : indicates the range of data actually falling in each class , sample : 29.26 - 225.43 / 852.12 - 2762.20 / 3001.25 - 6884.84 / not implemented yet
|
||
|
* order : null, 'ASC', 'DESC'
|
||
|
*/
|
||
|
this.getHtmlLegend = function(colors, legend, counter, callback, mode, order) {
|
||
|
|
||
|
var cnt= '';
|
||
|
var elements = new Array();
|
||
|
|
||
|
this.doCount(); // we do count, even if not displayed
|
||
|
|
||
|
if(colors != null) {
|
||
|
ccolors = colors;
|
||
|
}
|
||
|
else {
|
||
|
ccolors = this.colors;
|
||
|
}
|
||
|
|
||
|
if(legend != null) {
|
||
|
lg = legend;
|
||
|
}
|
||
|
else {
|
||
|
lg = 'Legend';
|
||
|
}
|
||
|
|
||
|
if(counter != null) {
|
||
|
getcounter = true;
|
||
|
}
|
||
|
else {
|
||
|
getcounter = false;
|
||
|
}
|
||
|
|
||
|
if(callback != null) {
|
||
|
fn = callback;
|
||
|
}
|
||
|
else {
|
||
|
fn = function(o) {return o;};
|
||
|
}
|
||
|
if(mode == null) {
|
||
|
mode = 'default';
|
||
|
}
|
||
|
if(mode == 'discontinuous') {
|
||
|
this.getInnerRanges();
|
||
|
// check if some classes are not populated / equivalent of in_array function
|
||
|
if(this.counter.indexOf(0) !== -1) {
|
||
|
if(this.silent) this.log("[silent mode] " + _t("Geostats cannot apply 'discontinuous' mode to the getHtmlLegend() method because some classes are not populated.\nPlease switch to 'default' or 'distinct' modes. Exit!"), true);
|
||
|
else throw new TypeError(_t("Geostats cannot apply 'discontinuous' mode to the getHtmlLegend() method because some classes are not populated.\nPlease switch to 'default' or 'distinct' modes. Exit!"));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
if(order !== 'DESC') order = 'ASC';
|
||
|
|
||
|
if(ccolors.length < this.ranges.length) {
|
||
|
if(this.silent) this.log("[silent mode] " + _t('The number of colors should fit the number of ranges. Exit!'), true);
|
||
|
else throw new TypeError(_t('The number of colors should fit the number of ranges. Exit!'));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if(this.is_uniqueValues == false) {
|
||
|
|
||
|
for (i = 0; i < (this.ranges.length); i++) {
|
||
|
if(getcounter===true) {
|
||
|
cnt = ' <span class="geostats-legend-counter">(' + this.counter[i] + ')</span>';
|
||
|
}
|
||
|
//console.log("Ranges : " + this.ranges[i]);
|
||
|
|
||
|
// default mode
|
||
|
var tmp = this.ranges[i].split(this.separator);
|
||
|
|
||
|
var start_value = parseFloat(tmp[0]).toFixed(this.precision);
|
||
|
var end_value = parseFloat(tmp[1]).toFixed(this.precision);
|
||
|
|
||
|
|
||
|
// if mode == 'distinct' and we are not working on the first value
|
||
|
if(mode == 'distinct' && i != 0) {
|
||
|
|
||
|
if(isInt(start_value)) {
|
||
|
start_value = parseInt(start_value) + 1;
|
||
|
// format to float if necessary
|
||
|
if(this.precisionflag == 'manual' && this.precision != 0) start_value = parseFloat(start_value).toFixed(this.precision);
|
||
|
} else {
|
||
|
|
||
|
start_value = parseFloat(start_value) + (1 / Math.pow(10,this.precision));
|
||
|
// strangely the formula above return sometimes long decimal values,
|
||
|
// the following instruction fix it
|
||
|
start_value = parseFloat(start_value).toFixed(this.precision);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// if mode == 'discontinuous'
|
||
|
if(mode == 'discontinuous') {
|
||
|
|
||
|
var tmp = this.inner_ranges[i].split(this.separator);
|
||
|
// console.log("Ranges : " + this.inner_ranges[i]);
|
||
|
|
||
|
var start_value = parseFloat(tmp[0]).toFixed(this.precision);
|
||
|
var end_value = parseFloat(tmp[1]).toFixed(this.precision);
|
||
|
|
||
|
}
|
||
|
|
||
|
// we apply callback function
|
||
|
var el = fn(start_value) + this.legendSeparator + fn(end_value);
|
||
|
|
||
|
var block = '<div><div class="geostats-legend-block" style="background-color:' + ccolors[i] + '"></div> ' + el + cnt + '</div>';
|
||
|
elements.push(block);
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
|
||
|
// only if classification is done on unique values
|
||
|
for (i = 0; i < (this.bounds.length); i++) {
|
||
|
if(getcounter===true) {
|
||
|
cnt = ' <span class="geostats-legend-counter">(' + this.counter[i] + ')</span>';
|
||
|
}
|
||
|
var el = fn(this.bounds[i]);
|
||
|
var block = '<div><div class="geostats-legend-block" style="background-color:' + ccolors[i] + '"></div> ' + el + cnt + '</div>';
|
||
|
|
||
|
elements.push(block);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
// do we reverse the return legend ?
|
||
|
if(order === 'DESC') elements.reverse();
|
||
|
|
||
|
// finally we create HTML and return it
|
||
|
var content = '<div class="geostats-legend"><div class="geostats-legend-title">' + _t(lg) + '</div>';
|
||
|
for (i = 0; i < (elements.length); i++) {
|
||
|
content += elements[i];
|
||
|
}
|
||
|
content += '</div>';
|
||
|
|
||
|
return content;
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
// object constructor
|
||
|
// At the end of script. If not setPrecision() method is not known
|
||
|
|
||
|
// we create an object identifier for debugging
|
||
|
this.objectID = new Date().getUTCMilliseconds();
|
||
|
this.log('Creating new geostats object');
|
||
|
|
||
|
if(typeof a !== 'undefined' && a.length > 0) {
|
||
|
this.serie = a;
|
||
|
this.setPrecision();
|
||
|
this.log('Setting serie (' + a.length + ') : ' + a.join());
|
||
|
} else {
|
||
|
this.serie = Array();
|
||
|
|
||
|
};
|
||
|
|
||
|
// creating aliases on classification function for backward compatibility
|
||
|
this.getJenks = this.getClassJenks;
|
||
|
this.getGeometricProgression = this.getClassGeometricProgression;
|
||
|
this.getEqInterval = this.getClassEqInterval;
|
||
|
this.getQuantile = this.getClassQuantile;
|
||
|
this.getStdDeviation = this.getClassStdDeviation;
|
||
|
this.getUniqueValues = this.getClassUniqueValues;
|
||
|
this.getArithmeticProgression = this.getClassArithmeticProgression;
|
||
|
|
||
|
};
|
||
|
|
||
|
window.geostats = geostats;
|
||
|
return geostats;
|
||
|
});
|